模拟雨量下微集水种植农田土壤水温状况及玉米生理生态效应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
农田微集水种植技术是一种通过改变农田地表微地形,达到雨水就地富集、利用及储存的田间集水农业技术,它适用于缺乏径流源或远离产流区的旱平地和缓坡旱地,基本原理是通过在田间修筑沟垄,垄面覆膜,实现降水由垄面(集水区)向沟中(种植区)的汇集,使降雨在农田内就地进行空间再分配,达到降雨集中利用之目的,以改善旱地作物水分供应状况,提高作物产量。
     试验于2006~2007年在西北农林科技大学(108°04ˊE ,34°20ˊ N)农作物标本区遮雨棚内进行,在夏播(2006)和春播(2007)玉米生育期内,通过人工模拟降雨装置,研究不同降雨量下微集水种植农田土壤水分动态、温度状况和玉米生理生态反应及增产效应,以进一步明确和完善农田微集水种植技术农田水温效应及影响作物生产力的机制。
     1、不同雨量下微集水种植农田土壤水温状况
     1)覆膜垄的集水效率与降雨强度有关,在雨强为30mm/h~40mm/h时,覆膜垄的集水效率较高,平均为95.1%。
     2)在玉米生育期,随着时间的推移和累积降雨量的增加,微集水种植垄下土壤水分逐渐增加,在230mm、340mm和440 mm雨量下,随着雨量递增,沟中种植区土壤水分含量提高幅度增大,垄下土壤水分含量增加速度也加大。
     3)微集水种植可以增加耕层的温度,尤其在晴天,其增温效果更加明显。随着作物生育期雨量的增加和土层的加深,地温增加量逐渐减小;在玉米播种后60天内,微集水种植沟中10cm处,在玉米生育期降雨量为230mm、340mm和440mm时,白天平均地温分别较对照增加了0.9~1℃、0.8~0.9℃和0.7~0.8℃。
     2、不同雨量下微集水种植对玉米光合生理生态特性的影响
     1)对于夏播玉米而言,在全生育期230mm和340mm降雨量下,微集水种植可使全生育期叶片瞬时水分利用效率较同降雨量下传统平作分别提高30.0%和22.1%。
     2)对于春播玉米而言,在全生育期230mm降雨量下,可使全生育期叶片瞬时水分利用效率较同降雨量下传统平作分别提高13.6%;当全生育期降雨量为340mm时,在拔节期和抽雄期,微集水种植叶片瞬时水分利用效率分别提高15.2%和30.1%,整个生育期,平均提高12.4%。
     3)不论春播还是夏播,当玉米生育期雨量较大时,微集水种植对提高玉米光合效率和叶片水分利用效率的优势减小,甚至当雨量增加到440mm或者更大时,玉米叶片瞬时水分利用效率与传统平作相比,反而降低。
     3、不同雨量下微集水种植对玉米生长发育的影响
     1)在玉米生育期降雨量为230mm~440mm时,微集水种植使玉米的生育进程都有所提前,其中可使夏玉米出苗普遍提前1d,拔节期、开花期以及完熟期在230mm降雨量下,分别提前8d、5d和11d;340mm降雨量下分别提前4d、4d和6d;440mm降雨量下分别提前2d、2d和3d;可使春玉米出苗普遍提前2d,拔节期、开花期以及成熟期在230mm降雨量下,分别提前14d、11d和13d;440mm降雨量下分别提前10d、9d和8d;440mm降雨量下分别提前2d、2d和5d。各降雨量下微集水种植对玉米各生育周期的影响:230mm>340mm>440mm,随着降雨量的增大,微集水种植对玉米生育进程的影响逐渐变小。
     2)在玉米生育期降雨量为230mm~440mm时,微集水种植使玉米单株生物累积量增加。230mm、340mm、440mm降雨量下,夏玉米收获时,微集水种植单株干重分别比传统平作高44.7%、28.5%和7.6%;春玉米收获时,微集水种植单株干重分别比传统平作高86.6%、59.7%和12.1%。
     3)在全生育期230mm~340mm降雨量下,夏播玉米籽粒产量较同雨量下传统平作籽粒产量分别增加了1604kg·hm~(-2)(75.4%)和1184 kg·hm~(-2)(36.7%);春播玉米在全生育期降雨量为230mm~440mm时,与同降雨量下传统平作相比,籽粒产量分别增加2632 kg·hm~(-2)(82.8%)、2347 kg·hm~(-2)(43.4%)和861 kg·hm~(-2)(11.2%)。微集水种植的增产幅度随玉米生育期雨量的递增逐渐减小,尤其是当雨量为440mm时,对夏玉米来说增产效果已不明显。
     4)夏播玉米在全生育期230mm和340mm降雨量下,微集水种植可使农田籽粒产量水分利用效率较同雨量下传统平作分别提高7.4 kg·hm~(-2)·mm~(-1)(73.3%)和4.3 kg·hm~(-2)·mm~(-1)(40.2%)。春播玉米在全生育期230mm、340mm和440mm降雨量下,微集水种植可使农田籽粒产量水分利用效率较同雨量下传统平作分别提高11.3 kg·hm~(-2)·mm~(-1)(77.4%)、7.5 kg·hm~(-2)·mm~(-1)(43.1%)和1.7(9.5%)。
     4、不同雨量下微集水种植对土壤速效养分的影响
     1)在夏玉米全生育期230mm、340mm和440mm雨量下,由于微集水种植的集水集肥效果,可使种植区耕层土壤速效养分(N、P、K)含量明显增加,并且其增幅大小随雨量不同而异。
     2)随着夏玉米全生育期降雨量的不同,微集水种植下土壤速效养分含量增加的土层位置亦不相同。当生育期雨量较小时,农田土壤速效养分增加的土层主要为较上层(0~40cm)土壤,而当雨量进一步加大时,还可使更深层土壤速效养分含量增加。
     5、不同雨量下微集水种植对农田养分利用效率的影响
     1)在玉米全生育期230mm~340mm降雨量下,微集水种植玉米可提高农田养分利用效率。对夏播玉米而言,微集水种植使农田氮、磷和钾素利用效率(NUEN、NUEP和NUEK)在230mm雨量下分别增加了56.0%、44.4%和106.8%; 340mm雨量下分别增加了22.8%、18.1%和35.5%;440mm雨量下与平作相比差异不明显;对于春播玉米而言, NUEN、NUEP和NUEK在230mm雨量下分别增加了64.0%、52.2%和123.9%;340mm雨量下分别增加了30.4%、21.8%和41.2%;440mm雨量下NUEN提高了10.1%,NUEP和NUEK与传统平作无显著差异。
A plastic-covered ridge and furrow rainfall harvesting (PRFRH) system is being promoted to increase water availability for crops for higher and stable agricultural production in arid areas. The technique which based on the collection and concentration of surface runoff from short slopes is especially useful in arid and semiarid regions where irrigation water is not available or too costly to use. In this system, the plastic-covered ridges served as a rainfall harvesting zone and furrows as a planting zone. The PRFRH system can make better utilization of light rain by harvesting rainwater through the plastic-covered ridge.
     Field experiments (using corn as an indicator crop ) were conducted in a rainfall-control chamber of the Crop Specimen Farm of the Northwest A&F University (108°04ˊE, 34°20ˊN) during 2006-2007. In order to investigate the mechanism of PRFRH on soil water and temperature effects of farmland, the experiment comprised the soil water content, topsoil temperature, physiological and ecological characteristics, and grain yield increase for planting corn in two patterns, namely, PRFRH and conventional flat practice (CK), by artificially simulated different rainfalls (230 mm, 340 mm and 440 mm). The main results showed as follows:
     1. Effects of PRFRH on soil water and temperature conditions in the topsoil under different rainfalls.
     1) The runoff efficiency (runoff/rainfall) of plastic-covered ridges was related to the rainfall intensity. The plastic-covered ridges had an average runoff efficiency of 95.1% as when the rainfall intensity was in the range of 30mm/h-40mm/h.
     2) The soil water content in plastic-covered ridges of PRFRH gradually increased with the time and accumulated rainfall increase during the corn growing period. At the rainfall of 230 mm, 340 mm and 440 mm, the amplitude for soil water content both in ridges and furrows increased with the rainfall increase.
     3) PRFRH had especially in clear day a significant effect on temperature increase in topsoil (0-20 cm). However, the topsoil temperature amplitude declined with the rainfall increase during crop growing period and soil layer depth. Within 60 days after planting, the average soil temperature at 10 cm in furrows for PRFRH during daylight increased 0.9-1°C,0.8-0.9°C and 0.7-0.8°C, respectively compared to flat practice when rainfalls were 230 mm, 340 mm and 440 mm during corn growth stages.
     2. Effects of PRFRH on physiological and ecological characteristics of corn under different rainfalls.
     1) At the rainfall of 230 mm and 340 mm, PRFRH increased the leaf instantaneous water use efficiency (WUE) by 30.0% and 22.1%, respectively compared to CK during the whole growth period of corn sown in summer.
     2) For corn sown in spring, at the rainfall of 230 mm, PRFRH increased the leaf instantaneous WUE by 13.6% compared to conventional flat practice during the whole growth period. At the rainfall of 340 mm, the leaf instantaneous WUE during jointing and flowering was increased by 15.2% and 30.1% respectively compared to control. The average leaf instantaneous WUE increased by 12.4% during the whole growing period.
     3) At the higher rainfall, the advantages of PRFRH on leaf net photosynthetic rate and WUE increment for corn sown both in summer and spring decreased compared to CK. At the rainfall of 440 mm or more, the leaf instantaneous WUE of corn even declined.
     3. Effects of PRFRH on corn growth and development under different rainfalls.
     1) At the rainfall of 230 mm-440 mm, the PRFRH planting could make developmental stages occur earlier. For corn sown in summer, the corn seedling emerged 1d in three rainfall levels. The jointing, flowering and maturing occurred earlier 8d, 5d and 11d, respectively at the rainfall of 230 mm, earlier 4d, 4d and 6d at 340 mm rainfall, and earlier 2d, 2d and 3d at 440 mm rainfall. For corn sown in spring, the corn seedling emerged 2d in three rainfall levels. The jointing, flowering and maturing occurred earlier 14d, 11d and 13d, respectively at the rainfall of 230 mm, earlier 10d, 9d and 8d at 340 mm rainfall, and earlier 2d, 2d and 5d at 440 mm rainfall. Effects of PRFRH on corn growth stages decreased with the rainfall increase. The order was as follows: 230 mm > 340 mm > 440 mm.
     2) PRFRH enhanced corn biomass accumulation at the rainfall of 230 mm-440 mm during the whole growth stages. Compared to CK, the dry matter weight under PRFRH after corn harvested, increased by 44.7%, 28.5% and 7.6%, respectively for corn sown in summer, and by 86.6%, 59.7% and 12.1%, respectively for corn sown in spring at three rainfall levels.
     3) At 230 mm and 440 mm rainfalls, the grain yield of corn sown in summer under PRFRH increased by 1604kg·hm~(-2) (75.4%) and 1184 kg·hm~(-2) (36.7%), respectively compared to conventional flat planting. At the rainfall of 230 mm-440 mm, the grain yield of corn sown in spring under PRFRH increased by 2632 kg·hm~(-2)(82.8%), 2347 kg·hm~(-2)(43.4%) and 861 kg·hm~(-2)(11.2%), respectively compared to control. The grain yield amplitude of PRFRH decreased with rainfall increase during corn growth stages. The PRFRH had no significant effect on yield increment especially at 440 mm rainfall for corn sown in summer.
     4) For corn sown in summer, PRFRH could enhance grain yield and WUE by 7.4 kg·hm~(-2)·mm~(-1)(73.3%) and 4.3 kg·hm~(-2)·mm~(-1)(40.2%) respectively compared to CK at 230 mm and 340 mm rainfall. For corn sown in spring, the grain yield under PRFRH increased by 11.3 kg·hm~(-2)·mm~(-1)(77.4%), 7.5 kg·hm~(-2)·mm~(-1)(43.1%) and 1.7(9.5%) respectively compared to control at the rainfall of 230 mm-440 mm.
     4. Effects of PRFRH practice on soil available nutrient under different rainfalls.
     1) At 230 mm, 340 mm and 440 mm rainfalls during the whole growing period of corn sown in summer, soil available nutrient contents (N, P and K) in topsoil were significantly increased due to the effect of harvesting water and nutrition in planting furrows of PRFRH, and the increment was responsible for rainfalls.
     2) At different rainfalls during the whole growth stages of corn sown in summer, the soil layer stations of soil available nutrient contents increase under PRFRH were different. When the rainfall was lower, the layer of soil available nutrient in farmland mainly focused on topsoil (0-40 cm). With the rainfall increase, the soil available nutrient contents in deep soil layer also enhanced.
     5. Effects of PRFRH on nutrient use efficiency (NUE) in farmland under different rainfalls.
     1) At the rainfall of 230 mm-340 mm, the PRFRH could increase NUE in farmland. For corn sown in summer, at 230 mm rainfall N NUE, P NUE and K NUE (NUEN, NUEP and NUEK) under PRFRH increased by 56.0%, 44.4% and 106.8%, respectively, at 340 mm rainfall, by 22.8%、18.1% and 35.5%, and at 440 mm rainfall there was no significant difference compared to conventional flat planting. For corn sown in spring, the NUEN, NUEP and NUEK under PRFRH increased by 64.0%, 52.2% and 123.9%, respectively at 230 mm rainfall, by 30.4%、21.8% and 41.2% at 340 mm, at 440 mm, the NUEN increased by 10.1% compared to CK, while NUEP and NUEK had no significant difference between two planting patterns.
引文
[1]姚建民,殷海善.降水资源有效化与旱地农业[J].资源科学, 1999,21(4):47~50.
    [2]程 序, 曾晓光, 王尔大.可持续农业导论[M],北京:中国农业出版社, 1997.
    [3]山 仑.山仑论文集[M],西安.陕西科学技术出版社, 2003.
    [4]山 仑,陈国良主编.黄土高原旱地农业的理论与实践[M],北京:科学出版社,1993.
    [5]李锋瑞编著.干旱农业生态系统研究[M],西安:陕西科学出版社,1998
    [6]Li, F.M.,Zhao,S.L.,Geballe,G.T. Water use patterns and agronomic performance for some cropping systems with and without fallow crops in a semi-arid environment of northwest China[J]. Agric. Ecosyst Environ, 2000,79,129~142.
    [7]Li, X.Y.,Gong,J.D. Effects of different ridge/furrow ratios and supplemental irrigation on crop production in ridge and furrow rainfall harvesting system with mulches. Agric[J]. water Manage,2002,54,243~254.
    [8]赵松岭.集水农业引论[M],西安:陕西科学技术出版社,1996.228~232.
    [9]池宝亮,马步洲.山西早地农业的经验与发展[J].河北农业大学学报,1999,(增)50~53.
    [10]池宝亮,王改兰,陈奇恩.降水资源化与早地节水补灌,见土壤资源与环境研究[M],北京:中国农业科学出版社,1997.
    [11]Zhang, J.Y., Sun, J.S., Duan, A.W. et al. Effects of different planting patterns on water use and yield performance of winter wheat in the Huang-Huai-Hai Plain of China. Agric[J]. water Manage, 2007,92,41~47.
    [12]韩清芳,李向拓,王俊鹏,等.微集水种植技术的农田水分调控效果模拟研究[J].农业工程学报, 2004, 20(2):78~82.
    [13]Bruins H J,Evenari M,Nessler,U.Rainwater-harvesting agriculture for food production in arid zones:the challenge of the African famine [J].Appl.Geography,1986,6:13~32
    [14]Reiz C,Maulder P,Begemannn. Water harvesting for plant production[R].World Bank Technical Paper, Washington DC,USA,1988,(8):1816~1819.
    [15]Boers Th M,De Groaf M,Feddes R A,et al.A linear regression model combined with a soil water balance model to design micro-catchments for water harvesting in arid zones [J].Agric. Water Manage.1986,11:187~206.
    [16]Sharma K D,Pareek O P,Singh H P.Effect of runoff concentration on growth and yield of Jojoba [J]. Agric.Water Manage.1982,5:73~85.
    [17]Gupta G N,Limba N K,Mutha S.Growth of prosopis cineraria on microcatchment in an arid region[J]. Annals of Arid Zone, 1999, 38(1):37~44.
    [18]Crichley W R S. Some lesson form water harvesting in sub-Saharan Africa. Report from a workshop held at Baring, Kenya, October 1986[R].World Bank, Eastern and Southern Africa Projects Department, Washington DC,1987,13~17.
    [19]Li X Y,Gong J D,Gao Q Z.Rainfall harvesting and sustainable agriculture development in the Loess Plateau of China[J].J.Desert Res.,2000c,20(2):150~153.
    [20]李 军, 王龙昌, 孙小文等.宁南半干旱偏旱区旱作农田沟垄径流集水蓄墒效果与增产效应研究[J].干旱地区农业研究,1997,15 (1):8~13.
    [21]Vashistha R N,Pandita,M L,Batra,R R.Water harvesting studies under rainfall condition in relation to growth and yield of okra [J].Hargana J.Hort.Sci.,1980,314(9):188~191.
    [22]Li X Y,Gong J D,Wei X H.In situ rainwater harvesting and gravel mulch combination for corn production in the dry semiarid region of China [J].J. Arid Environ. 2000d, 46:371~382.
    [23]李凤民, 王 静, 赵松岭. 半干旱黄土高原给水高效农业的发展[J]. 应用生态学报, 1999, 19(2):152~157.
    [24]Wang X L, Li F M,Jia Y et al.Increasing potato yields with additional water and increased soil temperature[J].Agri. Water Manage. Available online at www. Sciencedirect. Com[J/OL].,2005.
    [25]Pacey, A,Cullis A.Rainwater Harvesting: The Collection of Rainfall and Runoff in Rural Areas. London[R]:IT publication, 1986.
    [26]Evenari M,Shanan L,Tadmor N.Ancient agriculture in the Negev[J].Science,1961,133:979~ 996.
    [27]Wesemael B V.Collection and storage of runoff from hill slopes in asemi-arid environment: geomorphic and hydro logic aspects of the aljibe system in Almeria Province,Spain[J]. Journal of A rid Environments,1998,40:1~14.
    [28]Scott,C A,Silva-Ochoa,P.Collective action for water harvesting irrigation in the Lerma-Chapala Basin, Mexico [J].Water Policy,2001,3:555~572.
    [29]Appan A.Opening address at the 9th international rainwater catchment system s conference at Petrofina[A].P roceeding of the 9th international rainwater Catchment system s conference[C]. Brazil,1999.
    [30]张祖新,龚时宏,王晓玲等.雨水集蓄工程技术[M],中国水利水电出版社,1999.
    [31]Geddes,H.J.Water harvesting, Proc[J]. ASCE, J.Irrig.Drain. Div., 1963, 104:43~58.
    [32]Myers,L.E.Harvesting precipitation[J].Interntl.Assoc.For Sci.Hydrol.,1964,Pub 65,:343~351.
    [33]Myers, L.E. Recent advance in water harvesting[J]. Journal of Soil and Water Conservation, 1967, May~June:95~97.
    [34]Reij,C.,Mulder,P.Begeman,L.Water harvesting for plant production[R]. World Bank Technical paper 91.Washington: World Blank.1988,123pp
    [35]马天恩,高世铭.集水高效农业[M].兰州:甘肃科学技术出版社,1997.
    [36]孔四新.我国的集水农业及其发展前景[J].山西水土保持科技,2000.9(3):1~3.
    [37]Bamatraf M.A.Water harvesting and conservation system inYemen.In:Water harvesting for imp roved agricultural production[R].FAO Water reports3,FAO,Rome,1994,pp169~18
    [38]李凤民.半干旱黄土高原地区以集水技术为基础的农牧混合型生态农业[J].生态农业研究, 2000,8(4):1~5.
    [39]高世铭.旱地作物水分亏缺补偿效应研究[D].博士学位论文.兰州大学 . 1995
    [40]田 媛.半干早地区垄沟集雨的水文特征及其对马铃薯生产的影响[D].博士学位论文.兰州大学. 2002.
    [41]李小雁.半干旱过渡带雨水集流试验与微型生态集雨模式[D].博士学位论文. 中国科学院寒区旱区环境与工程研究所.2000.
    [42]Boers,T.M.Ben-Asher,J.Areview of rainwater harvesting[J].Agric.Water manage.,1982,5:145~158
    [43]高前兆,李小雁,俎瑞平.干旱区供水集水保水技术[M].北京:化学工业出版社. 2004.
    [44] Frasier,G.W.Water harvesting:a source of livestock water[J].J.Range Manange.1975,28:429~434.
    [45]Frasier,G.W.,Cooley,K.R.Griggs,J.R.Performance evaluation of water harvesting canchments[J]. J. Range Mange.1979,36:453~456.
    [46]Cluff,C.B.Engineering aspects of water harvesting at the university of Arizona[A]. In: Frasier,G.W.(ed),Proceedings of the water harvesting symposium[C], march 26~28,1974:27~39, Phoenix, Arizona.
    [47]Dutt,G.R.McCreary,T.W.Multipurpose salt treated water harvesting system[A].In: Frasier,G.W.(ed), Proceedings of the water harvesting symposium[C], march 26~28,1974:310~314,Phoenix, Arizona.
    [48]丁瑞霞.宁南旱区农田微集水种植技术与应用研究[D].博士学位论文. 西北农林科技大学.2006.
    [49]高前兆,李小雁,苏德荣.水资源危机[M].北京:化学工业出版社,2002
    [50]Hardan,A. Discussion:Session1.In Proceedings of the Water Harvesting Symposium, Phoenix, March 1975,26~28. U.S Department of Agriculture[J], Agricultural Research Service, 1974,ARS-W-22:6
    [51]yers,L.E.,1975.Water harvesting-2000BC to 1974 AD [A].In Proceedings of the Water Harvesting Symposium,Phoenix,Arizona,March 26 ~ 28,1974.U.S.Department of Agriculture, Agricultural Research Service[C], A RS-W-22:1~7.
    [52]王百田.黄土高原径流林业[M].北京:中国林业出版社. 1996.
    [53]李小雁,龚家栋.半干旱区雨水集流研究现状及其现状[J],中国沙漠.2002,3(1):88~92.
    [54]Ben-Asher,J.Warrick,A.W.Effect of variations in soil properties and precipitation on micro-catchment water balance[J]. Agric.Water Manage,1987,12(3):177~194.
    [55]Ben-Asher, J., Oron,G.Button,B.J. Estimation of runoff volume fou agriculture in arid lands [R]. Jacob Blaustein Institute for Desert Research. Ben Gurion University of the Negev, 1985.
    [56]Evenari M,Shanan L,Tadmor,N.“Runoff Farming” in the Desert I.Experimental Layout[J]. Agronomy Journal,1968,60:29~32.
    [57]Yair A. Hill slope hydrology water harvesting and areal distribution of some ancient agriculture system in the northern Negev desert[J]. Journal of Arid Environments,1983,6:283~301.
    [58]Mysers,L.E.,Frasier,G.W.Griggs,J.R.Sprayed asphalt pavements for water harvesting.Proc[J]. ASCE, J.Irrig. And Drain. Div.1967,93.No.IR3:79~97.
    [59]Frasier,G.W.Water quality from water-harvesting systems[J]. J.Environ.Qual,1983,12:225~231.
    [60]Kemper,W.D.Noonan,I.Runoff as affected by salt treatment and soil texture.Soil Sci. Soc[J].Amer. Proc.,1970,34:120~130.
    [61]Kemper,W.D.,Nicks,A.D.Corey,A.T.Accumulation of water in soils under gravel and sand mulches[J]. Soil Sci.Soc.Am.J.,1994,58:56~63.
    [62]Mcintyre,D.S.Permability measurements of soil crusts formed by raindrop impact[J]. Soil Sci., 1958,85~91
    [63]Hollick,M.Water harvesting in arid lands[J]. Scientific Reviews on Arid Zone Research, 1982,1:173~247.
    [64]Frith,J.L.Nulsen,R.A.Clay cover for roaded catchments[J].J.Dept.of Aric,West.Aust. 1971,12(8):105~110.
    [65]Frith,J.L.,Nulsen,R.A.,Nicol,H.I.A computer model for optimizing design of improved catchment[R].Proc.Water Harvesting Symp., Pheonix, Arizona.1975,pp.151~157.
    [66]Frith,J.L.Design and construction of roaded catchment .Proc.Water Harvesting Symp.[R], Pheonix, Arizona.1975,PP.122~127.
    [67]Laing, I.A.F.Reducing evaporation from farm dams [J].J.Dept, of Aric.West.Aust.,1970,11(1):8~15.
    [68]Laing, I.A.F.Sesling leaking excavated tands on farms in western Australian [J].Proc.Water Harvesting Symp.,Pheonix, Arizona.1975,PP.159~174.
    [69]黄占斌.黄土高原农业雨水利用模式[J].见:全国雨水利用学术讨论会及国际会论文集[C].2001:212~215.
    [70]樊廷录.黄土高原旱作地区径流农业的研究[D],博士论文, 西北农林科技大学.2002.
    [71]冯应新,钱加绪.甘肃省集水高效农业研究[J].西北农业学报,1999,8(3):93~97
    [72]Hillel, D.Runoff inducement in arid lands[R], Final Tech. Report to the USDA,1967.
    [73]Prinz D,Wolfer S,Siegert K.Water harvesting for crop production [M].Rome :FAO T raining Corrse,2000.
    [74]Critchley W,Siegert K.Water Harvesting [M].Rome:FAO,1991.
    [75]Sanchez-Cohen I,Lopes V L ,Slack D C.Water balance model for small-scalewater harvesting systems [J].Journal of Irrigation and Drainage Engineering, 1997,123 (2):123~128.
    [76]Rockstrom J.On-farm green water estimates as a too for increased food production in water scarce regions [J]. Phys.Chem. Earth (B), 1999, 24 (4):375~383.
    [77]Panigrahi B, Panda S N, Mull R.Simulation of water harvesting potential in rainfed ricelands using water balance model [J]. Agricultural Systems, 2001, 69:165~182.
    [78]Young M D B,Gowing J W,Wyseure G C L.Parched-thirst: development and validation of a processbased model of rainwater harvesting [J]. Agricultural Water Management, 2002,55: 121~140.
    [79]Abdinam A.Estimation of runoff volume for rainwater utilization planning, using GIS & Remote sensing technics [A]. Proceeding of International Symposium& 2nd Chinese National Conference on Rainwater Utilization [C].Xuzhou:1998.374~383.
    [80]Melesse A M , Shih S F. Spatially distributed storm runoff depth estimation using Landsat images and GIS [J].Computers and Electronics in Agriculture, 2002, 37:173~183.
    [81]Boers, T.M., Zondervan, K. & Ben-Asher,J. Micro-catchments water harvesting (MCWH) for arid zone development[J]. Agric.Water Manage.,1986,12:21~39.
    [82]Tabor, J.A.Improving crop yield in the Sahel by means of water-harvesting[J]. Journal of Arid Environments, 1995,30: 83~106.
    [83]Myers L E. Sprayed asphalt pavements for water harvesting[J].Journal of the Irrigation and Drainage Division,1967,3:79~97.
    [84]Fink D H. Water repellency and infiltration resistance of organic2filmcoated soils [J].Soil Science Society of America Proc.,1970,34:189~194.
    [85]Hillel D, Berliner, P.Wager proofing surface-zone soil agregates for water conservation [J].Soil Science, 1974,118 (2):131~135.
    [86]Fink D H. Division S26-Soil and water management and conservation-Laboratory testing of water2repellent soil treatments for water harvesting[J]. Soil Science Society of America Journal,1976,40:562~566.
    [87]Fink D H, Frasier G W. Evaluating weathering characteristics of water-harvesting catchments from rainfall-runoff analysis[J].Soil Science Society of America Journal, 1977,41:618~622.
    [88]Mehdizadeh P, Kowsar A ,Vaziri E.Water harvesting for afforestation I. Efficiency and life span of A sphalt cover[J].Soil Science Society of America Journal, 1978,42:644~649.
    [89]Fink D H,Frasier G W,Cooley K R. Water harvesting by waxtreated soil surfaces: progress, problems, and potential [J]. Agricultural Water Management, 1980, 3:125~134.
    [90]Oweis T,Hachum A,Kijne J.Water harvesting and supplementary irrigation for imp roved water use efficiencyin dry areas [M].Colombo, Sri Lanka: International Water Management Institute, 1999.
    [91]肖国举,王静.黄土高原集水农业研究进展[J].生态学报.2003,23(5):1003~1011.
    [92]康绍忠.新的农业技术革命与 21 世纪我国节水农业的发展[J].干旱地区农业研究,1998,16(1):11~17.
    [93]赵松岭,李凤民,王静.黄土高原半干旱地区水土保持型农业的局限性[J].西北植物学报,1995,15(8):13~18.
    [94]周 侃,秦富华,权建民.雨水集流补偿是开发旱作农业生产潜力的有效途径[J].甘肃农业科技,1996,1:2~4.
    [95]黄占斌,山仑.论我国旱地农业建设的技术路线与途径[J].干旱地区农业研究,2000,18(2):1~6.
    [96]李凤民,徐进章.黄土高原半干旱区集水型生态农业分析[J].中国生态农业学报,2002,10(1):101~103.
    [97]刘广才.水保型农业与集雨农业的有机结合是发展旱作农业的根本途径[J].甘肃农业科技,2001,11:23~24.
    [98]肖国举,何耀祖,太红杰.宁南山区农业可持续发展的战略与对策[J].见:中国农学会编著.中国农业可持续发展研究[M].北京:中国科学技术出版社,1997.
    [99]Pacey, A., Cullis,A.Rainwater harvesting: the collection of rainfall and runoff in rural areas[R]. IT publication, London, UK. 1986.
    [100]Fink ,D.H.,Frasier,G.W.and Myers.L.E.Water harvesting treatment evaluation at granite reef[J]. Water Resources Bull.1979, 15:861~873.
    [101]Fink, D.H.,Cooley,K.R.Frasier,G.W.Wax-treated soils for harvesting water[J], J. Range Manage, 1973,26:396~398.
    [102]Romero-Diaz, A.,Cammeraat, L.H.Vacca, A.et al.Soil erosion at three experimental sites in the Mediterranean[J]. Earth Surf. Process Landforms,1999, 24:1243~1256
    [103]Rogers,R.D.Schumm,S.A.The effect of sparce vegetation cover on erosion sediment yield[J]. Journal of Hydrology,1991,123:19~24
    [104]Thames, J.L.Fischer, J.L.Management of water resouces in arid lands[J]. In:Goodall,D.W. & Perry, R.A. (eds.), Arid lands ecosystems,1981:519~547.
    [105]Abdinan A.Estimation of runoff volume for rainwater utilization planning, using GIS& Remote sensing technics[A].Proceeding of International Symposium& second Chinese national conference on rainwater utilization[C].Xuzhou:1998.374~383.
    [106]张建新,郑大玮.国内外集雨农业研究进展与展望[J].干旱地区农业研究,2005,23(2):223~229
    [107]蒋定生,黄土高原水土流失与治理模式[M].中国水利水电出版社,1997, PP221.
    [108]石生新.高强度人工降雨入渗规律[J].水土保持通报,1992,12(2):49~54.
    [109]梁天刚,沈正虎,戴若兰,徐雨清.集水区径流资源空间变化的模拟与分析[J].兰州大学学报(自然科学版).1999,35(4):83~89.
    [110]白清俊.流域坡面综合产流数学模型的研究[J].土壤侵蚀与水土保持学报,1999,5(3):54~58.
    [111]徐雨清.遥感和地理信息系统在半干旱地区降雨—径流关系模拟中的应用[J].遥感技术与应用,2000,15(1):28~31.
    [112]徐秋宁.小型集水区降雨径流计算模型研究[J].水土保持研究,2002,9(1):139~142.
    [113]沈冰,王文焰.降雨条件下黄土坡地表层土壤水分运动实验与数值模拟的研究[J].水利学报, 1992, (6):29~35.
    [114]刘贤赵,康绍忠,降雨入渗和产流问题研究的若干进展及评述[J].水土保持通报,1999, 19(2):57~62.
    [115]王百田,王斌端.黄土坡面地表处理与产流过程研究[J].水土保持学报,1994,8(2):19~24
    [117]Li X Y,Gong J D,Gao Q Z,Li F R.Incorporation of ridge and furrow method of rainfall harvesting with mulching for crop production under semiarid conditions[J]. Agricultural Water Management, 2001,50(3):173~183.
    [118]Li X Y,Gong J D.Effects of different ridge/furrow rations and supplemental irrigation on crop production in ridge and furrow rainfall harvesting system with mulches [J].Agricultural Water Management, 2002,54(3):243~254.
    [119]He X B. Down-scale analysis for water scarcity in response to soil-water conservation on Loess Plateau of china agriculture[J].Ecosystems and Environment ,2003,94:355~361.
    [120]Yuan T, Li F M, Liu P H.Economic analysis of rainwater harvesting and irrigation methods, with an example from China[J]. Agricultural Water Management,2003,60:217~226.
    [121]Zhang Y Q.Effect of soil water deficit on evaporatranspiration, crop yield, and water use efficiency in the north China Plain[J]. Agricultural Water management, 2004,64:107~122.
    [122]美国国家科学院编,唐登银,涂芳玉,叶和才译.干旱地区集水保水技术[M].北京:农业出版社. 1979.
    [123]肖国举,王子平,吴金铭.垄沟经流集水蓄墒与增产效应的探讨[J].干旱地区农业研究,1999, 17 (Supp.):62~68.
    [124]崔灵周,李占斌,李 勉.黄土高原雨水集蓄利用技术发展[J].中国水利, 2001, 4:70~71.
    [125]杨 峡, 刘亚非, 张春贤.旱地水窖的设计与施工技术[J].干旱地区农业研究,1997,15(2) : 89~93.
    [126]段喜明,王治国,胡振华.旱井集雨系统中沉沙池结构优化研究[J].水土保持研究,2000,7(4): 29~31.
    [127]康绍忠,马孝义,韩克敏.21 世纪农业水土工程.干旱地区农业研究[J],1999,17 (1):1~6.
    [128]董 良,苏宇静,肖国举,等.PYB1.6 型多功能移动节水补灌机田间试验[J].宁夏大学学报, 2002, 23 (1):94~96.
    [129]王 静,丁其涛,伍光和.黄土高原半干旱区集水农业的自然基础及最适宜集水类型的划分[J]. 中国沙漠, 1999, 19(4):384~398.
    [130]肖国举,任万海,李树生,等.干旱地区集水农业系统工程设计的原则及区域性发展模式[J].干旱地区农业研究,1999, 17 (Supp.):22~27.
    [131]肖国举,马建林,田凤华等.集水系统设计及不同类型集水场集水效果研究[J].干旱地区农业研究,1999,17(Supp.):38~41.
    [132]王 静, 时正新. 半干旱地区集水农业工程.见:甘师俊,王如松.中小城镇可持续发展先进适用技术指南[M].北京:中国科学技术出版社,1998.53~62.
    [133]李凤民, 王 静,赵松岭.论半干旱区黄土高原集水高效农业的发展[J].生态学报,1999,19 (2):152~157.
    [134]肖国举,任万海,张淑秀.论干旱地区集水农业技术体系的结构框架及开发利用[J].干旱地区农业研究, 1999,17(Suup.):12~17.
    [135]肖国举,耿耀东,李武玉.论现代旱作农业研究进展及水保型农业的有限性[J].干旱地区农业研究,1999,17(Supp):1~5
    [136]孙洪祥.干旱区造林[M].北京:中国科学技术出版社,1991.125~126
    [137]朱象山.浅谈陕西黄土高原区生态农业建设[J].西北农业学报,1999,8(Supp.):12~14.
    [138]王延平,李平,高鹏程.陡坡地杏树栽培与技术效益研究[J].西北农业学报,1999,8(Supp.):77~81.
    [139]卢增兰,钮 溥.加强雨养农业建设,促进旱区农业发展[J].干旱地区农业研究,1996,14(4):79~82.
    [140]魏 虹,林魁,李凤民.有限灌溉对半干旱区春水麦根系发育的影响[J].植物生理学报,2000,24(1):106~110.
    [141]王克勤,孟菁玲.国内外农林业集水技术的研究进展[J].干旱地区农业研究,1996,14(4):109~114.
    [142]杨封科.半干旱区集水农业高效用水模式研究[D]. 博士论文,甘肃农业大学.2002.6.
    [143]杨封科, 高世铭.甘肃半干旱区集水农业用水模式及深化研究的思考[J].干旱地区农业研究.2003,21(4):122~127
    [144]刘正辉.半干旱区农田微集水种植带型优化设计研究[D]. 硕士毕业论文.西北农林科技大学,2001.
    [145]廖允成,付增光,韩思明编著. 黄土高原旱作农田的降水资源高效利用[M]. 西安:陕西科学技术出版社 2003
    [146]韩思明,史俊通,杨春峰.渭北旱塬夏闲地聚水保墒耕作技术的研究[J],干旱地区农业研究,1993(增刊)46~51
    [147]半干旱偏旱区糜子沟垄径流栽培研究初报[J].见:抑蒸抗旱技术(李育中,程延年主编)[M].北京:科技出版社,1996:96~102
    [148]陶士珩.径流农业主要类型农田水分机理及生产力的研究[D].杨凌:西北农林科技大学,1998
    [149]赵聚宝,徐祝龄等著.中国北方旱地农田水分开发利用研究[M].北京:中国农业出版社,1986
    [150]赵聚宝,钟兆站,薛军红等.旱地春雨米田微集水保墒技术研究[J].农业工程学报,1996,12(2),28~33.
    [151]廖允成,温晓霞,韩思明,贾志宽黄土台原旱地小麦覆盖保水技术效果研究[J].中国农业科学,2003,36(5):548~552.
    [152]Jia,Y.,Li,F.M.,Wang, X.L.et al. Soil water and alfalfa yields as affected by alternating ridges and furrows in rainfall harvest in a semiarid environment[J]. Field Crop Res. 2006,97,167~175.
    [153]Wiyo, K.A.,Kasomekera, Z.M., Feyen, J. Variability in ridge and furrow size and shape and maize population density on small subsistence farms in Malawi[J]. Soil & Tillage Research. 1999,51,113~119.
    [154]李育中,程延年.抑蒸集水抗旱技术.北京:气象出版社,1999.
    [155]Li F M, An-Hong Guo, and Hong Wei. Effects of clear plastic film mulch on yield of spring wheat[J]. Field Crops Res.1999,63:79~86.
    [156]Mashingsedze, A.B.,Chiviuge, O.A. and Zishiri, C.The effects of clear and black much on soil temperature, weed seed viability and seeding emergence, growth and yield of tomatoes[J]. J. of Applied Sci. in southern Africa.1996,2:6~14.
    [157]Ravi,V.Lourduraj,A.C.Comparative performance of plastic mulching on soil moisture content, soil temperature and yield of rainfed cotton [J].Madras Agric.j.1996,83:709~711
    [158]杨封科.旱作春小麦起垄覆膜微集水种植技术研究[J],灌溉排水学报, 2004, 23(4), 48~49
    [159]卫正新,王小平,史观义等.梯田微集流聚肥改土耕作法高产高效技术研究[J].中国水土保持,2000,9.
    [160]胡希远,陶士珩,王立祥等.半干旱偏旱区糜子沟垄径流栽培研究初报[J].干旱地区农业研究,1997,15(1):44~49.
    [161]王俊鹏,蒋骏,韩清芳,贾志宽,张久成.宁南半干旱地区春小麦农田微集水种植技术研[J]. 干旱地区农业研究,1999,17(2):8~13.
    [162]王俊鹏,马 林,蒋 骏,贾志宽.宁南半干旱地区谷子微集水种植技术研究[J].水土保持通报,2000,20(3):41~43.
    [163]王俊鹏,韩清芳,王龙昌,贾志宽.宁南半干旱区农田微集水种植技术效果研究[J].西北农业大学学报,2000,28(4):16~20.
    [164]王俊鹏,马 林,蒋 骏,贾志宽.宁南半干旱区农田微集水种植技术研究.西北农业大学学报[J],1999,27(8):22~27.
    [165]朱国庆,史学贵,李巧珍.定西半干旱地区春小麦农田微集水种植技术研究[J].中国农业气象2001,22(3):6~9.
    [166]吴普特.人工汇集雨水利用技术研究[M].郑州:黄河水利出版社, 2002.
    [167]丁瑞霞,贾志宽,韩清芳等.2006.宁南旱区微集水种植条件下谷子边际效应和生理特性的响应[J].中国农业科学.39(3):494~501.
    [1] Bierhuizen, J.F. and R.O.Slatyer, Agric.[J], Meteorol, 1995,2,259~270.
    [2] Peng S, Garcia FV, Laza RC. Adjustments for specific leaf weight improve chlorophyll meter’s estimate of rice leaf nitrogen concentration[J]. Agron. J., 1993, 85: 987~990.
    [3] Li X Y, Gong, J.D., Wei, X.H. In situ rainwater harvesting and gravel mulch combination for corn production in the dry semi-arid region of China[J].J.Arid Environ, 2000, 46, 371~382.
    [4]陈志雄.农田水量平衡[J].土壤学进展,1985,(1):1~5.
    [5]Wang, X.L., Li, F.M., Yu, J., Shi, W.Q. Increasing potato yields with additional water and increased soil temperature[J]. Agricultural Water Management. 2005,78, 181~194.
    [6] Gourley J P, Allan D L, Russele M P. Plant and nutrient efficiency: A comparison of definitions and suggested improvement[J]. Plant and soil. 1994,158, 29~37.
    [7] Siddiqi M Y, Glass A D. Utrilization index: A modified approach to the estimation and comparison of nutrient utilization efficiency in plants [J]. J. Plant Nutr. 1981,4:289~302.
    [8] 李韵珠, 王凤仙, 黄元仿. 土壤水分和养分利用效率几种定义的比较[J]. 土壤通报. 2000,31(4):150~155.
    [9]Baligar, V.C., Duncan, R.R., Faberia, N.K., Soil-plant interaction on nutrient use efficiency [A]. 1990. ln: Baligar V C and Duncan R R (editors),《Crops as Enhancers of Nutrient Use》[C], Academic Press, lnc. Harcourt Brace Jovanovich, Publishers, 351~373.
    [10]丁瑞霞.宁南旱区农田微集水种植技术与应用研究[D].博士学位论文. 西北农林科技大学.2006.
    [1]信乃诠,王立祥主编.中国北方旱区农业[M].南京:江苏科学技术出版社,1998.
    [2]胡希远.宁南旱平地沟垄径流种植技术研究[D].硕士学位论文,西北农业大学.1997.
    [3]李锋瑞编著.干旱农业生态系统研究[M].西安:陕西科学技术出版社,1998
    [4] Li X Y,Gong J D,Gao Q Z.Rainfall harvesting and sustainable agriculture development in the Loess Plateau of China[J].J.Desert Res.,2000,20(2):150~153.
    [5]Li X Y,Gong J D,Wei X H.In situ rainwater harvesting and gravel mulch combination for corn production in the dry semi-arid region of China [J].J. Arid Environ. 2000, 46:371~382.
    [6]李小雁.半干旱过渡带雨水集流试验与微型生态集雨模式[D].博士学位论文, 中国科学院寒区旱区环境与工程研究所.2000.
    [7]丁瑞霞.宁南旱区农田微集水种植技术与应用研究[D].博士学位论文. 西北农林科技大学.2006.
    [8]刘正辉.半干旱区农田微集水种植带型优化设计研究[D]. 杨凌:西北农林科技大学,2001.
    [9]王俊鹏,蒋骏,韩清芳,贾志宽,张久成.宁南半干旱地区春小麦农田微集水种植技术研[J]. 干旱地区农业研究,1999,17(2):8~13.
    [10]王俊鹏,马 林,蒋 骏,贾志宽.宁南半干旱地区谷子微集水种植技术研究[J].水土保持通报,2000,20(3):41~43.
    [11]王俊鹏,韩清芳,王龙昌,贾志宽.宁南半干旱区农田微集水种植技术效果研究[J].西北农业大学学报,2000,28(4):16~20.
    [12]王俊鹏,马 林,蒋 骏,贾志宽.宁南半干旱区农田微集水种植技术研究[J].西北农业大学学报,1999,27(8):22~27.
    [13] Li X Y, Gong, J.D., Wei, X.H. In situ rainwater harvesting and gravel mulch combination for corn production in the dry semiarid region of China[J].J.Arid Environ, 2000, 46, 371~382.
    [14] 王琦,张恩和,李凤民. 半干旱地区膜垄和土垄的集雨效率和不同集雨时期土壤水分比较[J].生态学报,2004,24(8):1821~1823.
    [15] 何启明.旱作沟垄地膜覆盖农田气候工程集水率的计算及效应评价[J].干旱地区农业研究,1992,10(4):62~68.
    [16]Wiyo, K.A., Kasomekera, Z.M., Feyen, J.1999. Variability in ridge and furrow size and shape and maize population density on small subsistence farms in Malawi[J]. Soil & Tillage Research.51, 113~119.
    [17] Li, X.Y., Gong, J.D., Wei, X.H. In situ rainwater harvesting and gravel mulch combination for corn production in the dry semi-arid region of China[J]. J. Arid Environ, 2000, 46, 371~382.
    [18]李军, 王龙昌, 孙小文. 宁南半干旱偏旱区旱作农田沟垄径流集水蓄墒效果与增产效应研究[J]. 干旱地区农业研究, 1997,15(1): 8~13.
    [19]白秀梅,卫正新,郭汉清,白迎平. 旱地起垄覆膜微集水种植技术的生态效应研究[J]. 耕作与栽培 2006,1:8~9.
    [20]李小雁,张瑞玲. 旱作农田沟垄微型集雨结合覆盖玉米种植试验研究[J]. 水土保持学报.2005.19(2):45~52.
    [21]段喜明,吴普特,白秀梅,冯 浩.旱地玉米垄膜沟种微集水种植技术研究[J].水土保持学报,2006,20(1):143~146.
    [22] Jia, Y., Li, F.M., Wang, X.L. et al. Soil water and alfalfa yields as affected by alternating ridges and furrows in rainfall harvest in a semiarid environment[J]. Field Crop Res. 2006,97, 167~175.
    [1]付士磊,周永斌,何兴元等. 干旱胁迫对杨树光合生理指标的影响[J].应用生态学报, 2006, 17(11):2016~2019.
    [2]綦伟,谭浩,翟衡.干旱胁迫对不同葡萄砧木光合特性和荧光参数的影响[J].应用生态学报, 2006,17(5):835~838.
    [3]董合忠,李维江,唐薇,等. 干旱和淹水对棉苗某些生理特性的影响[J].西北植物学报,2003,23(10): 1695~1699.
    [4]许大全.光合作用效率[M].上海:上海科学技术出版社, 2002.
    [5] Krause G H, Weis E.Chlorophyll fluorescence and photosynt hesis[J].Annu.Rev.Plant Physol.Plant Mol. ,1991, 42:313~349.
    [6]马新明,熊淑萍,李 琳,等. 土壤水分对不同专用小麦后期光合特性及产量的影响[J].应用生态学报,2005,16 (1):83~87.
    [7] Barry A L.Chlorophyll a fluorescence: a signature of photosynthesis[J].Torrey Botanical Society, 2005, 132 (4):650.
    [8] Kevin O. Imaging of chlorophyll a fluorescence: theoretical and practical aspect s of an emerging technique for the monitoring of photosynthetic performance[J].Experimental Botany,2004, 55 (4): 1195~1205.
    [9] Earl H J, Tollenaar M. Using chlorophyll fluorometry to compare photosynthetic performance of commercialmaize (Zea mays L.) hybrids in the field[J]. Field Crop Research, 1999, 61: 201~210.
    [10] Vashistha R N, Pandita, M L, Batra, R R. Water harvesting studies under rainfall condition in relation to growth and yield of okra [J]. Hargana J.Hort.Sci. , 1980, 9(314):188~191.
    [11] Li X Y, Gong J D, Wei X H.In-situ rainwater harvesting and gravel mulch combination for corn production in the dry semi-arid region of China[J]. Journal of Arid Environments, 2000, 46: 371~382.
    [12] Li X Y, Gong J D, Gao Q Z, et al. Incorporation of ridge and furrow method of rainfall harvesting with mulching for crop production under semiarid conditions[J]. Agricultural Water Management,2001, 50(3):173~183.
    [13] Li X Y, Gong J D. Effects of different ridge/furrow rations and supplemental irrigation on crop production in ridge and furrow rainfall harvesting system with mulches[J]. Agricultural Water Management, 2002, 54(3):243~254.
    [14] Pacey, A, Cullis, A. Rainwater harvesting: the collection of rainfall and runoff in rural areas[R]. IT publication, London, UK., 1986
    [15] Bierhuizen, J.F. and R.O.Slatyer [J], Agric, Meteorol, 1995, 2,259~270.
    [16] Peng S, Garcia FV, Laza RC. Adjustments for specific leaf weight improve chlorophyll meter’s estimate of rice leaf nitrogen concentration[J]. Agron. J, 1993, 85: 987~990.
    [17] Gong Q Zh,Lü J Y,Xu B Ch,et al.Effect of water stress on chlorophyll fluorescence parameters and WUE of wheat under different planting models[J].Jour.of Northwest Sci-Tech Univ. of Agri. and For.(Nat. Sci. Ed), 2006.,34(5):83~86.
    [18]郑国生,邹 琦. 不同天气条件下田间大豆光合作用日变化的研究[J].中国农业科学,1993, 26 (1):45~50.
    [19]翁晓燕,将德安,陆 庆,等. 影响水稻叶片光合日变化因素的分析[J].中国水稻科学1998, 12 (2):105~108.
    [20]林金科,赖志明. 影响茶树叶片净光合速率的生态生理因子的初步分析[J].作物学报,2000, 26(1):45~50.
    [21]陈 军,戴俊英. 干旱对不同耐性玉米品种光合作用及产量的影响[J].作物学报,1996, 22(6):757~762.
    [22]武玉叶,李德全,赵世杰, 等. 土壤水分胁迫下小麦叶片渗透调节与光合作用[J].作物学报, 1999,25(6):752~758.
    [23] Hirasawa T, Hsiao T C. Some characteristics of reduced leaf photosynthesis at midday in maize growing in the field [J].Field Crop Research, 1999 ,(62):53~62.
    [24]殷毓芬,张存良,姚凤霞. 冬小麦不同品种叶片光合速率与气孔导度等性状之间关系的研究[J].作物学报,1995,21 (5):561~567.
    [25] Simmons S R.Jones R J.Contributions of presilking assimilate to grain yield on Maize1[J]. Crop Science, 1985, 25:1004~1006.
    [26]丁瑞霞,贾志宽,韩清芳, 等.宁南旱区微集水种植条件下谷子边际效应和生理特性的响应[J].中国农业科学,2006,39(3):494~501.
    [27] Genty B E, Briantais M J and Baker N R. The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence[J]. Biochimical Biophysical Acta, 1989, 990:87~92.
    [28] Krause G H, Weis E. Chlorophyll fluorescence and photosynthesis[J]. Ann Rew Plant Physiol Plant Mol Biol, 1991, 42:313~349.
    [29] Van Kooten O, Snel J F H.The use of chlorophyll nomenclature in plant stress physiology[J]. Photosynthesis Research, 1990, 25:147~150.
    [30] Herppich W B, Peckmann K. Responses of gas exchange, photosynthesis, nocturnal acid accumulation and water relations of aptenia cordifolia to shortterm drought and rewatering[J]. Journal of Plant Physiology,1997, 150:467~474.
    [31] Maxwell K, Johnson G N. Chlorophyll fluorescence -A practical guide[J]. Journal of Experiment Botany, 2000, 51:659~668.
    [32]张旺锋,勾 玲,王振林, 等. 氮肥对新疆高产棉花叶片叶绿素荧光动力学参数的影响[J].中国农业科学, 2003,36(8): 893~898.
    [33] Bradbury M, Baker N R. A quantitative determination of photochemical and non-photochemical quenching during the slow phase of chlorophyll fluorescence induction curve of bean leaves [J]. Biochen Biophys Acta. 1984, 765:695~698.
    [1]Li, F.M., Wang, J., Zhao,S.L. The rainwater harvesting technology approach for dryland agriculture in semi-arid loess plateau of china[J].Acta ecological sinica. 1999,19(2),152~157.
    [2]Li, X.Y., Gong, J.D., Li, F.R..Incorporation of ridge and furrow method of rainfall harvesting with mulching for crop production under semiarid conditions[J]. Agric. Water Manage. 2001,50(3), 173~183.
    [3]段喜明, 吴普特, 白秀梅等. 旱地玉米垄膜沟种微集水种植技术研究[J]. 水土保持学报, 2006, 20(1): 143~146.
    [4]胡希远, 陶士衍, 王立祥. 半干旱偏旱区糜子沟垄径流栽培研究初报[J].干旱地区农业研究, 1997,15(1): 45~47.
    [5]Chaves M M, Maroco J P and Pereira J S. Understanding plant responses to drought-from genes to the whole plant [J]. Functional Plant Biology , 2003, 30: 239~264.
    [6] Liang B M, Sharp R E, and Baskin T I. Regulation of growth anisotropy in well-watered and water-stressed maize roots.Ⅰ. Spatial distribution of longitudinal, radial, and tangential expansion rates [J]. Plant Physiol, 1997, 115: 101~111.
    [7]Davies W J , Wilkinson S and Loveys B. Stomatal control by chemical signalling and the exploitation of this mechanism to increase water use efficiency in agriculture[J]. New Phytologist, 2002, 153: 449~460.
    [8] Bruce W B, Edmeades G O, Barker T C. Molecular and physiological app roaches to maize improvement for draught to lerance [J]. J Exp Bot, 2002, 53 (366) : 13~25.
    [9] Lynch J. Root architecture and plant productivity [J]. Plant Physiology , 1995, 109: 7~13.
    [10]Wilkinson S, Davies W J. ABA-based chemical signaling: the coordination of responses to stress in plants. Plant[J], Cell and Environment, 2002, 25: 195~210.
    [11]Clarkson D T, Carvajal M, Henzler T et al. Root Hydraulic conductance: diurnal aquaporin expression and the effects of nutrient stress [J]. J Exp Bot, 2000, 51:61~70.
    [12] Forde B and Lorenzo H. The nutritional control of root development[J]. Plant and Soil, 2001, 232: 51~68.
    [13]郭相平,康绍忠,索丽生.苗期调亏处理对玉米根系生长影响的试验研究[J].灌溉排水,2001,20(1):25~27.
    [14]李永平,贾志宽, 刘世新等.旱作农田微集水种植产流蓄墒扩渗特征研究[J].干旱地区农业研究,2006,24(2):86~90.
    [15]韩清芳,李向拓,王俊鹏等. 微集水种植技术的农田水分调控效果模拟研究[J]. 农业工程学报,2004, 20(2): 78~82.
    [16]李小雁, 张瑞玲. 旱作农田沟垄微型集雨结合覆盖玉米种植试验研究[J].水土保持学报,2005,19(2):45~52.
    [17]Reij, C., Mulder, P., Begeman, L., 1988.Water harvesting for plant production[R]. World Bank Technical paper91.Washington:World Bank. 123pp.
    [18]Li, X.Y., Gong, J.D., Li, F.R. Incorporation of ridge and furrow method of rainfall harvesting with mulching for crop production under semiarid conditions[J]. Agric. Water Manage. 2001 , 50(3), 173~183.
    [19]Davies, W.J., Zhang, J. Increased synthesis of ABA impartially dehydrated root tips and ABA transport from root to leaves[J].J.Exp.Bot. 1987,38, 2015~2023.
    [20] Davies, W.J., Zhang, J. Root signals and the regulation of growth and development of plants in drying soil.Annu.Rev[J].Plant Physiol.Plant Mol.Biol. 1991,42, 55~76.
    [21]Davies, W.J., Tardieu, F., Trejo, C.I. How do chemical signals work in plants that grown in drying soil[J]. Plant Physiol. 1994,104, 309~314.
    [22]Boers, T.M., Zondervan, K., Ben-Asher, J. Micro-catchments water harvesting (MCWH) for arid zone development[J]. Agric. Water Manage. 1986,12, 21~39.
    [23]Boers, T..M., De-Groaf, M., Feddes, R.A., Ben-Asher, J. A. Linear regression model combined with a soil water balance model to design micro-catchments for water harvesting in arid zones[J]. Agric. Water Manage. 1986,11, 187~206.
    [24]Boers, T. M., Ben-Asher, J. A. review of rainwater harvesting[J]. Agric. water Manage.1982,5, 145~158.
    [25]Ben-Asher, J. Warrick, A.W. Effect of variations in soil properties and precipitation on microcatchment water balance[J]. Agric. water Manage. 1987,12(3), 177~194.
    [26]Ben-Asher, J., Oron, G., Button, B.J. Estimation of runoff volume for agriculture in arid lands. Jacob Blaustein Institute for Desert Research[R]. Ben Gurion University of the Negev. 1985.
    [27]李锋瑞. 干旱农业生态系统研究[M]. 陕西科学技术出版社,1998.
    [1]彭致功,杨培岭,王 勇,任树梅. 再生水灌溉对草坪土壤速效养分及盐碱化的效应[J]. 水土保持学报.2006,20 (6):84~88.
    [2]姚新春,师尚礼. 寒区旱区间歇性干旱对接种根瘤菌苜蓿草地土壤养分动态的影响[J].土壤通报.2007, 38(3):457~462.
    [3]梁运江,依艳丽,许广波,杨宇,谢修鸿.水肥耦合效应的研究进展与展望[J].湖北农业科学.2006,45(3):385~388.
    [4]赵良菊,肖洪浪,李新荣,罗芳,李守中.灌水量对土壤水肥分布与春小麦水分利用效率的影响[J].中国沙漠.2005,25(2):256~261.
    [5]杨文治,绍明安.黄土高原土壤水分研究[M].北京:科学出版社,2000.58~66.
    [6]王晨阳.不同土壤水分条件下小麦根系生态生理效应的研究[J].华北农学报,1992,7(4):1~8.
    [7]冯小明,樊贵盛. 引洪灌溉对土壤中速效钾的影响[J]. 太原理工大学学报.2006,37(2):210~212.
    [8]任小龙,贾志宽,韩清芳等.2007.半干旱区模拟降雨下沟垄集雨种植对夏玉米生产影响[J].农业工程学报. 23(10):45~50.
    [9]任小龙,贾志宽,陈小莉等.2007.模拟降雨量条件下沟垄集雨种植对土壤养分分布及夏玉米根系生长的影响[J].农业工程学报.23. (12):94~99.
    [10]任小龙,贾志宽,陈小莉等.2008.模拟降雨量下沟垄微型集雨种植玉米的水温效应[J].中国农业科学.41(1):70~77.
    [11]王恩姮, 陈祥伟.大机械作业对黑土区耕地土壤三相比与速效养分的影响[J]. 水土保持学报.2007, 21(4):99~102.
    [12]曾德超机械土壤动力学[M]北京:北京科学技术出版社,1995.
    [13]秦胜金,刘景双,王国平.影响土壤磷有效性变化作用机理[J]土壤通报,2006,37(5):1012~1016
    [14]盛建东, 肖 华, 武红旗, 陈 冰, 王 军, 杨新建. 不同取样尺度农田土壤速效养分空间变异特征初步研究[J]. 干旱地区农业研究.2005, 23, (2):64~67.
    [15]杨云马,贾树龙, 孟春香. 免耕麦田土壤速效养分含量动态研究[J]. 河北农业科学.2005, 9(3):25~28.
    [16]Viets F G. Water deficits and nutrient availability [A]. Kozlowski T T. water deficits and plant growth [C]. U SA:A cad Press, 1972. 217~247.
    [17]黄昌勇.土壤学[M].北京:中国农业出版社,1999,32~38.
    [18]王彩绒, 田霄鸿, 李生秀.覆膜集雨栽培对冬小麦产量及养分吸收的影响[J]. 干旱地区农业研究,2004,22(2):108~111.
    [19]李宗新, 董树亭,王空军,刘 鹏,张吉旺,王庆成,刘春晓. 不同施肥条件下玉米田土壤养分淋溶规律的原位研究[J]. 应用生态学报, 2008,19(1): 65~70.
    [1]沈荣开,王康,等.水肥耦合条件下作物产量、水分利用和根系吸氮的试验研究[J].农业工程学报,2001,17(5):35~38.
    [2] Gourley J P, Allan D L, Russele M P. Plant and nutrient efficiency: A comparison of definitions and suggested improvement[J]. Plant and soil. 1994.158, 29~37.
    [3] Siddiqi M Y, Glass A D. Utrilization index: A modified approach to the estimation and comparison of nutrient utilization efficiency in plants [J]. J. Plant Nutr. 4: 1981, 289~302.
    [4] 李韵珠, 王凤仙, 黄元仿. 2000. 土壤水分和养分利用效率几种定义的比较[J]. 土壤通报.31(4):150~155.
    [5]Hasure, R.R., Umrani, N.K. Effects of irrigation water saving methods (mulches) on uptake of nutrients in summer sunflower [J].R.Journal of Maharashtra Agricultural Universities. 1995, 20, 485.
    [6]Sharma, P.K., Parmar, D.K. The effect of phosphorus and mulching on the efficiency of phosphorus use and productivity of wheat grown on a mountain Alfisol in the Wes ten Himalayas[J]. Soil use manages. 1998, 14, 25~29.
    [7]魏以昕,吴玉福,温重阳等.陇中贫水富集抗旱高产栽培试验研究[J].中国水土保持. 2000.2,23~25.
    [8]Li, X.Y., Shi, P.J., Sun, Y.L., et al. Influence of various in situ rainwater harvesting methods on soil moisture and growth of Tamarix ramosissima in the semiarid loess region of China[J]. Forest ecology management. 2006,233:143~148.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700