东北森林沼泽景观区表生地球化学特征及勘查地球化学技术方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
  • 英文题名:Secondary Geochemical Characteristics and Corresponding Geochemical Survey Methods for Swamp-Forest Area in Northeast China
  • 作者:孔牧
  • 论文级别:博士
  • 学科专业名称:地球化学
  • 学位年度:2003
  • 导师:沈镛立
  • 学科代码:070902
  • 学位授予单位:中国地质大学(北京)
  • 论文提交日期:2003-11-01
摘要
二十多年来,在东北森林沼泽区,虽然几经方法技术研究,在不同的历史阶段提出了不同的区域化探扫面方法技术。但是,由于已有的方法技术没有完全排除本景观区广泛分布的有机质干扰问题,使得已完成的区域化探扫面工作不同程度存在着两大问题: ①区域地球化学变差不明显; ②异常被弱化,与异常相关的地球化学分布规律性不明显。因此,该景观区内区域化探扫面的地质找矿效果不明显。造成上述结果的主要原因之一是对森林沼泽景观区在表生作用下元素分散、迁移的机理等基础理论性问题研究力度不够,因而制定方法技术的依据不足。森林沼泽景观区表生地球化学作用有其特殊性, 这其中有机质扮演着十分重要的角色,在很大程度上直接或间接地影响元素的存在形式和迁移能力。因此研究森林沼泽景观区元素表生地球化学作用的机制,尤其是有机质的作用机理,是解决该区勘查地球化学方法技术的关键。
    本论文针对上述问题重点研究了森林沼泽景观区元素在各种表生介质中的地球化学分布特征,还研究了有机质在各种表生介质中的分布、构成,与元素的关系,包括在元素分散、富集过程中的作用,干扰机理等关键问题;同时研究了在制定方法技术中有机质的干扰特点、干扰程度和排除干扰的方法以及在化探工作中利用有机质的可行性等几方面内容。
    研究结果表明,在森林沼泽景观区,各介质的粗粒级部分(土壤为大于40目粒级,水系沉积物为大于60 目粒级)影响元素地球化学分布特征的主要是地质背景和元素本身的化学性质,有机质的影响甚微。在细粒级部分(土壤为小于40 目粒级,水系沉积物为小于60 目粒级)不论是土壤还是水系沉积物,有机质含量明显增加,对元素表生地球化学分布特征的影响大大增强。一方面有机质可以直接吸附很多元素,造成这些元素的次生富集;另一方面,有机质主要成分为胡敏酸、富里酸和胡敏素,在细粒水系沉积物中有机质含量是粗粒的29 倍,土壤表层是BC 层的8 倍。含量如此增加,大大改变了环境介质的物理化学条件,pH 值逐渐降低,电导率增高,增强了元素的活性,加大元素的迁移能力,从而改变了元素的表生地球化学分布特征。
    研究结果还表明,在泥炭中,几乎所有元素在细粒级均出现明显富集现象,
For more than 20 years, studies on methods of geochemical reconnaissance surveys in the swamp-forest areas on the Northeast China have been carried out for several rounds and with different methods and technologies suggested at different phases. However, interference due to organic matters, which is widely exists in swamp-forest areas, has not been completely removed for the suggested methods. Two problems were thus resulted for the geochemical reconnaissance surveys: (1) the regional geochemical variations were not so significant and thus difficult to be traced; (2) the anomalies were weakened and the regularities of geochemical distributions related to the anomalies could not be clearly picked up. Consequently, effects of ore-finding with the geochemical data so obtained were not as good as expected. One of the reasons for this is that the mechanics of element dispersion and migration under secondary conditions in swamp-forest landscape has not been well understood, and therefore the methods have not been suggested under firm theoretical basis. As we know, secondary geochemical actions are very strong in swamp-forest areas. Organic matters play an important role in the actions, and to a great extent they exert an influence, directly or indirectly, on occurrence modes and migration capability of elements. A key point for developing effective geochemical methods in swamp-forest areas is to further understand secondary geochemical mechanics, especially the mechanics of actions due to organic matters, in swamp-forest areas.
    Aimed at the problems mentioned above, the characteristics of geochemical distributions of elements in various secondary media in swamp-forest areas have been studies in this paper. Also studied in the paper have been the distribution and composition of organic matters in various secondary media and their roles in the process of element dispersion and enrichment, as well as the mechanics of interference from the organic matters. Based on the understanding of features and degrees of the interference from the organic matters, the ways for removing the interference have been suggested.
    The results of the study show that distributions of elements in a coarsely grained portion of various secondary media ( > 40 mesh for soils, > 60 mesh for stream sediments ) are closely associated with and their own chemical properties and corresponding geological settings, little influence from organic matters could be observed. Whereas in a fine-grained portion, no matter for soils or stream sediments ( < 40 mesh for soils, < 60 mesh for stream sediments ), the contents of organic matters obviously increases and their influences on secondary geochemical distribution pattern of elements become much stronger. Many elements could be occluded directly by the organic matters on one hand, resulting in secondary enrichment of the elements. On the other hand, the main compositions of the organic matters are humic acid, fulvic acid and humin. And the content of organic matters in fine-grained stream sediments is 29 times higher than that in coarse-grained stream sediments, the content of organic matters in layer A of soils is 8 times higher
    than that in layers B and C of soils. Great changes in physical-chemical condition of the secondary media are thus resulted with such high contents of organic matters, such as decrement of pH value, increment of conductivity, enhancement of activity and migrating capability of elements. The geochemical distribution pattern of elements in secondary environment is finally changed. It shows from our study that almost all of elements in a fine-grained portion in peat are obviously enriched, though the enrichment degree varies from element to element. The elements in grain-size of –80 mesh are mainly occurred in modes of amorphous femic oxides and organic matters, while little in water-soluble mode. The increment for proportion of organic matters is mainly due to the increment of organic carbon. The occlusion by organic matters in anomalous zones is higher that in background areas; it varies for the other two modes ( femic oxides and water-soluble modes ) depending on elements. Although the contrast of anomaly is lowered because of the significant enrichment of elements by organic matters in anomalous zones, enriching centers are still there, therefore it is feasible to track regional geochemical anomalies by taking peat as sampling medium. Based on the results above, the method for geochemical surveys on a scale of 1:200,000 in swamp-forest areas has been suggested. Summarily, the grain size for sampling is –10 ~ + 60 mesh for getting rid of interference from organic matters. The sampling density is one sampling spot every 4 km2, and making the spots mainly spread on 2nd ~ 3rd stream systems and valley mouths of long streams. It is thus possible to sample sandy and granular materials and avoid segments with peat accumulated. While for geochemical surveys more detail than regional surveys, stream sediments and peat could be sampled with grain size selected according to individual circumstance and sampling density adopted based on corresponding regulations. In summary, the geochemical characteristics, especially the mechanics of influence of organic matters on secondary geochemical distribution of elements, for swamp-forest areas have been systematically studies in this paper. And the method for geochemical surveys on a scale of 200,000 has been suggested in swamp-forest areas based on the results of the study. At the same time, the trials for tracking regional geochemical anomalies by taking peat as sampling medium have been carried out with rather good results obtained. The results of the study are not only helpful for practical geochemical surveys, but also prepare a firm ground for further theoretical study in such a kind of landscape.
引文
(1) Boyle.R.W.,1977, Cupriferous bogs in the Sackville area, New Brunswick, Canada. JGE 8(3)
    (2) R.Ewelett, Dukhanin.A.S.,Veshev.S.A.and Voroshilov.N.A., 1996,Some aspects of practical use of geoelectrochemical methods of exploration for deep-seated mineralization. J. Geochem. Explor., 56: 79-86.
    (3) Gleenson, C.F. and Coope, J.A., 1966, Some observations on the distribution of metals in swamps in eastern Canada. In: E.M.Cameron(Editor), Proc. Symp. Geochem. Prospecting, Ottawa. Geol. Survey. Can. Pap., Vol.66.
    (4) Chowdhury, A.N., and Bose B.B., 1971, Role of “humus matter”in formation of geochemical anomalies. In: R.W. Boyle and J.I.McGerrigle(Editor), Geochemical Exploration. C.I.M.Special Vol.11.
    (5) Chowdhury, A.N., and Bose B.B., 1972, Studies on the method of estimation of cold extractable copper in soil. United Nations (1972)
    (6) Baker, W.E., 1973, The role of humic acids from Tasmanian podzolic soils in mineral degradation and mobilization. Geochem. Cosmochim. Acta, Vol.37.
    (7) Jackson, K.S. and Skippen, G.B., 1978, Geochemical dispersion of heavy metals via organic complexing: a laboratory study of copper, lead, zinc, and nickel behaviour at a simulated sediment-water bourdary. J. Geochem. Explor., Vol.10.
    (8) Tanskanen.H, 1976,Rookkijarvi -the nickel/copper ratio in peat in a gabbro-peridotitic area, JGE 5(3).
    (9) Tanskanen.H, 1976,Factors affecting the metal contents in peat profiles ,JGE 5(3).
    (10) Clark, J.R., Meier, A.L. and Riddle, 1990. Enzyme leaching of surficial geochemical samples for defecting hydromorphic trace-element anomalies associated with precious-metal mineralized bedrock buried beneath glacial overburden in northern Minnesota. In: GOLD'90, 189-207.
    (11) Clark, J.R., 1993. Enzyme-induced leaching of B-horizon soils for mineral exploration in areas of glacial overburden. Trans. Instn. Min. Metall. (Sect. B: Appl. earth sci.), 102: B19-B29.
    (12) Clark, J. R., Yeager, J. R., Rogers, P. and Hoffman, E.L., 1997. Innovative enzyme leach provides cost-effective overburden/bedrock penetration,
    (13) Sibbick, S. J. And Fletcher, W. K., 1993, Distribution and behavior of Gold in soil and till at the Nickel Plate Mine, southern British Columbia, Canada, J. Geochem. Explor., 47:183-200.
    (14) Gleenson, C.F. and Coope, J.A., 1996, Some observations on the distribution of metals in swamps in eastern Canada. In: E.M.Cameron(Editor), Proc. Symp. Geochem. Prospecting, Ottawa. Geol. Survey. Can. Pap., Vol.66.
    (15) Larsson, J. O., 1975, Copper in organic stream sediments pver sulfide bearing Graphtec horizons. J. Geochem. Explor., 5: 364-366.
    (16) Larsson, J.O., 1976, Organic stream sediments in regional geochemical prospecting, Precambrian Pajala distict, Sweden. J.Geochemical Explor. Vol.6.
    (17) Eriksson.J.,1985, Geochemical mapping of Sweden,11thIGES,April 28~May 2, 1985, Toronto,Ontario,Canada.
    (18) Whitney, Ph.R., 1975, Relationship of manganese-iron oxides and associated, New York State: effects of geology and land use. J. Geochem. Explor., Vol.14.
    (19) Whitney.Ph.R., 1980, Heavy metals and manganese oxides in the Genesee Watershed, New York State: effects of geology and land use. J.Geochem. Explor., 14.
    (20) 吴传壁等,1987,苏联贝阿线地带化探工作,国外地南勘探技术,第一、二期。
    (21) Schniter, M. and Skinner, S. I. L., 1966, organic-metallic interactions in soils: stability constants of Cu2+, Fe2+, and Zn2+ Fulvic acid complexes, Soil Sci., 102: 361-365.
    (22) Camus, F. And Dilles, J. H., 2001, A special devoted to porphyry Copper deposits of Northern Chile, Cconomic Geology, 96:233-237.
    (23) Antropova, L.V., Goldberg, I. S., Voroshilov, N.A. and Ryss, Yu. S., 1992. New methods of regional exploration for blind mineralization: application in the USSR. J. Geochem. Explor., 43:157-166.
    (24) Schniter, M. and Khan.S.U., 1978, Soil Organic Matter,Elsevier,Amsterdam.
    (25) Schniter, M. and Skinner, S. I. L., 1966, organic-metallic interactions in soils: stability constants of Cu2+, Fe2+, and Zn2+ Fulvic acid complexes, Soil Sci., 102: 361-365.
    (26) Fletcher.W.K., 1995, Enrichment of platinum and associated elementsin organic seepage soils of the Tulameen ultramafic complex, southern British Colu, JGE,54 (1),39-47p.
    (27) Hall.G.E.M., 1995, Reabsorption of gold during the selective extraction of the "Soluble organic" phase of humus, soil and sediment samples, JGE, 54 (1), 27-38p.
    (28) Speczik.S., 1995, A stable isotope and organic geochemical study of the relationship between the Anthracosia shale and Kupferschiefer mineral, Chem. Geol.,123, 133-151p.
    (29) Pittman.E.D., 1994, Organic Acids in Geological Processes, Springer,482p.
    (30) Pratt.L.M., 1992, Geochemistry of Organic Matter in Sediments and Sed,imentary Rocks, SEPM Short Course 27, SEPM,100p.
    (31) Bowles.J.F.W., 1995, Organic controls on platinum-group element (PGE) solubility in soils: initial data, Chron. de la Recherche Miniere (BRGM), 63(520),65p.
    (32) Hall.G.E.M., 1996, Analytical aspects of the application of sodium pyrophosphate reagent in the specific extraction of the labile organic compon, JGE, 56(1), 23-36p
    (33) Chao,T.T.and Theobald,P.K., 1976. The significance of iron and manganese oxides in geochemical exploration.Econ.Geol., 71:1560-1569.
    (34) Chao, T.T.,1972. Selective dissolution of manganese oxides from soils and sediments with acidified hydroxylamine hydrochloride: Soil Science of America Proceedings, vol.36,764-768.
    (35) Chao.T.T, 1984, Use of partial dissolusion techniques in geochemical exploration. J.Geochem.Explor. 20.
    (36) Clifton, H.E., Hunter, R.E., Swanson, F.T. and Phillips, R.L., 1969. Sample size and meaningful gold analysis. U.S.Geol.Surv., Pap.625c,17pp.
    (37) 李明喜、金仰芬、李玉清,1978,多宝山—铜山斑岩铜矿区化探方法试验小结,物化探研究报导,1978 年,第三期,p.97~116(内部资料)。
    (38) 黑龙江物探队,1984,黑龙江省大兴安岭呼中区物探工作报告(内部资料)。
    (39) 黑龙江物探队,1988,东方红林场幅地球化学图及说明书(内部资料)。
    (40) 黑龙江物探队,1990,黑龙江大兴安岭呼中区1/5 万地球化学测量(内部资料)。
    (41) 黑龙江物探队,1993,卧都河幅1/20 万水系沉积物测量幅地球化学图及说明书(内部资料)。
    (42) 李锡平,1980,大兴安岭北部低密度水系沉积物测量工作,黑龙江物探队(内部资料)。
    (43) 冷福荣、郭利军,1989,内蒙古东部三河地区区域化探扫面方法研究,内蒙古第二物化探大队(内部资料)。
    (44) 张华、孔牧,1991,内蒙满洲里1/20 万区域化探工作试验研究,地矿部物化探研究所(内部资料)。
    (45) 汪明启、刘应汉,1994,黑龙江森林沼泽景观区1/20 万区域化探扫面方法研究(内部资料)。
    (46) 汪明启、孔牧,1998,黑龙江大兴安岭森林沼泽区域化探异常追踪和查证方法研究(内部资料)。
    (47) 张华、孔牧,1999,内蒙古额尔古纳市西口子—八道卡异常查证方法应用研究,地矿部物化探研究所(内部资料)。
    (48) Wang Mingqi,Ren Tianxiang,Liu yinghan, The studyof surfacial geochemical dispersion around a polymetallic mineralization and geochemical exploration in permaforest and forest-swamp terrain,Da-hinggan Mts.,Northeastern China(A).In:Xie Xuejing.Proc.30th Int’l.Geol(C).Congr.Geochemistry.The Netherlands,International Science Publisher.1997,19.
    (49) Xie Xuejing, 1992, Local and regional surface geochemical exploration for oil and gas, J. Geochem. Explor. 42: 25-42.
    (50) 孔牧,植物体内元素吸收积累初步研究,物探与化探,1999,第一期。
    (51) 张宏等,大兴安岭北部森林覆盖区植物化探找矿方法的新思路,1999,贵金属地质,第八期。
    (52) Wang Xueqiu, Cheng Zhizhong, Liu Dawen, Xu Li and Xie Xuejing, 1997. Nanoscale metals in earthgas and mobile forms of metals in overburden in wide-spaced regional exploration for giant ore deposits in overburden terrains. J. Geochem. Explor. 58(1):63-72.
    (53) 杨少平、孔牧,2001,我国东北部森林沼泽景观区域化探工作方法技术研究,地矿部物化探研究所(内部资料)。
    (54) Cannon H L, 1979. Advances in botanical methods of prospecting for minerals, part I-advances in geobotanical methods. In: P. J. Hood (Editor), Geophysics and geochemistry in the search for metallic ores, Proceedings of Exploration '77, Ottawa, Canada.
    (55) Carpenter, R.H., Robinson, G.D. and Hayes, W.B., 1978. Partitioning of manganese, iron, copper, zinc, lead, cobalt and nickel in black coatings on stream boulders in the vicinity of the Magruder Mine, Lincoln Co., Georgia: J. Geochem. Explor. 10: 75-89.
    (56) Closs L G and Sado E V. Geochemical drift prospecting studies near gold mineralization, Beardmore-Geraldton area, northwest Ontario, Canada. In:J.R. Watterson and P.K. Theobald (Editers), Geochemical exploration 1978 459-477.
    (57) Timperley.M.H.,Allan.R.J.,1974,The formation and detection of metal dispersion halos in organic sediments, JGE 3(2), 167-190
    (58) Vaananen.P.,1979,The effects of ashing on trace metal analysis of organic stream sediments (in Finnish), Finl Geol Tutkimuslaitos Tutkimusrap no 37,75-84.
    (59) McCollum.T.M.,Shock.E.L.,1997,Geochemical constraints on chemolithoautotrophic metabolism by micro-organisms in seafloor hydrothermal systems.
    (60) Hirner.A.V.,Krupp.E.,Schulz.F.,1998,Organometal(loid) species in geochemical exploration: preliminary qualitative results.
    (61) Bendell-Young.L.,1999,Contrasting the sorption of Zn by oxyhydroxides of Mn and Fe, and organic matter along the mineral-poor to mineral-rich fen gradient.
    (62) Artinger.R.,Buckau.G.,Geyer.S.,2000,Characterization of groundwater humic substances: influence of sedimentary organic carbon.
    (63) Ayras.M.,Kashulina.G.,2000,Regional patterns of element contents in the organic horizon of podzols in the central part of the Barents region (Finland, Norway, and Russia) with special references to heavy metals (Co, Cr, Cu, Fe, Ni, Pb, V, and Zn) and sulphur as indicators of airborne pollution.
    (64) Giza.A.P.,1999,A Special Issue on Organic Matter and Ore Deposits: Interactions, Applications, and Case Studies.
    (65) Buckau.G.,Artinger.R.,Geyer.S.,2000,Groundwater in-situ generation of aquatic humic and fulvic acids and the mineralization of sedimentary organic carbon.
    (66) Glikson.M.,Mastalerz.M.,1999, Organic Matter and Mineralization: Thermal Alteration, Hydrocarbon Generation and Role in Metallogenesis.
    (67) Min.M.Z.,Meng.Z.W.,Sheng.G.Y.,2000,Organic geochemistry of paleokarst-hosted uranium deposits, South China.
    (68) 崔玉军,森林沼泽景观区影响元素表生变化的一个重要因素—腐殖酸,黑龙江地质,1999,第十期。
    (69) 陈岩、李汉光,浅谈厚层覆盖森林区化探找金工作程序—以黑龙江省砂宝斯金矿为例,黄金地质,2000,第一期。
    (70) 李庆录等,森林沼泽景观区化探找金技术方法—以黑龙江北部及内蒙古北部为例,黄金地质,2001,第三期。
    (71) 刘少明、刘忠田,上黑龙江植被覆盖区水系沉积物金异常评价,黄金地质,2001,第二期。
    (72) 张守本等,元素有机相态的提取技术及应用,物探与化探,2000,第三期。
    (73) Wang Mingqi,Ren Tianxiang,Liu yinghan,et al.Stream water-anideal medium for rapidly locating polymetallic mineralization in forest-swamp terrain, Northeastern Heilongjiang(J).Journal of Geochemical Exploration,1995,55: 269-264.
    (74) 周楫,得尔布干成矿带化探方法技术研究,有色金属矿产与勘查,1999,第八期。
    (75) 张桂荣等,小兴安岭改造后森林沼泽土壤与植物中主要微量元素的研究,东北师大学报,1998,第三期。
    (76) 林丽等,藻、有机质、粘土矿物富金成矿对比实验,1999,地质学报,第一期。
    (77) 赵玉涛,内蒙古大兴安岭南段表生地球化学作用特征,内蒙古地质,2001,第一期。
    (78) 李锡平、王希忱,1987,1∶100 万黑龙江省地球化学图说明书(水系沉积物测量),黑龙江省地质矿产局物探大队(内部资料)。
    (79) 地矿部第二综合物探大队,1984, 大黑沟幅1/20 万水系沉积物测量地球化学图及说明书(内部资料)。
    (80) 地矿部第二综合物探大队,1994, 上护林幅1/20 万水系沉积物测量地球化学图及说明书(内部资料)。
    (81) 冷福荣、郭利军,1991,内蒙得尔布干成矿带区域化探方法技术初探,内蒙古地质,第一期,p50~55。
    (82) 谢又予,1981,我国东北地区的冰缘地貌与分区,冰川冻土,1981 年,第四期。(83) 周幼吾等,中国冻土,2000,科学出版社。
    (84) 李天杰、郑应顺、王云,1983,土壤地理学,高等教育出版社。
    (85) 王越主编,1987,中国市县手册,浙江教育出版社。
    (86) 哈尔滨地图出版社,1998,黑龙江省地图册,哈尔滨地图出版社。
    (87) 龚子同等,土壤地球化学的进展和应用,1985,科学出版社。
    (88) 柴岫,中国泥炭的形成与分布规律的初步探讨,地理学报,1981,第三期。
    (89) 孙广友,沼泽湿地的形成,国土与自然资源研究,1998,第四期。
    (90) Schnitzer 等,环境中的腐殖物质,1977,科学出版社。
    (91) I.A.E.A.,土壤有机质研究,1976,科学出版社。
    (92) H.D.福斯,土壤科学原理,唐耀先等译,1984,农业出版社。
    (93) 刘培桐主编,薛纪渝、王华东编,1995, 环境学概论(第二版),北京:高等教育出版社,P. 111。
    (94) 唐森本、王欢畅、葛碧洲、朱晓云,1996,环境有机污染化学,北京:冶金工业出版社,P. 158~159。
    (95) 尹善春等,1991,中国泥炭资源及其利用开发,地质出版社。
    (96) 波诺马廖娃等,1987,腐殖质和土壤形成,魏开湄译,农业出版社。
    (97) 于天仁等,土壤化学原理,1987,科学出版社。
    (98) 中华人民共和国地质矿产部,区域地球化学勘查规范(比例尺1:200000),中华人民共和国地质矿产行业标准,1996。

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700