一种水下航行体的仿水翼法推进技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
仿生推进技术是水下推进技术研究领域的重要研究方向之一,它为研制低噪声、高性能的水下航行体提供了基础技术支撑。本论文“一种水下航行体的仿水翼法推进技术研究”,以海龟为仿生对象,进行了生物水翼法推进技术研究,目的在于开发新型的水下推进技术,丰富水下推进理论,并基于新型推进技术进行微小型水下航行体的载体技术研究。本论文主要进行了以下几个方面的工作:
     1、对海龟生物原型进行了大量的实地观测实验,研究了海龟身体各部分的体态特征、比例参数和海龟游动的运动特点,通过图像处理与分析,研究了海龟前肢的水翼法游动机理,提出了仿海龟水翼法推进的构想。
     2、设计了仿水翼法的水下推进装置,包括本体结构设计和硬件控制系统的设计等,并研制了其原理试验装置;对仿水翼法推进装置进行了运动学和动力学建模分析,建立了雅可比矩阵方程,为仿生推进控制提供依据:在Pro/E仿真环境下进行了仿水翼法推进装置的运动学仿真实验,为进一步优化推进装置提供参考。
     3、对仿水翼法推进装置的原理试验装置进行了水下实验,基本实现了仿海龟水翼法运动形式,验证了样机本体机械结构、密封方案和控制系统的可行性和可靠性。
     4、研制了仿海龟后肢的后肢平衡舵装置原理试验装置,并扩展设计了整个仿生海龟水下航行体,包括本体结构和总体控制方案的设计,提出了一种新型仿生水下航行体的载体设计方案。
     本论文对生物水翼法推进这种典型水中推进方式的运动机理进行了探讨,通过运动模型的建立与分析,设计了仿水翼法推进装置,试验验证了仿水翼法推进机理的可行性和仿生推进装置的可靠性,为进一步研究仿生海龟水下航行体提供了重要参考。
The bionic underwater propulsion technology is one of the most important research directions in the underwater propulsion technology research field, and it brings forth the basical technical supports to develop the low noisy, high flexible underwater vehicle.This paper, of which the name is "Research on Bionic Turtle Hydrofoil Propulsion Technology of Autonomous Underwater Vehicle",using marine turtle as bionic target, researches on the halobios' hydrofoil propulsion technology. In order to exploit new type of underwater propulsion technology, enrich underwater propulsion theory and research the carrier technology of new pattern of microminiatur autonomous underwater vehicle based on the new propulsion technology. Following are the main works of this thesis:
     Firstly, we make a number of observation experiments about marine turtle on the spot, research its every part posture parameters and proportion parameters, understand the characteristic of turtle swimming.By means of image processing and analysis method, we research the motion theory of turtle forelimb's hydrofoil propulsion, and bring forward the new conception of imitating turtle hydrofoil propulsion motion.
     Secondly, we design the bionic turtle hydrofoil propulsion device, including mechanics configuration design and hardware electrocircuit design, and then manufacture the experiment prototype device. Establish the kinematics model and dynamics model of the propulsion device, then analysis its Jacobian matrix equation, preparing the reference to control system. Under the Pro/Engineer emulational condition, we do the device's emulating motion experiments, and the results are important references to betterment of the hydrofoil propulsion device.
     Thirdly, we do the underwater experiments about the bionic hydrofoil propulsion experiment prototype device, and the results basically achieve the design intention of bionic turtle hydrofoil motion. At the same time, the results also validate the design of configuration, design of electrocircuit and design of eddy pressurize.
     Finally, we manufacture the bionic tutle hindlimb balance rudder experiment prototype device, and design the whole bionic turtle autonomouns underwater vehicle which including mechanics configuration design and contol project design. It is a new type of carrier blueprint about the autonomous underwater vehicle.
     This thesis discusses the motion theory of the halobios' hydrofoil propulsion which is one of the representative underwater propulsion fashion. By means of establishing and analysing the kinematics modle of turtle, we design the bionic turtle hydrofoil propulsion device, and do the experiments to prove the feasibility of bionic hydrofoil propulsion theory and the reliability of bionic hydrofoil propulsion device.All of these are the important references to research on the bionic turtle autonomous underwater vehicle.
引文
[1] 冯正平.国外自治水下机器人发展现状综述.鱼雷技术.2005(3):5-9页
    [2] 瞿晓荣.仿生机器蟹控制系统及驱动技术研究.哈尔滨工程大学硕士学位论文.2003:1-2页
    [3] 张铭钧.水下机器人.第一版.北京:海洋出版社,2004:1-5,48-56页
    [4] 彭学伦.水下机器人的研究现状与发展趋势.技术应用.2004(4):43页
    [5] 哈瓦尔特,S_V·A_A著.黄鼎良等译.船舶阻力与推进.第一版.大连:大连理工大学出版社,1989:256页
    [6] 朱继懋.潜水器设计.第一版.上海:上海交通大学出版社,1992:158-160页
    [7] 蒋新松,封锡盛,王棣棠.水下机器人.第一版.沈阳:辽宁科学技术出版社,2000:77-83页
    [8] 曾妮,杭观荣,曹国辉,王振龙.仿生水下机器人研究现状及其发展趋势.机械工程师.2006(4):18-20页
    [9] M.S. Triantafyllou, D.K.P. Yue. Hydrodynamics of Fishlike Swimming. Annual Review of Fluid Mechanics, vol. 32, May 2000: 33-53P
    [10] http://web.mit.edu/towtank/www/tuna/robotuna.html
    [11] http://web.mit.edu/towtank/www/pike/index.html
    [12] http://web.draper.com/tuna_web/vcuuv.html
    [13] 储定慧.微小型水下航行体仿鱼推进驱动技术研究.哈尔滨工程大学硕士学位论文.2005:2-6页
    [14] 王立权.两栖仿生机器蟹模型建立与步行足协调控制技术研究.哈尔滨工程大学博士学位论文.2003:9页
    [15] Shigeo Hirose, Kasn Yoneda, hideyuki Tsukagoshi. TITAN-Ⅷ: Quadruped Walking and Manipulating Robot on a Steep Slope. Proc Int Conf On Robotics and Automation, Albuquerque. New Mexico. 1997: 194-500P
    [16] Keisuke Arikawa, Shigeo Hirose. Development of Quadruped Walking Robot TITAN-Ⅷ. Proc IROS'96, 1996: 208-214P
    [17] http://fzwb.ynet.com/article.jsp?oid=3742105
    [18] 成巍.仿生水下机器人仿真与控制技术研究.哈尔滨工程大学博士学位论文.2004:4页
    [19] 钦俊德.动物的运动.第一版.北京:清华大学出版社,暨南大学出版社,2000:15-32页
    [20] 赵连恩,韩端锋.高性能船舶水动力学原理与设计.第一版.哈尔滨:哈尔滨工程大学出版社,2000:176-178页
    [21] http://www.auvsi.org/competitions/2002/photo_gallery.cfm
    [22] 章秉纲,陆夕云.关于飞行和游动的生物力学研究.力学进展.2004,34(1):1-8页
    [23] Z. Jane Wang, Janms M. Birch, and Michael H. Dickinson. Unsteady forces and flows in low Reynolds number hovering flight: two-dimensional computations vs robotic wing experiments. Journal of Experimental Biology, vol. 207, Mar 2004: 449-460P
    [24] Zbikowski. rafal. On aerodynamic modeling of an insect-like flapping wing in hover for micro air vehicles. Phil Trans R Soc Lond A, vol. 360, Feb 2002: 273-290P
    [25] 王姝歆,际国平.仿生扑翼飞行机器人翅型的研制与实验研究.实验力学.2006,21(3):315-321页
    [26] 李琳.无尽宝藏——海洋生物一览.第一版.哈尔滨:哈尔滨工程大学出版社,1999:242-243页
    [27] 罗红魏.两栖仿生机器蟹关键技术研究.哈尔滨工程大学硕士学位论文.2007:22-26页
    [28] 梁传秋.SPC-Ⅱ推进系统设计及仿鱼推进器研究.哈尔滨工程大学硕士学位论文.2004:19-22页
    [29] 张亮,李云波.流体力学.第一版.哈尔滨:哈尔滨工程大学出版社,2001:206-211页
    [30] 郑文纬,吴克坚.机械原理.第七版.北京:高等教育出版社,1997:222-228页
    [31] Joseph Ayers. Underwater walking. Arthropod Structure & Development 33(2004): 347-360P
    [32] 濮良贵,纪名刚.机械设计.第七版.北京:高等教育出版社,2001:221-225页
    [33] 张立勋,张今瑜,杨勇.机电一体化系统设计.第二版.哈尔滨:哈尔滨工程大学出版社,2004:1-3页
    [34] 刘和平,严利平,张学锋,卓清锋.TMS320LF240x DSP结构、原理及应用.第一版.北京:北京航空航天大学出版社,2002:1-3页
    [35] 胡广.基于DSP的足球机器人设计与开发.中南大学硕士学位论文.2002:1页
    [36] 窦普.基于DSP移动机器人控制技术研究.哈尔滨工程大学硕士学位论文.2007:23-26页
    [37] Texas Instruments. TMS320LF/LC240xA DSP Controllers Reference Guide (System and Peripherals). TI compangy material[Z]. 2001
    [38] 霍孟友,张光远.基于TMS320LF2407的直流直线电机控制系统设计.电加工与模具.2005(3):19-22页
    [39] AMS1117 datasheet. Advance monolithic systems, Inc.
    [40] 李瑞峰,亢雪英.基于双DSP的防爆机器人控制器的设计.制造业自动化.2005(7):43-46页
    [41] 刘和平.TMS320LF240x DSP C语言开发应用.第一版.北京:北京航空航天大学出版社.2002:101-103页
    [42] 黄永志,陈卫东.两轮移动机器人运动控制系统的设计与实现.机器人.2004,26(1):40-44页
    [43] 蔡自兴.机器人学.第一版.北京:清华大学出版社.2003:46-126页
    [44] 熊有伦.机器人技术基础.第一版.武汉:华中科技大学出版社.2002:32-92页
    [45] John J. Craig. Introduction to Robitics-Mechanics and Control. Edition 3rd. Prentice Hall Publisher. 2000:135-140P
    [46] Saeed B. Niku. Introduction to Robitics-Analysis, System and Applcation. Edition 1st. Prentice Hall Publisher. 2002: 256-266P
    [47] 陈东良.仿生机器蟹两栖步行机理与控制方法研究.哈尔滨工程大学博士学位论文.2006:113-120页

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700