合成气一步法合成二甲醚Cu-Zn-Mn/zeolite-Y催化剂及Mn作用的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
二甲醚作为一种重要的化工原料和理想的清洁替代能源,实现其经济地合成,对我国能源的多样化、清洁化具有重要的现实意义。合成气一步法合成二甲醚克服了甲醇合成反应的热力学限制,大大提高了CO的单程转化率。由于一步合成二甲醚过程中涉及甲醇合成、甲醇脱水和水汽变换三个反应之间相互耦合,因此要求其催化剂同时具有多种功能以及相互匹配。本论文以Y型分子筛负载Mn促进的铜基催化剂为基础,通过改变催化剂的组成、配比、制备方式和条件,系统地研究了该类催化剂的结构特点和反应特性,并对助剂Mn的作用及其产生作用的机制进行了探讨,获得的主要结果如下:
     采用相同的共沉淀浸渍法制备了不同组成和组分配比的Cu-Mn/zeolite-Y、Cu-Zn/zeolite-Y和Cu-Zn-Mn/zeolite-Y系列催化剂,通过对其反应性能的考察,发现Cu-Mn/zeolite-Y催化剂虽然低温活性不够高,但其合成二甲醚反应的稳定性较好;调节Cu/Zn比可获得较高催化活性的Cu-Zn/zeolite-Y催化剂,但其稳定性不高;Cu-Zn-Mn/zeolite-Y催化剂与Cu-Zn/zeolite-Y催化剂相比,其催化活性和稳定性有很大的提高,CO转化率从58.5%增加到82.9%,并且对于Cu-Zn-Mn/zeolite-Y催化剂体系,Cu、Zn和Mn的含量在较宽的范围内,并不影响催化剂的合成二甲醚活性。
     在Cu-Mn/zeolite-Y催化剂中,Cu与Mn之间可形成类尖晶石复合氧化物Cu_(1.5)Mn_(1.5)O_4,并且当催化剂的物相组成为CuO+Cu_(1.5)Mn_(1.5)O_4时的一步法合成二甲醚的催化活性要高于物相为Cu_(1.5)Mn_(1.5)O_4+Mn_2O_3时的活性;在Cu-Zn-Mn/zeolite-Y催化剂中,Mn不仅与Cu作用形成Cu_(1.5)Mn_(1.5)O_4,同时与Zn作用形成ZnMn_2O_4,不仅CuO晶粒粒径变小,而且ZnO的晶粒粒径也变小,催化剂颗粒粒径分布较窄。CuO和ZnO的晶粒的同时减小及相互分散(铜物种和ZnO的紧密接触),使得铜和锌之间的相互作用加强,从而产生更多的活性位。
     Mn对Cu-Zn/zeolite-Y催化剂的促进作用的原因主要表现在:在Cu-Zn-Mn/zeolite-Y催化剂前驱体形成过程中可较易使Cu、Zn之间形成异质同晶取代的单斜绿铜锌矿(Cu,Zn)_2(OH)_2CO_3前驱体,同时MnCO_3中也可发生Cu和Zn的掺杂,在随后的焙烧及还原过程中,锰的存在不但有效地保持铜和锌的高度分散和二者较高的紧密接触,同时又提供了合适的化学环境和提高了催化剂的水汽变换性能;
     Mn添加方式影响复合催化剂对合成气一步法合成二甲醚的催化活性,通过铜、锌和锰共流沉淀浸渍在zeolite-Y上制得的Cu-Zn-Mn/zeolite-Y催化剂(CZMY-C)的CO加氢活性明显高于先共沉淀铜和锌浸渍后再连续沉淀浸渍锰时制备的Cu-Zn-Mn/zeolite-Y催化剂(CZMY-S)。同时共沉淀浸渍的催化剂CZMY-C的制备过程中,容易形成异质同晶取代的单斜绿铜锌矿(类孔雀石结构)(Cu,Zn)_2(OH)_2CO_3前驱体,焙烧后的催化剂中CuO和ZnO接触更为紧密,其晶粒粒径较小且颗粒分布窄,还原后有更多的Cu-ZnO界面存在,因而Cu与ZnO在催化剂中发挥了更好的协同作用。而分步共沉淀浸渍制备的复合催化剂CZMY-S前驱体主要是由无定形的Cu、Zn碱式碳酸盐组成,高温分解后形成的CuO、ZnO晶粒粒径较大并且颗粒分部较宽,不利于铜锌之间良好的接触和协同作用的发挥。
     采用碳酸氢钠作为沉淀剂,或采用碳酸钠为沉淀剂经沉淀充分老化可以制备出高活性的合成气一步法合成二甲醚Cu-Zn/zeolite-Y催化剂,并且二者的活性基本相同,CO的转化率和二甲醚的选择性分别达到77%和66%左右。表征结果发现二者的前驱体中均以异质同晶结构的绿铜锌矿为主,证实了Mn在Cu-Zn-Mn/zeolite-Y催化剂制备过程中对活性前驱体形成的促进作用。
Dimethyl ether(DME) is an important chemical product and potential clean energy,with wide application in many industrial fields.The One-step synthesis of dimethyl ether via syngas is of economic values and theoretical significance,because it is greatly favorable in thermodynamics.In this thesis,we have designed a series of hybrid catalyst by altering methodology of preparation and investigated the hydrogenation properties of those hybrid catalysts.In addition,the effects of Mn promoter and different precursors on the catalytic performance of hybrid Cu-based/zeolite-Y have been systematically studied.
     Cu-Mn/zeolite-Y catalysts prepared using a coprecipitation impregnation procedure have been investigated to develop active Cu-based catalysts for the dimethyl ether synthesis from syngas.A great enhancement of CO conversion and DME selectivity is observed on Mn-containing catalysts compared to Mn-free counterpart.However,excess addition of manganese suppresses the syngas-to-dimethyl ether(STD) activity.Manganese has been found to be interacting with copper to form copper manganese mixed oxides phase(Cu_(1+x)Mn_(2-x)O_4) upon calcinations and the excess addition of copper or manganese will induce the segregation of copper or manganese as isolated CuO or Mn_2O_3 phase,respectively. The segregates CuO phases enhanced the reducibility of Cu_(1+x)Mn_(2-x)O_4 phase and Mn_2O_3 phase by reducing spill-over species.Furthermore,it is found that addition of Mn to Cu/zeolite-Y catalyst decreases the average particle size of copper to same extent.Combining the TPR and XRD analysis,it suggests that catalyst with the excess CuO phases in conjunction with copper manganese mixed oxides are much more active than that with excess Mn_2O_3 phases together with copper manganese mixed oxides in the hydrogenation of CO to DME.
     The addition of a certain amount of manganese to the Cu-Zn/zeolite-Y catalyst remarkably improves the activity of the catalyst for the direct synthesis of dimethyl ether from syngas.The conversion of CO increases from 56.8%on Cu-Zn/zeolite-Y to 82.9%on Cu-Zn-Mn/zeolite-Y.The characterization of XRD reveals that a pronounced reduction in crystallite size of both CuO and ZnO is observed upon the addition of Mn.Combined with the HRTEM analysis results,it is deduced that the smaller crystallite size of both CuO and ZnO and higher inter-dispersion between the metal oxide components is responsible for the significantly high catalytic activity.A much higher resistance to sintering on Mn-modified than on Mn-free Cu-Zn/zeolite-Y catalyst is also found.
     The catalytic activity of Cu-Zn/zeolite-Y catalyst can be promoted by aging the precipitate during the precipitation and it can also be improved significantly by the addition of manganese during the precipitation without the aging process.The remarked increase in the catalytic activity of the MCZY catalyst is explained by that the incorporation of Mn during the co-precipitation process shorten the time of the development of a blue-green precursor,a structure in which the Cu and Zn are atomically dispersed in a hydroxycarbonate matrix.Finally,this leads to ideally mixed and uniformly distributed copper and zinc mixed oxides with smaller particle sizes than the CZY sample derived from independent Cu and Zn precursor phases. Undoubtedly,it appears to be a reasonable explanation for the promoting effect of manganese on the catalytic activity of CZY catalyst in DME synthesis to certain extent
     An investigation is carried out to indentify the effects of manganese incorporation sequence on the catalytic structures and performance of Cu-Zn/zeolite-Y Catalyst for direct dimethyl ether synthesis from syngas.Three different catalysts are prepared:the Cu-Zn/zeolite-Y(CZY),and two Mn-promoted Cu-Zn/zeolite-Y Catalysts,MCZY-C and MCZY-S,which are prepared by simultaneous co-precipitation impregnation and sequential precipitation impregnation, respectively.The MCZY-C catalyst appears to be the most active for dimethyl ether synthesis,whereas the MCZY-S catalyst shows little increase in the catalytic activity with respect to the CZ-Y catalyst.The remarked increase in the catalytic activity of the MCZY-C catalyst is explained by that the incorporation of Mn during the simultaneous co-precipitation impregnation process favor the development of a blue-green precursor,a structure in which the Cu and Zn are atomically dispersed in a hydroxycarbonate matrix.Finally,this leads to ideally mixed and uniformly distributed copper and zinc mixed oxides with smaller particle sizes than the other two samples derived from independent Cu and Zn precursor phases.This study reveals significance of the methodology used for the incorporation of manganese. Meanwhile,it shows that the precipitation order has a remarkable influence on the properties of the precursors and calcined catalysts,and consequently,on the catalytic performance for the direct synthesis of dimethyl ether from syngas.
     Two different precipitating agents,Na_2CO_3 solution and NaHCO_3 solution,were used to explore the effect of method of preparations on the properties and catalytic perforamance of the catalysts for the dimethyl ether synthesis via syngas.The bi-functional catalysts obtained were investigated as synthesized or after calcination by various physico-chemical techniques.Cu-Zn/zeolite-Y catalyst obtained from the co-precipitation impregnation process using NaHCO_3 was found to be superior to that using Na_2CO_3 solution in terms of activity and stability.The conversion of CO and the selectivity to DME of the catalyst,prepared by using NaHCO_3 solution as precipiating agent,reaches 78.1%and 66.2%,respectively,under the reaction conditions of 2.0 MPa,250℃,1500 h~(-1).Precipitation using sodium carbonate solution leads to the formation of an amorphous phase precursor whereas using NaHCO_3 results in a high-zincian malachite phase.Finally,smaller crystallite size of Cu and ZnO and higher microstrain of copper particle are found in calcined Cu-Zn/zeoltie-Y catalyst prepared by using NaHCO_3 solution.Therefore,the increase in the activity and stability of the catalyst prepared by using NaHCO_3 solution as precipiating agent do not only correlate with the specific Cu surface area but also coincides with an increase in the microstrain in the metallic copper presumably because of the improved contact area(interfacial area) between Cu and ZnO.Based on the characterization data,it has shown that the selection of a suitable precipitating agent for the Cu-Zn/zeoltie-Y catalyst preparation via co-precipitation impregnation process significantly influences the properties of the precursors and therefore the formation of the final structure and catalytic activity.
引文
[1]刘昌俊,许根慧.一碳化工产品及其发展方向.化工学报,003,54:524-530.
    [2]周晓红.二甲醚的用途与发展前景分析.煤炭加工与综合利用,2002,4:33-35.
    [3]J.Wu,M.Saito,M.Takeuchi,T.Watanabe.The Stability of Cu/ZnO-based Catalysts in Methanol Synthesis from a CO_2-rich Feed and From a CO-rich Feed.Appl.Catal.,2001,218:235-240.
    [4]李伟,张希良.国内二甲醚研究评述.《煤炭转化》,2007,30:88-95.
    [5]V.N.Ipatieff,G.S.Monroe.Synthesis of Methanol from Carbon Dioxide and Hydrogen over Copper-Alumina Catalysts.J.Am.Chem.Soc.,1945,67:2168-2171.
    [6]Y.Adachi,M.Komoto,I.Watanabe,Y.Ohno,K.Fujimoto.Effective Utilization of Remote Coal Through Dimethyl Ether Synthesis.Fuel,2000,79:229-234.
    [7]S.Lee,M.R.Goate,C..J.Kulik.A Novel Single-Step Dimethyl Ether(DME) Synthesis in a Three-Phase Slurry Reactor from CO-Rich Syngas.Chem.Eng.Sci.,1992,47:3769-3776.
    [8]M.Grzesik,J.Skrzypek.Chemical Equilibria in Direct Synthesis of Dimethyl Ether.React.Kinetics and Develop.Catal.Proc.,1999:407-410.
    [9]张海涛,曹发海,刘殿华,房鼎业.合成气直接合成二甲醚与甲醇的热力学分析.华东理工大学学报,2001,27(2):198-201.
    [10]D.M.Brown,B.L.Bhatt,T.H:Hsiung,J.J.Lewnard,F.J.Waller.Novel Technology for Synthesis of Dimethyl Ether from Syngas.Catal.Today,1991,8:279-304.
    [11]栗同林,胡惠民.合成气制甲醇与二甲醚的研究.天然气化工,1990,15(5):12-17.
    [12]K.L.Ng,D.Chadwick,B.A.Tosel.Kinetics and Modelling of Dimethyl Ether Synthesis from Synthesis Gas.Chem.Eng.Sci.,1999,54:3587-3592.
    [13]江大好,费金华,张一平,郑小明.合成气一步法制二甲醚的动力学研究.浙江大学学报(理学版,2003,30(2):167-172.
    [14]郭莹,黎汉生,王德峥,王金福.合成气一步法制二甲醚反应宏观动力学.石油化工,2003,32:478-482.
    [15]Y.Ma,Q.Sun,D.Wu,W.-H.Fan,Y.-L.Zhang,J.-F.Deng.A Practical Approach for the Preparation of High Activity Cu/ZnO/ZrO_2 Catalyst for Methanol Synthesis from CO_2 Hydrogenation.Appl.Catal.A.,1998,171:45-55.
    [16]E.E.Ortelli,J.M.Weigel,A.Wokaun.Methanol Synthesis Pathway over Cu/ZrO_2 Catalysts:A Time-resolved DRIFT ~(13)C-labelling Experiment.Catal.Lett.,1998,54:41-48.
    [17]J.Y.Liu,J.L.Shi,D.H.He,Q.J.Zhang,X.H.Wu,Y.Liang,Q.M.Zhu.Surface Active Structure of Ultra-fine Cu/ZrO_2 Catalysts Used for the CO_2+H_2 to Methanol Reaction.Appl.Catal.A.,2001,218:113-119.
    [18]J.G.Wu,S.C.Luo,J.Toyir,M.Saito,M.Takeuchi,T.Watanabe.Optimization of Preparation Conditions and Improvement of Stability of Cu/ZnO-based Multicomponent Catalysts for Methanol Synthesis from CO_2 and H_2.Appl.Catal.A.,1998,45:215-220.
    [19]X.M.Liu,G.Q.Lu,Z.F.Yan.Nanocrystalline Zirconia as Catalyst Support in Methanol Synthesis.Appl.Catal.A.,2005,279:241-245.
    [20]Ian A.Fisher,Alexis T.Bell.In Situ Infrared Study of Methanol Synthesis from H_2/CO over Cu/SiO_2 and Cu/ZrO_2/SiO_2.J.Catal.,1998,178:153-173.
    [21]J.Toyir,M.Saito,I.Yamauchi,S.Luo,J.Wu,I.Takahara,M.Takeuchi.Development of High Performance Raney Cu-based Catalysts for Methanol Synthesis from CO_2 and H_2.Catal.Today,1998,45:245-250.
    [22]Y.W.Suh,S.H.Moon,H.K.Rhee.Active Sites in Cu/ZnO/ZrO_2 Catalysts for Methanol Synthesis from CO/H_2.Catal.Today,2000,63:447-452.
    [23]M.Jia,W.Li,H.Xu,S.Hou,C.Yu,Q.Ge.The Effect of Additive on Cu/HZSM-5 Catalyst for DME Synthesis.Catal.Lett.,2002,84:31-35.
    [24]S.Ohyama,H.Kishida.XRD,HRTEM and XAFS Studies on Structural Transformation by Milling in a Mixture of CuO and Cr_2O_3 as an Active Catalyst Component for Low-temperature Methanol Synthesis.Appl.Catal.A,1999,184:239-248.
    [25]K,Asakawa.;Y Yamamoto.;S,Ebata.;T,Nakamura.Process for Preparing a Catalyst Composition Containing Oxides of Copper Zinc and Aluminum.U.K.Patent,1980,GB 2047556.
    [26]H.Y.Chen,J.Lin,K.L.Tan,J.Li.Comparative Studies of Manganese-doped Copper-based Catalysts:the Promoter effect of Mn on Methanol synthesis.Appl.Surf.Sci.,1998,126:323-331.
    [27]Kilo,J.Weigel,A.Wokaun,R.A.Koeppel,A.Stoeckli,A.Baiker.Effect of the Addition of Chromium- and Manganese Oxides on Structural and Catalytic Property of Copper/Zirconia Catalysts for the Synthesis of Methanol from Carbon Dioxide.J.Mol.Catal.A:Chem.,1997,126: 169-184.
    [28]J.Li,W.Zhang,L.Gao,P.Gu,K.Sha,H.Wan.Methanol Synthesis on Cu-Zn-Al and Cu-Zn-Al-Mn Catalysts.Appl.Catal.A.,1997,165:411-417.
    [29]K.Sun,W.Lu,M.Wang,X.Xu.Low-temperature Synthesis of DME from CO_2/H_2 over Pd-modified CuO-ZnO-Al_2O_3-ZrO_2/HZSM-5 Catalysts.Catal.Commun.,2004,5:367-370.
    [30]M.Sahibzada,D.Chadwick,I.S.Metcalfe.Hydrogenation of Carbon Dioxide to Methanol over Palladium-promoted Cu/ZnO/Al_2O_3 Catalysts.Catal.Today,1996,29:367-372.
    [31]I.Melian-Cabrera,M.Lopez Granados,J.L.G.Fierro.Effect of Pd on Cu-Zn Catalysts for the Hydrogenation of CO_2 to Methanol:Stabilization of Cu Metal against CO_2 Oxidation.Catal.Lett.,2002,79:165-170.
    [32]J.G.Wu,M.Saito,H.Mabuse.Activity and Stability of Cu/ZnO/Al_2O_3 Catalyst Promoted with B_2O_3 for Methanol Synthesis.Catal.Lett.,2000,68:55-58.
    [33]N.Kanoun,M.P.Astier,G.M.Pajonk.Catalytic Properties of New Cu Based Catalysts Containing Zr and/or V for Methanol Synthesis from a Carbon Dioxide and Hydrogen Mixture.Catal.Lett.,1992,15:231-235.
    [34]J.Toyir,P.R.de la-Piscina,J.L.G.Fierro,N.Homs.Catalytic Performance for CO_2Conversion to Methanol of Gallium-promoted Copper-based Catalysts:Influence of Metallic Precursors.Appl.Catal:B.,2001,34:255-266.
    [35]T.Fujitani,M.Saito,Y.Kanai,T.Kakumoto,T.Watanabe,J.Nakamura,T.Uchijima.The Role of Metal Oxides in Promoting a Copper Catalyst for Methanol Synthesis.Catal.Lett.,1994,25:271-276.
    [36]C.Kiener,M.Kurtz,H.Wilmer,C.Hoffmann,H.-W.Schmidt,J.-D.Grunwaldt,M.Muhler,F.Sch(u|¨)th.High-throughput Screening under Demanding Conditions:Cu/ZnO Catalysts in High Pressure.Methanol Synthesis as an Example.J.Catal.,2003,216:110-119.
    [37]B.Bems,M.Schur,A.Dassenoy,H.Junkes,D.Herein,R.Schogl.Relations between Synthesis and Microstructural Properties of Copper/Zinc Hydroxycarbonates.Chem.Eur.J.,2003,9:2039-2052.
    [38]R.Raudaskoski,M.V.Niemel(a|¨),R.L.Keiski.The Effect of Ageing Time on Co-precipitated Cu/ZnO/ZrO_2 Catalysts Used in Methanol Synthesis from CO_2 and H_2.Topics in Catal.,2007,45:57-60.
    [39]E.N.Muhamada,R.Irmawatia,Y.H.Taufiq-Yapa,A.H.Abdullaha,B.L.Kniepb,F.Girgsdiesb,T.Ressler.Comparative Study of Cu/ZnO Catalysts Derived from Different Precursors as a Function of Aging.Catal.Today,2008,131:118-124.
    [40]B.L.Kniep,F.Girgsdies and T.Ressler.Effect of Precipitate Aging on the Microstructural Characteristics of Cu/ZnO Catalysts for Methanol Steam Reforming.J.Catal.,2005,236:34-44.
    [41]洪中山,范康年.凝胶网格共沉淀法制备Cu/ZnO/Al_2O_3合成甲醇催化剂.《高等学校化学学报》,2002,23:706-708.
    [42]D.Grandjean,H.L.Castricum,J.C.van den Heuvel,B.M.Weckhuysen.New Highly Mixed Phases in Ball-Milled Cu/ZnO Catalysts as Established by EXAFS and XANES.Mater.Sci.Eng.A,2001,304:418-420.
    [43]J.L.Li,T.Inui.Enhancement in Methanol Synthesis Activity of a Copper/Zinc/Aluminum Oxide Catalyst by Ultrasonic Treatment During the Course of the Preparation Procedure.Appl.Catal.A,1996,139:87-9.
    [44]J.R.Jensen,T.Johannessen,S.Wedel,H.Livbjerg.A Study of Cu/ZnO/Al_2O_3 Methanol Catalysts Prepared by Flame Combustion Synthesis.J.Catal.,2003,218:67-77.
    [45]L.Ma,T.Tran,M.S.Wainwright.Methanol Synthesis from CO_2 Using Skeletal Copper Catalysts Containing Co-precipitated Cr_2O_3 and ZnO.Topics in Catal.,2003,22:295-304.
    [46]L.Huang,G.J.Kramer,W.Wieldraaijer,D.S.Brands,E.K.Poels,H.L.Castricum and H.Bakker.Methanol Synthesis over Cu/ZnO Catalysts Prepared by Ball Milling.Catal.Lett.,1997,48:55-59.
    [47]J.L.Li,T.Inui.Characterization of Precursors of Methanol Synthesis Catalysts,Copper/Zinc/Aluminum Oxides,Precipitated at Different pHs and Temperatures.Appl.Catal.A,1996,137:105-117.
    [48]房德仁,刘中民,黎晓琼,张慧敏,许磊.加料方式对Cu/ZnO/Al_2O_3系催化剂前驱体性质的影响.燃料化学学报,2004,32:734-739.
    [49]W.S.Ning,H.Y.Shen,H.Z.Liu.Study of the Effect of Preparation Method on CuO-ZnO-Al_2O_3 catalyst.Appl.Catal.A,2001,211:153-157.
    [50]J.Deng,Q.Sun,Y.Zhang,S.Chen.D.Wu.A Novel Process for Preparation of a Cu/ZnO/Al_2O_3 Ultrafine Catalyst for Methanol Synthesis from CO_2+H_2:Comparison of Various Preparation Methods.Appl.Catal.A,1996,139:75-85.
    [51]Spencer S.Precursors of Copper/Zinc Oxide Catalysts.Catal.Lett.,2000,66:255-257.
    [52]S.Fujita,Y.Kanamori,A.M.Satriyo,N.Takezawa.Methanol Synthesis from CO_2 over Cu/ZnO Catalysts Prepared from Various Coprecipitated Precursors.Catal.Today,1998,45:241-244.
    [53]T.Fujitania and J.Nakamura.The Chemical Modification Seen in the Cu/ZnO Methanol Synthesis Catalysts.Appl.Catal.A,2000,191:111-129.
    [54]X.Dong,B.Shen,H.Zhang,G.Lin,Y.Yuan.Study on Highly Active Catalysts and a Once-Through Process for Methanol Synthesis from Syngas.J.Natural gas chem.2003,12:49-55.
    [55]X.Dong,H.Zhang,G.Lin,Y.Yuan,K.R.Tsai.Highly Active CNT-promoted Cu-ZnO-Al_2O_3Catalyst for Methanol Synthesis from H_2/CO/CO_2,Catal.Lett.,2003,85(3-4):237-246.
    [56]E.G.Baglin,G.B.Atkinson,L.J.Nicks.Catalyst for Synthesis of Methanol.US4181630,1980.
    [57]F.P.Daly.Methanol Synthesis over a Cu/ThO_2 Catalyst.J.Catal.,1984,89:131-137.
    [58]A.J.Bridge-water,M.S.Wainwright,D.J.Young,J.P.Orchard.Methanol Synthesis over Raney Copper-Zinc Catalysts Ⅱ Optimization of Alloy Composition and Catalyst Preparation,Appl.Catal.,1983,7:369-382.
    [59]J.B.Friedrich,D.J.Young,M.S.Wainwright.Methanol Synthesis over Raney Copper-Zinc Catalysts Ⅱ Activities and Surface Properties of a Partially Leached Alloy.J.Catal.,1983,80:14-24.
    [60]Y.Kikuzono,S.Kagami,S.Naito,T.Onishi,K.Tamaru.Selective Methanol Formation from Atmospheric CO and H_2 over Novel Palladium Catalysts.Chem.Lett.,1981,9:1249-1252.
    [61]Q.J.Ge,Y.M.Huang,F.Y.Qiu,S.B.Li.Bifunctional Catalysts for Conversion of Synthesis Gas to Dimethyl Ether.Appl.Catal.A,1998,167:23-30.
    [62]G.X.Qi,X.M.Zheng,J.H.Fei,Z.Y.Hou.A Novel Catalyst for DME Synthesis from CO Hydrogenation 1.Activity,Structure and Surface Properties.J.Mol.Catal.A.,2001,176:195-203.
    [63]M.Xu,J.H.Lunsford,D.W.Goodman,A.Bhattacharyya.Synthesis of Dimethyl Ether (DME) from Methanol over Solid-acid Catalysts.Appl.Catal.,1997,149:289-30.
    [64]T.Takeguchi,K.Yanagisawa,T.Inui,M.Inoue.Effect of Property of Solid Acid upon Syngas-to-dimethyl Ether Conversion on the Hybrid Catalysts Composed of Cu-Zn-Ga and Solid Acids.Appl.Catal.,2000,192:201-209.
    [65]V.Vishwanathan,H.-S.Roh,J.-W.Kim,K.-W.Jun.Surface Properties and Catalytic Activity of TiO_2-ZrO_2 Mixed Oxides in Dehydration of Methanol to Dimethyl Ether.Catal.Lett.,2004,96:23-28.
    [66]J.H.Kim,M.J.Park,S.J.Kim,O,S.Joo,K.D.Jung.DME Synthesis from Synthesis Gas on the Admixed Catalysts of Cu/ZnO/Al_2O_3 and ZSM-5.Appl.Catal.,2004,264:37-41.
    [67]X.Wu,M.G.Abraha,R.G.Anthony.Methanol Conversion on SAPO-34:Reaction Condition for Fixed-bed Reactor.Appl.Catal.,2004,260:63-69.
    [68]F.S.Ramos,A.M.Duarte de Farias,L.E.P.Borges,J.L.Monteiro,M.A.Fraga,E.F.Sousa-Aguiar,L.G.Appel.Role of Dehydration Catalyst Acid Properties on One-step DME Synthesis over Physical Mixtures.Catal.Today,2005,101:39-44.
    [69]G.Manara,B.Notari,V.Fattore.Catalyst for the Preparation of Dimethyl Ether.US,1979,4177 167.
    [70]K.Fujimoto,T.Shikada,Y.Yamaoka.Method of Producing Dimethyl Ether.US,1995,5 389689.
    [71]D.S.Mao,W.M.Yang,J.C.Xia,B.Zhang,G.Z.Lu.The Direct Synthesis of Dimethyl Ether from Syngas over Hybrid Catalysts with Sulfate-modified γ-alumina as Methanol Dehydration Components.J.Mol.Catal.A,2006,250:138-144.
    [72]D.Mao,W.Yang,J.Xia,B.Zhang,Q.Song,Q.Chen.Highly Effective Hybrid Catalyst for the Direct Synthesis of Dimethyl Ether from Syngas with Magnesium Oxide-modified HZSM-5 as a Dehydration Component.J Catal.,2005,230:140-149.
    [73]J.C.Xia,D.S.Mao,B.Zhang,Q.L.Chen,Y.Tang.One-step Synthesis of Dimethyl Ether from Syngas with Fe-modified Zeolite ZSM-5 as Dehydration Catalyst.Catal.Lett.,2004,98,235-240
    [74]G.R.Moradi,S.Nosrati,F.Yaripor.Effect of the Hybrid Catalysts Preparation Method upon Direct Synthesis of Dimethyl Ether from Synthesis Gas.Catal.Commun.,2007,8:598-606.
    [75]J.Yagi,T.Akiyama,A.Muramatsu.Catalyst Development for Methanol and Dimethyl Ether Production from Blast Furnace off Gas.Stud.Surf.Sci.Catal.,2001,133:435-443.
    [76]A.C.Sofianos,M.S.Scurrell.Conversion of Synthesis Gas to Dimethyl Ether over Bifunctional Catalytic Systems.Ind.Eng.Chem.Res.,1991,30:2372-2378.
    [77]L.K.Ng,D.Chadwick,A.B.Toseland.Kinetics and Modeling of Dimethyl Ether Synthesis from Synthesis Gas.Chem.Eng.Sci.,1999,54:3587-3592.
    [78]R.G.Herman,K.Klier,G.W.Simmons,B.P.Finn,J.B.Bulko,T.P.Kobylinsky.Catalytic Synthesis of Methanol from CO/H_2.I.Phase Composition,Electronic Properties,and Activities of the Cu/Zn/Al_2O_3 Catalysts.J.Catal.,1979,56:407-429.
    [79]K.Klier.Methanol Synthesis.Adv.Catal.,1982,31:243-313.
    [80]P.J.Chu,B.C.Gerstein,G.R.Sheffer,T.S.King.NMR studies of ~(65)Cu and ~(133)Cs in alkali-metal-promoted copper catalysts,J.Catal.,1989,115:194-204.
    [81]W.P.A.Jansen,J.Beckers,J.C.Heuvel,G.A.W.Denier,A.Bliek,H.H.Brongersma.Dynamic Behavior of the Surface Structure of Cu/ZnO/SiO_2 Catalysts.J..Catal.,2002,210:229-236.
    [82]G.C.Chinchen,K.C.Waugh.The Chemical State of the Copper during Methanol Synthesis.J Catal.,1986,97:280-283.
    [83]G.C.Chinchen,K.C.Waugh,D.A.Whan.The Activity and State of the Copper Surface in Methanol Synthesis Catalysts.Appl.Catal.,1986,25:101-107.
    [84]G.C.Chinchen,M.S.Spencer,K.C.Waugh,D.A.Whan.Reply to"Comments on the Activity and State of the Copper Surface in Methanol Synthesis Catalysts".Appl.Catal.,1987,32:371-372.
    [85]R.Burch,S.E.Golunski,M.S.Spencer.The Role of Copper and Zinc Oxide in Methanol Synthesis Catalysts.J.Chem.Soc.Faraday Trans.,1990,86(15):2683-2691.
    [86]Y.Okamoto,K.Fukino,T.Imanaka,S.Yeraniski.Surface Characterization of CuO-ZnO Methanol-Synthesis Catalysts by X-ray Photoelectron Spectroscopy Reduced Catalysts.J.Phys.Chem.,1983,87:3747-3754.
    [87]Y.Choi,K.Futagami,T.Fujitani,J.Nakamura.The Role of ZnO in Cu/ZnO Methanol Synthesis Catalysts-Morphology Effect or Active Site Model? Appl.Catal.A,2001,208:163-167.
    [88]J.Nakamura,Y.Choi,T.Fujitani.On the Issue of the Active Site and the Role of ZnO in Cu/ZnO Methanol Synthesis Catalysts.Top.in Catal.,2003,22(3-4):277-285.
    [89]Y.Choi,K.Futagami,T.Fujitani,J.Nakamura.The Difference in the Active Sites for CO_2and CO Hydrogenations on Cu/ZnO-based Methanol Synthesis Catalysts.Catal.Lett.,2001,73(1):27-31.
    [90] J. F. Edwards, G L. Schrader. In situ Fourier Transform Infrared Study of Methanol Synthesis on Mixed Metal Oxide Catalysts. J. Catal., 1985,94: 175-486.
    [91] J. Cai, Y. Liao, H. Chen, K. R. Tsai. New Frontiers in Catalysis (proc.10~(th) ICC), 1993, 2769-2772.
    [92] O. S. Joo, K. D. Jung, S. H. Han, S. J. Uhm. Synergistic Effects between Cu and ZnO in the Hydrogenation of Their Formates. J. Catal, 1995,157: 259-261.
    [93] O. S. Joo, K. D. Jung, S. H. Han, S. J. Uhm. D. S. Lee, S. K. Ihm. Migration and Reduction of Formate to Form Methanol on Cu/ZnO Catalysts. Appl. Catal. A:Gen, 1996,135: 273-286.
    [94] S. I. Fujita, M. Usui, H. Ito. Mechanisms of Methanol Synthesis from Carbon Dioxide and from Carbon Monoxide at Atmospheric Pressure over Cu/ZnO. J. Catal, 1995,157:403-413.
    [95] J. Bandiera, C. Naccache. Kinetics of Methanol Dehydration on Desluminated H-mordenite: Model with Acid and Basic Active Centers. Appl Catal. A, 1991, 69:139-148.
    [96] J. R. Jain, C. N. Pillai. Catalytic Dehydration of Alcohols over Alumina Mechanism of Ether Formation, J. Catal, 1967, 9: 322-330.
    [97] V. R. Padmanabhan, F. J. Eastburn. Mechanism of Ether Formation from Alcohols over Alumina Catalyst. J. Catal, 1972,24: 88-91.
    [98] Y. Ono, T. Mori. Mechanism of Methanol Conversion into Hydrocarbons over ZSM-5 Zeolite. J. Chem. Faraday. Trans, 1981, 77(1): 2209-2221.
    [99] E. Sandre, C. P. Michael, D.G Julian. First Principles Location of Transition State for Formation of Dimethyl Ether in a Zeolite. Chem. Commun., 1998: 2445-2446.
    [100] J. S. James. Review: Dehydration Catalysts for the Methanol/Dimethyl Ether Reaction. Chem. Eng. Comm., 1991, 110: 123-142.
    [101] Rinaldo, S. Schiffino, Robert P. Merrill. A Mechanistic Study of the Methanol Dehydration Reaction on Y-alumina Catalyst. J. Phys. Chem., 1993, 97: 6425-6435.
    [102] Q. Zhou, J. Deng. Studies on the Properties of Water in and Conversion of Methanol into Dimethyl ether on H_3PW_(12)O_(40). J. Catal, 1989, 116: 298-302.
    [103] L. Kubelkova, J. Novakova, K. Nedomova. Reactivity of Surface Species on Zeolites in Methanol Conversion. J. Catal, 1990,124: 441- 450.
    [104] S. R. Blaszkowski, R. A. van Santen. Theoretical Study of Mechanism of Surface Methoxy and Dimethyl Ether Formation from Methanol Catalyzed by Zeolitic Protons. J. Phys. Chem. B, 1997,101:2292-2305.
    [105]S.R.Blaszkowski,R.A.van Santen.The Mechanism of Dimethyl Ether Formation from Methanol Catalyzed by Zeolitic Protons.J.Am.Chem.Soc.,1996,118:5152-5153.
    [106]S.R.Blaszkowski,R.A.van Santen.Theoretical Study of C-C Bond Formation in the Methanol-to-Gasoline Process.J.Am.Chem.Soc.,1997,119:5020-5027.
    [107]R.Shah,J.D.Gale,M.C.Payne.In Situ Study of Reactive Intermediates of Methanol in Zeolites from First Principles Calculations.J..Phys.Chem.B,1997,101:4787-4797.
    [108]I.stich,J.D.Gale,K.Terakura,M.C.Payne.Role of the Zeolitic Environment in Catalytic Activation of Methanol.J.Am.Chem.Soc.,1999,121:3292-3302.
    [109]W.Wang,M.Seiler,M.Hunger.Role of Surface Methoxy Species in the Conversion of Methanol to Dimethyl Ether on Acidic Zeolites Investingated by in Situ Stopped-flow MAS NMR Spectroscopy.J.Phys.Che.,B,2001,105:12553-12558.
    [110]D.S.Newsome.The Water Gas Shift Reaction.Catal.Reviews,1980,21:275-318.
    [111]T.Shido,Y.Iwasawa.Reactant-Promoted Reaction Mechanism for Water-Gas Shift Reaction on ZnO,as the Genesis of Surface Catalysis,J.Catal.,1991,129:343-355.
    [112]C.T.Campbell,K.A.Daube.A Surface Science Investigation of the Water-Shift Reaction on Cu(111).J.Catal.,1987,104:109-119.
    [113]E.G.M.Kuijpers,R.B.Tjepkema,W.W.Vander,C.A.M.Mesters,S.F.G.M.Spronck,J.M.Geus.Struture-Sensitive of the Water-Gas Shift Reactions over Highly Active Cu/SiO_2Catalysts.Appl.Catal.,1986,25:139-147.
    [114]E.Colboum,R.A.Hadden,H.D.Vandervell,K.C.Waugh,G.Webb.Adsorption of Water on Polycrystalline Copper:Relevance to the Water Gas Shift Reaction.J.Catal.,1991,130:514-527.
    [115]J.H.Fei.M.X.Yang,Z.Y.Hou,X.M.Zheng.Effect of the Addition of Manganese and Zinc on the Properties of Copper-based Catalyst for the Synthesis of Syngas to Dimethyl Ether.Energ&Fuels,2004,18:1584-1587.
    [116]J.H.Fei,Z.Y.Hou,B.Zhu,H.Lou,X.M.Zheng.Synthesis of Dimethyl Ether(DME) on Modified HY Zeolite and Modified HY Zeolite-supported Cu-Mn-Zn Catalysts.Appl.Catal.A,2006,304:49-54.
    [117]J.H.Fei,X.J.Tang,Z.Y.Hou,H.Lou,X.M.Zheng.Effect of Copper Content on Cu-Mn-Zn/zeolite-Y Catalysts for the Synthesis of Dimethyl Ether from Syngas.Catal.Commun.,2006,7:827-831.
    [1]H.P.Klug,L.E.Alexander,X-Ray Diffraction Procedures,Wiley,New York,1974.
    [1]T.V.Martyn,S.S.Michael.Deactivation of Supported Copper Metal Catalysts for Hydrogen -ation Reactions.Appl.Catal.A,2001,212:161-174.
    [2]T.V.Martyn,S.S.Michael.Deactivation of Copper Metal Catalysts for Methanol Decomposition,Methanol Steam Reforming and Methanol Synthesis.Top.Catal.,2003,22:191-203.
    [3]F.Morales,F.M.F.de Groot,O.L.J.Gijzeman,A.Mens,O.Stephan,B.M.Weckhuysen.Mn Promotion Effects in Co/TiO2 Fischer-Tropsch Catalysts as Investigated by XPS and STEM-EELS.J.Catal.,2005,230:301-308.
    [4]G.L.Bezemer,P.B.Radstake,U.Falke,H.Oosterbeek,H.P.C.E.Kuipers,A.J.van Dillen,K.P.de Jong.Investigation of Promoter Effects of Manganese Oxide on Carbon Nanofiber-supported Cobalt Catalysts for Fischer-Tropsch Synthesis.J.Catal.,2006,237:152-161.
    [5]T.P.Wilson,P.H.Kasai,P.C.Ellgen.The State of Manganese Promoter in Rhodium-Silica Gel Catalysts.J..Catal.,1981,69:192-201.
    [6]H.Trevino,T.Hyeon,Wolfgang M.H.Sachtaler.A Novel Concept for the Mechanism of Higher Oxygenate Formation from Synthesis Gas over MnO-Promoted Rhodium Catalysts.J.Catal.,1997,170:236-243.
    [7]H.Y.Chen,J.Lin,K.L.Tan,J.Li.Comparative Studies of Manganese-doped Copper-based Catalysts:the Promoter effect of Mn on Methanol synthesis.Appl.Surf.Sci.,1998,126:323-331.
    [8]J.Kilo,A.Weigel,R.A.Wokaun,A.Koeppel,A.Stoeckli,Baiker.Effect of the Addition of Chromium- and Manganese Oxides on Structural and Catalytic Property of Copper/Zirconia Catalysts for the Synthesis of Methanol from Carbon Dioxide.J.Mol.Catal.A:Chem.,1997,126:169-184.
    [9]J.Sloczynski,R.Grabowski,A.Kozlowska,P.Olszewski,M.Lachowska,J.Skrzypek,J.Stoch.Effect of Mg and Mn Oxide Addition on Structural and Adsorptive Properties of Cu/ZnO/ZrO_2 Catalysts for the Methanol Synthesis from CO_2.Appl.Catal.A,2003,249:129-138.
    [10]J.T.Li,W.D.Zhang,L.Z.Gao,P.Y.Gu,K.Q.Sha,H.L.Wan.Methanol Synthesis on Cu-Zn-Al and Cu-Zn-Al-Mn Catalysts.Appl.Catal.A,1997,165:411-417.
    [11]K.Asakawa,Y.Yamamoto,S.Ebata,T.Nakamura.Process for Preparing a Catalyst Composition Containing Oxides of Copper Zinc and Aluminum.U.K.Patent,1980,GB 2047556.
    [12]陈小平,吴贵升,孙予罕,钟炳,任杰,王秀芝.CO加氢合成甲醇Cu-Mn/ZrO_2催化剂反应性能的研究.天然气化工,1998,23:1-4.
    [13]G.J.Hutchings,A.A.Mizaei,R.W.Joyner,M.R.H.Siddiqui,S.H.Taylor.Effect of Preparation Conditions on the Catalytic Performance of Copper Manganese Oxide Catalysts for CO oxidation.Appl.Catal.A,1998,166:143-152.
    [14]J.Papavasiliou,G.Avgouropouls,T.Ioananides.Combined Steam Reforming of Methanol over Cu-Mn Spinel Oxide Catalysts.J.Catal.,2007,251:7-20.
    [15]X.Li,J.Xu,L.Zhou,E Wang,J.Gao,C.Chen,J.Ning,H.Ma.Liquid-Phase Oxidation of Toluene by Molecular Oxygen over Copper Manganese Oxides.Catal.Lett.,2006,110:149-154.
    [16]A.S.Reddy,C.Gopinath,S.Chilukuri.Selective Ortho-Methylation of Phenol with Methanol over Copper Manganese Mixed-Oxide Spinel Catalysts.J.Catal.,2006,243:278-291.
    [17]Y.Guo,W.Meyer-Zaika,M.Muhler,S.Vukojevic,M.Epple.CuO/ZnO Nanoparticles in a Matrix of Amorphous Silica as High-Surface Precursors for Methanol Synthesis.Eur.J.Inorg.Chem.,2006,23:4774-4781.
    [18]H.Y.Chen,J.Lin,K.L.Tan,J.Li.Comparative Studies of Manganese-doped Copper-based Catalysts:the Promoter effect of Mn on Methanol synthesis.Appl.Surf.Sci.,1998,126:323-331.
    [19]M.R.Morales,B.P.Barbero,L.E.Cadus.Total Oxidation of Ethanol and Propane over Mn-Cu Mixed Oxide Catalysts.Appl.Catal.B,2006,67:229-236.
    [20]X.Du,Z.Yuan,L.Cao,C.Zhang,S.Wang.Water Gas Shift Reaction over Cu-Mn Mixed Oxides Catalysts:Effects of the Third Metal.Fuel Proc.Tech.,2008,89:131-138.
    [21]D.A.Kukuznyak,S.W.Han,M.H.Lee,K.A.Orrdand,M.C.Gregg,E.A.Stem.Controlled Coordination and Oxidation States of Copper and Manganese Cations in Complex Nickel-Copper-Cobalt-Manganese Oxide Thin Films.J.Vac.Sci.Technol.A,2001,19:1923.
    [22]V.V.Galvita,G.L.Semin,V.D.Belyaev,T.M.Yurieva and V.A.Sobyanin.Production of Hydrogen from Dimethyl Ether.Appl.Catal.A,2001,216:85-90.
    [23]J.F.Xu,W.Ji,Z.X.Shen.J.Raman Spectrosc.,1999,30:413.
    [24]G.S.Wu,T.Xie,X.Y.Yuan,Y.Li,L.Yang,Y.H.Xiao and L.D.Zhang.Controlled Synthesis of ZnO Nanowires or Nanotubes via Sol-Gel Template Process.Solid State Commun.,2005,134:485-489.
    [25]张海涛,曹发海,刘殿华,房鼎业.合成气直接合成二甲醚与甲醇的热力学分析.华东理工大学学报,2001,27(2):198-201.
    [26]J.H.Fei.M.X.Yang,Z.Y.Hou,X.M.Zheng.Effect of the Addition of Manganese and Zinc on the Properties of Copper-based Catalyst for the Synthesis of Syngas to Dimethyl Ether.Energ&Fuels,2004,18:1584-1587.
    [27][34]Y.Bessekhouad,D.Robert,J.-V.Weber.Photocatalytic Activity of Cu_2O/TiO_2,Bi_2O_3/TiO_2 and ZnMn_2O_4/TiO_2 Heterojunctions.Catal.Today,2005,101:315-321.
    [28]G.Fierro,S.Morpurgo,M.L.Jacono,M.Invesi,I.Pettiti.Preparation,Characterization and Catalytic Activity of Cu-Zn-Based Manganites Obtained from Carbonate Precursors.Appl.Catal.A,1998,166:407-417.
    [29]D.Mao,W.Yang,J.Xia,B.Zhang,Q.Song,Q.Chen.Highly Effective Hybrid Catalyst for the Direct Synthesis of Dimethyl Ether from Syngas with Magnesium Oxide-Modified HZSM-5as a Dehydration Component.J.Catal.,2005,230:140-149.
    [30]F.Le Peltier,P.Chaumette,J.Saussey,M.M.Bettahar,J.C.Lavalley.In-Situ FT-IR Spectroscopy and Kinetic Study of Methanol Synthesis from CO/H_2 over ZnAl_2O_4 and Cu-ZnAl_2O_4 Catalysts.J.Mol.Catal.A:Chem.,1997,122:131-139.
    [31]E.N.Muhamad,R.Irmawati,Y.H.Taufiq-Yap,A.H.Abdullah,B.L.Kniep,F.Girgsdies and T.Ressler.Comparative Study of Cu/ZnO Catalysts Derived from Different Precursors as a Function of Aging.Catal.Today,2008,131:118-124.
    [32]Y.Tanaka,T.Utaka,R.Kikuchi,T.Takeguchi,K.Sasaki,K,Eguchi.Water Gas Shift Reaction for the Reformed Fuels Over Cu/MnO Catalysts Prepared via Spinel-tpye Oxide.J.Catal.,2003,215:271-278
    [33]A.A.Mirzaei,H.R.Shaterian,M.Habibi.Characterisation of Copper-Manganese Oxide Catalysts:Effect of Precipitate Ageing upon the Structure and Morphology of Precursors and Catalysts.Appl.Catal.A,2003,25:499-508.
    [34]M.Rajshkshmi,A.K.Arora.Vibrational Spectra of Selenium Nanoparticles Dispersed in a Polymer.Nanostructured Materials,1999,11:399-405.
    [35]J.Bao,Z.Liu,Y.Zhang,N.Tsubaki.Preparation of Mesoporous Cu/ZnO Catalyst and Its Application in Low-Temperature Methanol Synthesis.Catal.Commun.,2008,9:913-918.
    [36]S.A.French,A.A.Sokol,S.T.Bromley,C.R.A.Catlow,P.Sherwood.Identification and Characterization of Active Sites and Their Catalytic Processes—the Cu/ZnO Methanol Catalyst.Top.Catal.,2004,24:161-172.
    [37]J.E.Bailiel,C.H.Rochester,G.J.Millar.Spectroscopic Evidence for Adsorption Sites Located at Cu/ZnO Interfaces.Catal.Lett.,2004,31:333-340.
    [38]L.Huang,G.J.Kramer,W.Wieldraaijer,D.S.Brands,E.K.Poels,H.L.Castricum and H.Bakker.Methanol Synthesis over Cu/ZnO Catalysts Prepared by Ball Milling.Catal.Lett.,1997,48:55-59.
    [1]Y.Sakata,M.A.Uddin,A.Muto,M.Imaoka.Carbon-supported Well-dispersed Cu-ZnO Catalysts Prepared from Sawdust Impregnated with[Cu(NO_3)_2,Zn(NO_3)_2]Solution:Catalytic Activity in CO_2 Hydrogenation to Methanol.Micro.Mater.,1997,9:183-187.
    [2]M.Kurtz,N.Bauer,C.B(u|¨)scher,H.Wilmer,O.Hinrichsen,R.Becher,S.Rabe,K.Merz,M.Driess,R.A.Fischer,M.Muhler.New Synthetic Routes to More Active Cu/ZnO Catalysts Used for Methanol Synthesis.Catal.Lett.,2004,92:49-52.
    [3]A.A.Ponce,K.J.Klabunde.Chemical and Catalytic Activity of Copper Nanoparticles Prepared via Metal Vapor Synthesis.J.Mol.Catal.A,2005,255:1-6.
    [4]M.W.E.van den Berg,S.Polarzb,O.P.Tkachenko,K.V.Klementiev,M.Bandyopadhyay,L.Khodeir,H.Gies,M.Muhler,W.Gr(u|¨)nert.Cu/ZnO Aggregates in Siliceous Mesoporous Matrices:Development of a New Model Methanol Synthesis Catalyst.J.Catal.,2006,241:446-455.
    [5]Y.Guo,W.Meyer-Zaika,M.Muhler,S.Vukojevic',M.Epple.Cu/Zn/Al Xerogels and Aerogels Prepared by a Sol-Gel Reaction as Catalysts for Methanol Synthesis.Eur.J.Inorg.Chem.,2006,23:4774-4781.
    [6]R.Weiss,S.Vukojevic',C.Baltes,R.Naumann d' Alnoncourt,M.Muhler,M.Epple.Copper/Zinc L-Tartrates:Mixed Crystals and Thermolysis to a Mixture of Copper Oxide and Zinc Oxide That Is Catalytically Active in Methanol Synthesis.Eur.J.Inorg.Chem.,2006,23:4782-4786.
    [7]J.Kowalski,G.v.d.Lee,V.Ponec.Vanadium Oxide as a Support and Promoter of Rhodium in Synthesis Gas Reactions.Appl.Catal.,1985,19:423-426.
    [8]F.G.A.van den Berg,J.H.E.Glezer and W.M.H.Sachtler.The Role of Promoters in CO/H2Reactions:Effects of MnO and MoO_2 in Silica-supported Rhodium Catalysts.J.Catal.,1985,93:340-352.
    [9]M.Ichikawa,T.Fukushima,K.Shikakura.The Role of Fe-,Mn- and Ti-oxide Additives Modifying C2-oxygenate Formation Catalyzed by SiO_2-supported Rh-containing Catalysts in a CO-H_2 Conversion.In:Proceedings 8~(th) International Congress on Catalysis.Berlin,Germany. Verlag Chemie,1984,5,97.
    [10]A.S.Reddy,C.Gopinath,S.Chilukuri.Selective Ortho-Methylation of Phenol with Methanol over Copper Manganese Mixed-Oxide Spinel Catalysts.J.Catal.,2006,243:278-291.
    [11]M.R.Morales,B.P.Barbero,L.E.Cadus.Total Oxidation of Ethanol and Propane over Mn-Cu Mixed Oxide Catalysts.Appl.Catal.B,2006,67:229-236.
    [12]G.Fierro,S.Morpurgo,M.Lo Jacono,M.Inversi,I.Pettiti.Preparation,Characterisation and Catalytic Activity of Cu-Zn-based Manganites Obtained from Carbonate Precursors.Appl.Catal.A,1998,166:407-417.
    [14]马洪涛,邓国才,包信和.CuZnOAlO甲醇合成催化剂活性组分的高温动态变化.《催化学报》,2001,22:259-262.
    [15]G.Fierro,M.Lo Jacono,M.Inversi,P.Porta,F.Cioci,R.Lavecchia.Study of the Reducibility of Copper in CuO-ZnO Catalysts by Temperature-Programmed Reduction.Appl.Catal.A,1996,137:327-48.
    [16]Melian-Cabrera I,Granados LM,Fierro JLG.Structural Reversibility of a Ternary CuO-ZnO-Al_2O_3 Ex Hydrotalcite-Containing Material during Wet Pd Impregnation.Catal.Lett.,2002,79:165-70.
    [1]M.Twigg,M.Spencer.Deactivation of Supported Copper Metal Catalysts for Hydrogenation Reactions.Appl.Catal.A,2001,212:161-174.
    [2]M.S.Spencer.Precursors of Copper/Zinc Oxide Catalysts.Catal.Lett.,2000,66:255-257.
    [3]D.Waller,D.Stirling,F.S.Stone,M.S.Spencer.Copper-Zinc Oxide Catalysts.Activity in Relation to Precursor Structure and Morphology.Faraday Discuss.Chem.Soc.,1989,87,107-120.
    [4]C.Kiener,M.Kurtz,H.Wilmer,C.Hoffmann,H.-W.Schmidt,J.-D.Grunwaldt,M.Muhler,E Sch(u|¨)th.High-throughput Screening under Demanding Conditions:Cu/ZnO Catalysts in High Pressure Methanol Synthesis as an Example.J.Catal.,2003,216:110-119.
    [5]B.Bems,M.Schur,A.Dassenoy,H.Junkes,D.Herein,R.Schlogl.Relations between Synthesis and Microstructural Properties of Copper/Zinc Hydroxycarbonates.Chem.Eur.J.,2003,9:2039-2052.
    [6]A.M.Pollard,M.S.Spencer,R.G.Thomas,P.A.William,J.Holt,J.R.Jermings.Georgeite and Azurite as Precursors in the Preparation of Co-precipitated Copper/Zinc Oxide Catalysts.Appl.Catal.A,1992,85:1-11.
    [7]C.K.Huang,P.F.Kerr.Infrared Study of the Carbonate Minerals.Am.Mineral.,1960,45:311.
    [8]R.G.Herman,K.Klier,G.W.Simmons,B.P.Finn,J.B.Bulko.Catalytic Synthesis of Methanol from CO/H_2 I Phase Composition,Electronic Properties,and Activities of the Cu/ZnO/M_2O_3 Catalysts.J.Catal.,1979,56:407-429.
    [9]F.C.Buciuman,F.Patcas,T.Hahn.A Spillover Approach to Oxidation Catalysis over Copper and Manganese Mixed Oxides.Chem.Eng.Proc.,1999,38:563-569.
    [10]M.R.Morales,B.P.Barbero,L.E.Cadus.Total Oxidation of Ethanol and Propane over Mn-Cu Mixed Oxide Catalysts.Appl.Catal.B Environ.,2006,67:229-236.
    [11]Y.Tanaka,T.Utaka,R.Kikuchi,T.Takeguchi,K.Sasaki,K.Eguchi.Water Gas Shift Reaction for the Reformed Fuels over Cu/MnO Catalysts Prepared via Spinel-type Oxide.J.Catal.,2003,215:271-278.
    [12]Y.Choi,K.Futagami,T.Fujitani,J.Nakamura.The Role of ZnO in Cu/ZnO Methanol Synthesis Catalysts—Morphology Effect or Active Site Model? Appl.Catal.A:Gen.,2001,208:163-167.
    [13]S.A.French,A.A.Sokol,S.T.Bromley,C.R.A.Catlow,P.Sherwood.Identification and Characterization of Active Sites and Their Catalytic Processes—the Cu/ZnO Methanol Catalyst.Top.In Catal.,2003,24:161-172.
    [14]Y.-W.Suh,S.-H.Moon,H.-K.Rhee.Active Sites in Cu/ZnO/ZrO_2 Catalysts for Methanol Synthesis from CO/H_2.Catal.Today,2000,63:447-452.
    [15]J.Nakamura,Y.Choi,T.Fujitani.On the Issue of the Active Site and the Role of ZnO in Cu/ZnO Methanol Synthesis Catalysts.Topics in Catal.,2003,22:277-285.
    [16]M.Kurtz,N.Bauer,C.B(u|¨)scher,H.Wilmer,O.Hinrichsen,R.Becher,S.Rabe,K.Merz,M.Driess,R.A.Fischer,M.Muhler.New Synthetic Routes to More Active Cu/ZnO Catalysts Used for Methanol Synthesis.Catal.Lett.,2004,92:49-52.
    [17]M.M.G(u|¨)nter,T.Ressler,B.Bems,C.B(u|¨)scher,T.Genger,O.Hinrichsen,M.Muhler,R.Schl(o|¨)gl.Implication of the microstructure of binary Cu/ZnO catalysts for their catalytic activity in methanol synthesis.Catal.Lett.,2001,71:37-44.
    [18]N.Tops(?)e and H.Tops(?)el.On the Nature of Surface Structural Changes in Cu/ZnO Methanol Synthesis Catalysts.Topics in Catal.,1999,8:267-270.
    [19]J.E,Bailie,C.H.Rochester,G.J.Millar.Spectroscopic Evidence for Adsorption Sites Located at Cu/ZnO Interfaces.Catal.Lett.,1995,31:333-340.
    [20]G.J.Millar,I.H.Holm,P.J.R.Uwinsb,J.Drennan.Characterization of Precursors to Methanol Synthesis Catalysts Cu/ZnO System.J.Chem.Sot.,Faraday Trans.,1998,94:593-600.
    [21]T.M.Yurieva.Catalyst for Methanol Synthesis:Preparation and Activation.React.Kinet.Catal.Lett.,1995,55:513-521.
    [22]M.M.G(u|¨)nter,T.Ressler,B.Bems,C.B(u|¨)scher,T.Genger,O.Hinrichsen,M.Muhler and R.Schl(o|¨)gl.Implication of the Microstructure of Binary Cu/ZnO Catalysts for Their Catalytic Activity in Methanol Synthesis.Catal.Lett.,2001,71:37-44.
    [23]T.Ressler,B.L.Kniep,I.Kasatkin,R.Schl(o|¨)gl.The Microstructure of Copper Zinc Oxide Catalysts:Bridging the Materials Gap.Angew.Chem.Int.Ed.,2005,44:4704-4707.
    [24]F.S.Stone and D.Waller.Cu-ZnO and Cu-ZnO/Al_2O_3 Catalysts for the Reverse Water-Gas Shift Reaction.The Effect of the Cu/Zn Ratio on Precursor Characteristics and on the Activity of the Derived Catalysts.Top.Catal.,2003,22:305-318.
    [25]D.M.Whittle,A.A.Mirzaeli,J.S.J.Hargreaves,R.W.Joyner,C.J.Kiely and S.H.Taylor.Co-precipitated Copper Zinc Oxide Catalysts for Ambient Temperature Carbon Monoxide Oxidation:Effect of Precipitate Ageing on Catalyst Activity.Phys.Chem.Chem.Phys.,2002,4:5915-5920.
    [26]房德仁,黎晓琼.加料方式对CuO/ZnO/Al_2O_3系催化剂前驱体性质的影响.《燃料化学学报》,2004,32:734-739.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700