甲烷蒸汽重整反应本征动力学及微通道反应器性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
燃料电池是高效、节能和环保的发电方式,在可移动及小规模电源系统中具有广泛的应用前景,其氢源制备是燃料电池商业化发展的关键。甲烷资源丰富且容易获得,是碳氢燃料重整制氢中首选的燃料。在甲烷重整制氢方式中,甲烷蒸汽重整具有反应温度相对较低、产氢率较高和产物中一氧化碳含量低等优点,是解决燃料电池氢源的一有效途径。
     目前,对甲烷蒸汽重整制氢的研究主要集中在高活性催化剂的开发上。甲烷蒸汽重整反应是强吸热过程,该反应在固定床反应器中因受热质传输的限制,存在动态响应慢、催化剂利用率低等问题,人们转而研究具有良好传热传质性能的微通道反应器。但微通道尺度小,采用颗粒催化剂容易堵塞通道且压降较大,催化剂的利用率低,所以催化剂涂层的制备是微通道反应器发展的关键因素之一。传统的催化剂涂层制备方法工艺复杂、成本较高,存在涂层附着力不强、容易脱落及堵塞通道等问题。因此,本文采用冷喷涂技术制备了可用于甲烷蒸汽重整的镍基催化剂涂层,对催化剂涂层上甲烷蒸汽重整的本征动力学及其在微通道反应器内的反应性能进行了研究,本文的主要工作如下:
     (1)创新性地采用冷气体动力喷涂技术在铝基板和不锈钢基板上制备了镍基催化剂涂层,利用扫描电镜(SEM)、能谱分析(EDS)和X射线衍射分析(XRD)对催化剂颗粒、基板及催化剂涂层进行了表征分析。结果表明:喷涂颗粒在铝基板和不锈钢基板上实现了有效的沉积,催化剂涂层与基板结合紧密,其组成和催化剂成分相近,催化剂涂层中没有新的相生成;冷喷涂技术制备的镍基催化剂涂层基本是单层沉积,对于易碎、不规则、氧化物聚合体的镍基催化剂颗粒来说涂层质量优劣不仅和颗粒沉积速度有关,还和其破碎特性有关;与铝基板上沉积的催化剂涂层相比,在不锈钢基板上沉积的催化剂颗粒更小,这对催化剂涂层上的甲烷蒸汽重整反应是有益的。
     (2)在冷喷涂技术制备的镍基催化剂涂层上首次进行了甲烷蒸汽重整的本征动力学实验研究,得到了双速率方程的本征动力学模型。甲烷生成一氧化碳的反应速率指前因子为1.08×108 mol/(h.g.kPa0.89),活化能为178.98kJ/mol;甲烷生成二氧化碳的反应速率指前因子为1.73×104 mol/(h.g.kPa2.06),活化能为139.00kJ/mol。F统计检验所得本征动力学模型的复相关指数大于0.9,且F统计量大于置信域为99%的临界F统计量的10倍以上,结果表明此模型是显著的、可信的。
     (3)对甲烷蒸汽重整在微通道反应器中的反应性能进行了实验测试和数值计算,并对实验后的催化剂涂层进行了表征分析。研究表明:较小的甲烷空速或较高的反应温度可提高甲烷转化率和产氢率,较高的反应温度或较低的水碳摩尔比时产物中一氧化碳的选择性较高;催化剂涂层表面因甲烷裂解而产生了积碳,且是以不会造成催化剂失活的胡须状积碳为主;数值计算结果与实验结果的相对误差总体在15%以内,因此采用CFD的有限速率模型对微通道中的甲烷蒸汽重整进行数值分析的方法是可行的。然后首次考察了微通道结构参数对甲烷蒸汽重整性能和流动阻力特性的影响。结果表明:较小的通道高度能够减小反应物在通道中的扩散时间,较长的反应通道长度能够增加反应物与催化剂的接触时间,甲烷转化率和产氢率提高;通道长度线性地影响微通道进出口压降的大小,而在通道高度小于0.4mm时,通道高度显著地影响进出口压降的大小;综合考虑微通道的重整性能和进出口压降等因素,通道高度在0.4~0.6mm之间较为合适。
     (4)针对甲烷催化燃烧为甲烷蒸汽重整反应供热的平板型微通道反应器建立了二维的耦合模型,分析了反应条件、通道长度对反应器重整性能的影响,并通过甲烷催化燃烧侧催化剂的分段布置对反应器的温度场进行了优化。结果表明:微通道反应器具有良好的传热性能,除进口附近外,隔板两侧的反应通道近似等温;通过调整反应条件可实现平板微通道反应器中甲烷催化燃烧和甲烷蒸汽重整两侧热量的良好匹配;反应通道长度增大,重整侧甲烷转化率和产氢率提高,反应器最高温度和出口温度降低;最后通过对甲烷催化燃烧侧催化剂的分段布置,在甲烷转化率和产氢率基本不变的情况下,降低了反应器的最高温度,有利于减少催化剂烧结及积碳的发生,且反应器在流动方向的温差减小。
Fuel cell (FC) is generally a high-efficiency、energy-saving and environmental friendly type of power generation device. It has a widely application future in both small-scale fixed power generating plant and mobile electric power sources. However, the supply of hydrogen source is crucial for the commercialization of FC. Because of the enrichment, methane is thought to be the first choice among hydrocarbon fuel reforming for hydrogen production. In the ways of methane reforming, methane steam reforming (MSR) has the advantages of low reaction temperature、high hydrogen production and low carbon monoxide concentration in the reforming products, which is a effective way to provide hydrogen source for FC.
     So far, the study of MSR is mainly focused on the development of catalyst with high activity、lower molar ratio of water to carbon (S/C) and deposited carbon inhibition. However, MSR is a strongly endothermal reaction, which is usually limited by heat and mass transfer and shows a lower dynamic responds and lower utilization ratio of catalyst in the catalyst bed. Therefore scientists begin to study micro-channel reactors which have better transport characteristic of heat and mass. Nevertheless, the micro-channel is easily blocked by the catalyst granule, and greater power is need to overcome the pressure resistance. Therefore catalyst coating is considered as an alternative scheme in the micro-channel reactors. Traditional methods of producing catalyst coating have disadvantages of complex technology and higher cost, and the coating granules are easily broken off owing to weak adhesive power and then block the reactive channel. So the supersonic cold gas dynamic spray (CGDS) technology was used for the preparation of the nickel based catalyst coating in this paper, over which the intrinsic kinetics experiment of MSR was carried out. And the reforming characteristic in micro-channel reactor was studied. The main works of this thesis was included as follow:
     (1) Catalyst coating was fabricated by cold gas dynamic spray (CGDS) on aluminum substrate and stainless steel substrate. The catalyst particle、substrate and catalyst coating were analyzed by scan electron microscopy (SEM)、energy dispersion spectroscopy (EDS) and X-ray diffraction (XRD). The detected results show that the catalyst coating was effectively deposited on the aluminum substrate and stainless steel substrate. The coating has a better bonding strength with substrate, and the component of the coating is close to the catalyst particle. The nickel-based catalyst coating is single layer, the performance of coating is influenced by deposited velocity and broken property of nickel-based catalyst powder. Compared with the catalyst coating on Al substrate, the catalyst coating on stainless steel substrate has smaller deposited paricle, which is benefit for methane steam reforming.
     (2) The experiment of methane-steam reforming intrinsic kinetics was performed with nickel- based catalyst coating on the stainless steel substrate. By analyzing the experimental data and secreening kinetics model, the double rate kinetics model were established. The pre-exponential factor and the apparent activation energy for the kinetics model of carbon monoxide formation was 1.08×108 mol/(h.g.kPa0.89) and 178.98 kJ/mol respectively, and the pre-exponential factor and the apparent activation energy for the kinetics model of carbon dioxide formation was1.73×104 mol/(h.g.kPa2.06) and 139.00 kJ/mol respectively. The correlation indexs of the intrinsic kinetics model by F statistic were greater than 0.9 and the F statistical quantity was 10 times greater than the critical one with the confidence domain of 99%, so the model is acceptable and creditalbe.
     (3) Experiment and simulation were performed to study refrorming characteristic of MSR in micro-channel reactor, and then the performance of the catalyst coating after experiment was detected. The experimental results showed that smaller methane space velocity and higher reaction temperature will bring on higher methane conversion and hydrogen production. The selectivity of carbon monoxide ( S CO) is influenced by reaction temperature and the molar ratio of water to methane (S/C) chiefly. The higher temperature as well as smaller S/C, the bigger S CO. By analysing the catalyst coating after experiment, we discovered that carbon was deposited on the coating surface by methane decomposition, which is beard deposited carbon that would not make the catalyst coating deactivated. The inaccuracies between simulation results and experiment ones are mostly less than 15%, which approves that simulation method of MSR in micro-reactor with CFD software is available and the result is reliable. Furthermore, the effect of length and height of channel on reforming and resistance characteristic was investigated. The results show that smaller height of reaction channel can shorten the time which reactants diffuse from channel to reaction surface, longer length of micro-channel can extend residence time of reactants on the catalyst surface, and consequently increase the methane conversion and hydrogen production. The pressure drop between inlet and outlet increases lineally with the increasing of length, while the height influences the pressure drop significantly when the height is less than 0.4 mm. Based on the overall consideration for the methane conversion and resistance characteristic generally, the suitable height of channel should be between 0.4 mm and 0.6 mm.
     (4) A two-dimensional coupled model was established according to plate micro-channel reactor, in one channel of which the methane catalyst combustion was carried out to provide the heat for MSR reaction in another channel. The impact of reaction condition and channel length on the reaction characteristic was discussed. Calculation results show that the temperature of channel in both sides is almost isothermal for the good heat transfer characteristic of micro-channel. The coupling of methane catalytic combustion and steam reforming in a plate micro-reactor has made it possible to realize well matching between two sides through regulating reaction conditions. A longer length of channel can result in a higher methane conversion、a lower outlet temperature and reduce the selectivity of carbon monoxide. Finally, the subsection layout of catalyst coating in the catalyst combustion side decreases the maximum temperature in the micro-reactor with a stable methane conversion ratio and hydrogen production, which is benefit for the inhibition of carbon deposited and sintering of catalyst, and the temperature difference of reactor decreases in flow direction.
引文
[1]金晶.世界及中国能源结构[J].能源研究与信息, 2003, 19(1): 20-25.
    [2]张文木.中国能源安全与政策选择[J].世界经济与政治, 2003, 5:11-16.
    [3]詹华,姚士洪.对我国能源现状及未来发展的儿点思考[J].能源工程, 2003 (3) : 1-8.
    [4]《中国能源发展报告》编辑委员会,中国能源发展报告[M].中国计量出版社,北京, 2001.
    [5]赵国英.燃料电池离我们有多远[J].电源技术应用, 2004, 20(9): 29-32.
    [6] Steven G C, James F M, Fred W W. Challenges for fuel cells in transport applications[J]. Journal of Power Sources, 2000, 86(1): 40-51.
    [7]王林山,李瑛.燃料电池[M].北京:北京冶金工业出版社, 2005.
    [8]孙艳.氢燃料[M].北京:化学工业出版社, 2004.
    [9]谢晓峰译.燃料电池技术[M].北京:化学工业出版社, 2003.
    [10]亓爱笃,王树东,洪学伦,等.车载燃料电池移动制氢机浅议[J].天然气化工2001, 26(6): 39-43.
    [11]王锋,李隆键,崔文智,等.单通道中集成燃料电池制氢功能研究[J].石油化工设备, 2007, 36(6): 10-14.
    [12] Moirlan M, Veziroglu T. Recent directions of world hydrogen production[J]. Renewable and Sustainable Energy Reviews, 1999, 3(1): 219-231.
    [13] Pena M A, Gomez J P, Fierro J L G. New catalytic routes for syngas and hydrogen production[J]. Applied Catalysis A: General, 1996, 144(2): 746-757.
    [14] Steinberg M, Cheng H C. Modern and prospective technologies for hydrogen production from fossil fuels[J]. Int J Hydrogen Energy, 1989, 14(1): 797-820.
    [15] Bharadwaj S S, Schmidt L D. Catalytic parti oxidation of natural gas to syngas[J]. Fuel Process Technology, 1995, 42(3): 109-127.
    [16] Gronchi P, Mazzocchia C. Carbon dioxide reaction with methane on La2O3 supported Rhodium catalyst[J]. Energy Convers Management, 1995, 36(6): 605-608.
    [17] Ayabe S, Omoto H, Utaka T, et al. Catalytic autothermal reforming of methane and propane over supported metal catalysts[J]. Applied Catalysis A: General, 2003, 241(1): 261-269.
    [18]李文兵,齐智平.甲烷制氢技术研究进展[J].天然气工业, 2005, 25(2): 165-168.
    [19]王卫,王凤英,申欣,等.甲烷制备合成气工艺开发进展[J].精细石油化工进展, 2006, 7(7): 27-31.
    [20]许珊,王晓来,赵睿.甲烷催化制氢气的研究进展[J].化工进展, 2003, 15(2): 141-150.
    [21]刘少文,李永丹.甲烷重整制氢气的研究进展[J].武汉化工学院学报, 2005, 27(1): 20-27.
    [22]黄海燕,沈志虹.天然气转化制合成气的研究[J].石油与天然气化工, 2000, 29(6): 276-280.
    [23]徐德明.近10年国外天然气制合成气工艺发展状况[J].石油与天然气化工, 1996, 25(2): 61-65.
    [24]陈五平.合成氨[M].北京:化学工业出版社, 1995.
    [25]张成芳.合成氨工艺与节能[M].上海:华东化工学院出版社, 1990.
    [26] Barboero G, Di M F P. Simulation of the methane steam reforming process in a catalytic pd membrane reactor[J]. Industrial and Engineering Chemistry Research, 1997, 36(6): 2121 -2127.
    [27] Fukuhara C, Igarashi A. Two-dimensional simulation of a membrane reactor for dehydrogenation of ethylbenzene, considering heat and mass transfer[J]. Journal of Chemical Engineering of Japan, 2004, 36 (5): 530–539.
    [28] Hoang D L, Chan S H. Modeling of a catalytic auto-thermal methane reformer for fuel cell applications[J]. Applied Catalysis A, 2004, 268 (1): 207–216.
    [29]皇甫艺,李超,李传统.甲烷无机膜催化水蒸汽重整制氢的数学模拟[J].淮海工学院学报, 2002, 1(3): 45-48.
    [30] Kim J H, Choi B S, Yi J. Modified simulation of methane steam reforming in pd-membrane/packed-bed type reactor[J]. Journal of Chemical Engineering of Japan, 1999, 32 (6): 760–769.
    [31]姜圣阶.合成氨工学[M].第二版,第一卷,北京:石油化学工业出版社, 1978.
    [32]贺黎明,沈召军.甲烷的转化和利用[M].北京:化学工业出版社,2005.
    [33] Xu J,Froment G F.Methane-steam reforming methanation and water gas shift-I.Intrinsic kinetics[J]. AICHE J, 1989, 35 (1): 88-96.
    [34] Kaihu H, Ronald H. The kinetics of methane steam reforming over a Ni/α-Al2O3 catalyst [J].Chemical Engineering Joural, 2001,82 (1): 311-328.
    [35]宋世谟,庄公惠,王正烈,等.物理化学[M].天津大学物理化学教研室编.北京:高等教育出版社, 1992.
    [36] Ethan S, Hecht A, Gaurav K, Gupta B. Methane reforming kinetics within a Ni–YSZ SOFC anode support[J]. Applied Catalysis A: General, 2005, 295(1): 40–51.
    [37] Janardhanan V M, Deutschmann O. CFD analysis of a solid oxide fuel cell with internal reforming: Coupled interactions of transport, heterogeneous catalysis and electrochemical processes[J]. Journal of Power Sources, 2006, 162(2): 1192-1202.
    [38]黄海燕,沈志虹.天然气转化制合成气的研究[J].石油与天然气化工, 2000, 29(6): 276-280.
    [39]徐德明.近10年国外天然气制合成气工艺发展状况[J].石油与天然气化工, 1996, 25(2): 61-65.
    [40] [美]斯拉克A V,詹姆斯G R.合成氨工艺[M].北京:石油化学工业出版社, 1977.
    [41]侯丛福,齐维芳,峰孝庭.天然气转化催化剂在无氢条件下开车还原的研究[J].天然气化工, 1994, 4(19): 34-39.
    [42]李绍芬,高文新,廖晖.甲烷水蒸气催化转化的动力学模型[J].化工学报, 1980, 1 (1): 51-59.
    [43]田安民,段世清,胡闻天,陈一权,罗反修,魏成玉. 30kg/cm2压力下天然气转化动力学研究[J].化工学报, 1977, 1 (1): 51-59.
    [44] Numaguchi T, Kikuchi K. Intrinsic kinetics and design simulation in a complex reaction network; steam-methane reforming[J]. Chemical Engineering Science, 1988, 43(8): 2295–2301.
    [45] Soliman M A, Adris A M, Al-Ubaid A S, El-Nashaie S S E H. Intrinsic kinetics of nickel/calcium aluminate catalyst for methane steam reforming[J]. J.Chem.Tech. Biotechnol, 1992, 55 (1): 131-138.
    [46]王金刚,李成岳, Ni/α-Al2O3催化剂上甲烷水蒸气重整本征动力学研究[J].化工大学学报, 2005, 32(1): 10-15.
    [47]郭锴,唐小恒,周绪美.化学反应工程[M].北京:化学工业出版社, 2000.
    [48] (美) H.斯科特·福格勒.化学反应工程[M].北京:化学工业出版社, 2005.
    [49]傅利勇,吕绍洁,邱发礼.甲烷制合成气反应催化剂抗积碳性能的研究进展[J].天然气化工, 1999, 24(6): 48-53.
    [50]杨修春,韦亚南.甲烷重整制氢用催化剂的研究进展[J].材料导报, 2007, 21(5): 49-52.
    [51]蔡秀兰,董新法,林维明.载体中添加La对Ni/γ-Al2O3催化剂催化甲烷自热重整制氢反应的影响[J].石油化工, 2006, 35(4): 324-328.
    [52] Laosiripojana N, Assabumrungrat S. Methane steam reforming over Ni/Ce–ZrO2 catalyst: Influences of Ce–ZrO2 support on reactivity, resistance toward carbon formation, and intrinsic reaction kinetics[J]. Applied Catalysis A: General, 2005, 290 (1): 200–211.
    [53] Janardhanan V M, Deutschmann O. CFD analysis of a solid oxide fuel cell with internal reforming: Coupled interactions of transport, heterogeneous catalysis and electrochemical processes[J]. Journal of Power Sources, 2006, 162(2): 1192-1202.
    [54] Hermans L A M, Geus J W. Interaction of nickel ions with silica supports during deposition-precipitation[J]. Stud. Surf. Sci. Catal., 1979, 3(1): 113–130.
    [55] Arena F, Frusteri F, Plyasova L and Parmaliana A. Solid-state interactions in Li-doped Ni/MgO catalysts[J]. J. Chem. Soc., Faraday Trans., 1998, 94(10), 3385– 3391.
    [56] Hayashi H, Murata S, Tago T. Methane一steam reforming over Ni/A12O3 catalyst prepared using W/O microemulsion[J]. Chemistry Letters, 2001, (1): 34-35.
    [57] Shimizu T, Kitayama Y, Kodama T. Thermochemical conversion of CH4 to C2-hydrocarbons and H2 over SnO2/Fe3O4/SiO2 in methane- Water co-feed system[J]. ENERGY&FUELS, 2001, 15 (2): 463-469.
    [58] Kikuchi E, Tanaka S, Yamazaki Y. Steam reforming of hydrocarbons on noble metal catalysts- the catalytic in methane-steam reaction[J]. Bull Jpn Pet Inst., 1974, 16(2): 95-98.
    [59] Kunimori K,Umeda S, etal.Chem.Time-resolved infrared emission studies of CO2 formed by catalytic oxidation of CO on Pt and Pd surfaces[J]. Bulletin of the Chemical Society of Japan, 1992, 65 (9): 2450-2455.
    [60] Qing M, Xiong G X, Sheng S S. Partial oxidation of methane to syngas over nickel based catalysts modifies by alkalimetal oxide and rare earth metal oxide[J]. Applied Catalysis A: General, 1997, 154(12):17-27.
    [61] Horiuchi K S. Suppression of carbon deposition in the CO2 reforming of CH4 by adding basic metal oxides to a Ni/Al2O3 catalyst[J]. Applied catalysis, 1996, 144(2): 111-121.
    [62]刘光明,邱发礼,郭慎独,等.甲烷水蒸气重整催化剂上水吸附性能的研究[J].燃料化学学报, 1988, 16(3): 253-240.
    [63] Craciun R, Daniell W, Knozinger H. The effect of Ce02 structure on the activity of supported Pd catalysts used for methane steam reforming[J]. Applied catalysis A, 2002, 230(2): 153-168.
    [64]易洛川,傅红梅,张允湘,等.添加剂氧化镧/氧化镁对甲烷蒸汽催化剂镍分散度影响的研究[J].石油与天然气化工, 2003, 32(5): 263-266.
    [65] Gu G P, Sung D Y, Young G Y, et. al. Hydrogen production with integrated microchannel fuel processor for portable fuel cell systems[J]. Journal of Power Sources, 2005, 145(2): 702-706.
    [66] Baea J M, Ahmedb S, Kumarb R, Doss E. Microchennel development for autothermal reforming of hydrocarbon fuels[J]. Journal of Power Sources, 2005, 139(1): 91–95.
    [67] Satish G, Kandlikar. Microchannels and minchannels–history, terminology, classification and current research needs[C]. International Conference on Microchannels and Minichannels. Rochester, New York, USA, April 24-25, 2003.
    [68]刘静.微米/纳米尺度热科学与工程学中的若干重要问题及进展[J].物理, 2001, 30(7), 398-406.
    [69]王乐夫,张美英等.微化学工程中的微反应技术[J].化学反应工程与工艺, 2001, 6(2):174-179.
    [70]郑亚锋,赵阳,辛峰.微反应器研究及展望[J].化工进展, 2004, 20(5) :461-467.
    [71]胡林会,胡鸣若,朱新坚等.燃料电池用微通道反应器的研究现状[J].电源技术, 2003(6):545-548.
    [72]王锋,辛明道,崔文智,等.微型燃料重整制氢技术[J].太阳能学报, 2007, 28(7): 783-792.
    [73] W埃尔费尔德, V黑塞尔, H勒韦.微反应器[M].北京:化学工业出版社, 2004.
    [74] Whyatt G A, Fischer C M, Davis J M. Progress on the development of a micro-channel steam reformer for automotive applications[EB/OL]. www.pnl.gov/microcats/aboutus/publications/ microchemical/109C.pdf.
    [75]王锋,李隆键,辛明道,等.甲醇-水蒸汽重整制氢反应器新进展[J].能源技术, 2007, 28(6): 325-329.
    [76]王锋,李隆键,漆波,等.微型反应器中甲醇水蒸汽重整制氢研究[J].西安交通大学学报(自然科学版), 2008, 42(4): 509-514.
    [77] Tonkovich A L Y, Zilka J L, Powell M R, Call C J. The catalytic partial oxidation of methane in a micro-channel chemical reactor [C]. 2nd International Conference on Microreaction Technology. AIChE, New Orleans, USA, 1998: 33-45.
    [78] Johannes S, Andy T, and Ben G. Autothermal reforming of simulated gaso-line in compact fuel processor[J]. Chemical Engineering Transactions, 2004, 4(1): 75-80.
    [79] Robert S W, Joseph G B, Charles J C, Kevin D, Michele F, Dean E K, Peter M M, Ward E T G and Annalee Y T. Micro chemical system development progress at the Pacific Northwest National Laboratory[EB/OL]. www.pnl.gov/microcats/aboutus/publications/microchemical system development.pdf.
    [80] Jim Ohi. Transportation technology for the 21st century[J]. Fuel cell NREL/China Study Tour, 2003, 12(1):103-109.
    [81] Cremers C, Stimming U, Find J, Lercher J A, Reuse P, Renken A, Kurtz O, Cr?mer K, Haas-Santo O, G?rke O, Schubert K. Micro-structured steam reformers as flexible hydrogen generators for fuel cell systems[J]. Bavarian Centre of Applied Energy Research, DivisionEnergy Conversion and Energy Storage., 2003, 2(3): 14-16.
    [82] Tonkovich A L Y, Jimenez D M, Zilka J L, LaMont M J, Wang J, Wegeng R S. Microchannel chemical reactors for fuel processing[C]. 2nd International Conference on Microreaction Technology. AIChE, New Orlleans, USA, 1998, 186-195.
    [83]曹彬,陈光文,袁权.微通道反应器内氢气催化燃烧[J].化工学报, 2004, 55(1), 42-47.
    [84] Janicke M T , Kestenbaum H , Hagendorf U , Schüth F, Fichtner M, Schubert K. The controlled oxidation of hydrogen from an explosion mixture of gases using a microstructured reactor/ heat exchange and Pt/ Al2O3 catalyst[J]. Journal of Catalysis , 2000 , 191(1): 282-293.
    [85] Ramesh K, Rajnish C, Don G, Jerry H, Stephen R, Stephen Samms, and Sonja Tasic. Integrated miniature catalytic combustor for fuel processor applications[C]. Motorola Labs, 201st Meeting. Philadelphia, PA, May 12-17, 2002.
    [86] Zanfir M, Gavriilidis A. Catalytic combustion assisted methane steam reforming in a catalytic plate reactor[J] .Chemical Engineering Science, 2003, 58 (1): 3947– 3960.
    [87] Evan J, Jamie H, Steve P, Rick O, Bob R, John H, Max P, Consuelo G. Sub-watt power using an integrated fuel processor and fuel cell[EB/OL]. www.pnl.gov/microcats/aboutus/ publications/ micro systems/jones-sub-watt.PDF.
    [88]王锋,李隆键,崔文智,等.微反应器中甲醇-水蒸汽重整制氢三维模拟[J].重庆大学学报(自然科学版), 2007, 30(2): 26-29, 41.
    [89] Cremers C, Stimming U. Indirect and direct methanol fuel cells current status and potential developments[C]. 1st Solar-Wind-Hydrogen / Fuel Cell International Conference. Segovia, Spain, 7th -10th July 2003.
    [90] Upadhye R S, Morse J D, Jankowski A F, Havstad M A. Integrated microfluidic fuel processor for miniature power sources[EB/OL]. www-eng.llnl.gov/eng_llnl/ 01html/pdfs/microscalesys. pdf.
    [91] Bednarova L, Chen H, Ouyang X, Qian D, Lee W, Lawal A, Besser R. Methanol steam reforming and CO preferential oxidation in a silicon microreactor[C]. 205th Meeting of the Electrochemical Society Inc.. Abs. 666, 2004.
    [92] Cremers C, Stimming U, Find J. Micro-structured steam reformers as flexible hydrogen generators for fuel cell systems[J]. Bavarian Centre of Applied Energy Research, Division Energy Conversion and Energy Storage, 2003, 2(1): 910-913.
    [93] Eric D, Dave V W, Sean F, Yong W, Mike L M, Bob R, Lee T. Microchannel fuel processing for man portable power[EB/OL]. www.pnl.gov/microcats/aboutus/publications/microchemical /manportpower.pdf.
    [94] Pierre R, Albert R,,Katja H S , Oliver G, Klaus S. Hydrogen production for fuel cell application in an autothermal micro-channel reactor[J]. Chemical Engineering Journal, 2004, 101 (2): 133-141.
    [95] Goerke O, Pfeifer P, Schubert K. Water gas shift reaction and selective oxidation of CO in micro-reactors[J]. Applied Catalysis A: General, 2004, 263 (1): 11–18.
    [96]贾启云,汤勇.微通道内催化剂的制备[J].化工时刊, 2006, 20(2): 39-41.
    [97]张丽,张彭义,陈崧哲.Ti基底的预处理对TiO2光催化膜长期稳定性的影响[J].催化学报, 2007, 28(4): 299-306.
    [98]张建国,郏景省,张纯希,等. Pt/Al2O3涂层金属蜂窝催化剂的制备及其CO选择性氧化催化性能[J].催化学报, 2008, 29(5): 421-425.
    [99]王占锋,廖寄乔,周建伟,等. KOH-浸渍-还原法在碳纤维表面制备不同金纳米催化剂涂层及其应用[J].炭素, 2007, 130(2): 43-47.
    [100]郭益群,苏运来,李利民,等.二甲苯氧化催化剂的研制[J].郑州大学学报(自然科学版), 1997, 29(1): 78-80.
    [101]郑菁英,王守兰,马小茹,等.在钯/耐热合金催化剂上低温催化点火的研究[J].北京工业大学学报, 1992, 18(2): 62~68.
    [102]李玉山,王来军,文明芬,等.化学镀法制备单钯汽车尾气净化催化剂[J].工业催化, 2006, 14 (7): 57-59.
    [103]于新海,王正东,涂善东,等. Cu/ZnO/Al2O3催化剂涂层工艺参数的优化[J].太阳能学报, 2005, 26(4): 556-562.
    [104]于新海,涂善东,王正东,等.甲醇水蒸气重整微反应器催化剂涂层的研究[J].华东理工大学学报, 2005, 31(5): 653-672.
    [105]卢泽湘,周忠良,银凤翔,等. Pt-Sn-Li/Al2O3/FeCrAl催化剂的制备、表征和长链烷烃脱氢催化性能[J].化工学报, 2008, 59(1): 70-76.
    [106]王汉功.超音速电弧喷涂技术[M].北京:国防工业出版社, 1999.
    [107]王震林,韩勇,许晋生.金属热喷涂技术及其应用[M].北京:纺织工业出版社, 1992.
    [108] Alknimov A P, Kosarev V F and Apayrin A N. A method of cold gas dynamic deposition. Dokl Acad[J]. Nauk SSSR, 1990, 318(5): 1062-1065.
    [109] Alknimov A P, Kosarev V F and Apayrin A N. Cold gas dynamic spray method for applying a coating[C]. U.S.Patent 5, 302, 414. Washington, D.C., 1994.
    [110] Segall A E. A cold-gas spray coating process for enhancing Titanium[J]. Journal of Metals, 1998, 25(1): 52–54.
    [111] Dykhuizen R C and Smith M F. Gas dynamic principles of cold spray[J]. Journal of Thermal Spray, 1998, l(7): 205–212.
    [112] Amateau M F and Eden T. High velocity particle consolidation technology[J]. IMAST Quarterly, 2000, 1(2): 3–6.
    [113] Bhagat R B, Amateau M F, Papyrin A N, Conway J C, Stutzman B and Jones B. Deposition of nickel-aluminum bronze powder by cold gas dynamic spray method on 2618 Al for developing wear resistant coatings in thermal spray[C]. A United Forum for Scientific and Technological Advances, Ed. C. C. Berndt, ASM International. Materials Park,Ohio, 1997.
    [114] Kan H K and Kank S B. Tungsten/Copper composite deposits produced by a cold spray[J]. Scr. Mater., 2003, 49(1): 1169–1174.
    [115] Steenkiste T H Van, Smith J R, and Teets R E. Aluminum coatings via kinetic spray with relatively large powder particles[J]. Surface Coating Technology, 2002, 154 (2): 237–252.
    [116] Li C J and Li W Y. Deposition characteristics of Titanium coating in cold spraying[J]. Surface Coating Technology, 2003 167(1): 278–283.
    [117] Sahraoui T, Fenineche N E, Montavon G. Structure and wear behaviour of HVOF sprayed Cr3C2?NiCr and WC-Co coatings[J]. Material Deseigh, 2003, 24 (5): 309–313.
    [118] Tonkovich A, Zilka J, LaMont M, et al. Microchannel reactors for automotive fuel processors[C]. The Third International Conference on Microreaction Technology. Berlin: 1999, 04.
    [119] Matson D W, Martin P M, Stewart D C, Tonkovich A Y, Roberts G L, and White M. Fabrication of microchannel chemical reactor using a metal lamination process[C]. The Third International Conference on Microreaction Technology. Berlin: 1999, 04.
    [120] Assadi H, Gartner F, Stoltenhoff T, and Kreye H. Bonding mechanism in cold gas spraying[J]. Acta Mater, 2003, 51 (15): 4379–4394.
    [121] Lima R S, Karthikeyan J, Kay C M, Lindemann J, and Berndt C C. Microstructural characteristics of cold-sprayed nanostructured WC-Co coatings[J]. Thin Solid Films, 2002, 416(1) 129–135.
    [122] Wang F, Cui W Z, Li L J, et al. Fabrication of Cu-based catalytic coating for methanol steam reforming by cold spray[C]. The 4th International Green Energy Conference. Beijing, China, 2008: Paper number: IGEC 4-M2.
    [123] Grujicic M, Saylor J R, Beasley D E. Computational analysis of the interfacial bonding between feed-powder particles and the substrate in the cold-gas dynamic-spray process[J]. Applied Surface Science, 2003, 219(1): 211–227.
    [124] Grujicic M, Zhao C L, Tong C. Analysis of the impact velocity of powder particles in the cold-gas dynamic-spray process[J]. Material Science Engineering, 2004, 368(1): 222–230.
    [125] Grujicic M, Tong C, DeRosset W S, and Helfritch D. Flow analysis and nozzle-shape optimization for the cold-gas dynamic-spray process[J]. Proc. Inst Mech. Eng. B: J. Eng. Manuf., 2003, 217(1): 1603–1607.
    [126]王锋.微型反应器中甲醇水蒸气重整制氢过程传输特性研究[M].重庆:重庆大学博士学位论文, 2008.
    [127]高宗仁.简明不锈钢使用手册[M].山西:山西科学技术出版社, 2003.
    [128]中国腐蚀与防护学会.耐热钢和高温合金[M].北京:化学工业出版社, 1996.
    [129]王永华气相色谱分析应用[M].北京:科学出版社, 2006.
    [130]许越.催化剂设计与制备工艺[M].北京:化学工业出版社, 2003.
    [131]王锋,崔文智,李隆键,等.冷喷涂技术及其在甲醇蒸汽重整制氢中的应用[J].机械工程材料, 2009, 33(1): 80 -82.
    [132]王锋,漆波,陈清华,等.超音速冷喷涂Cu-Al2O3复合涂层特性[J].材料导报, 2009.
    [133]王光信,刘澄凡,张积树.物理化学[M].北京:化学工业出版社, 2001.
    [134]陈诵英.催化反应动力学[M].北京:化学工业出版社, 2007.
    [135]许越.化学反应动力学[M].北京:化学工业出版社, 2005.
    [136]夏代宽,刘期崇,王建华,等. CN-18催化剂上甲烷蒸汽转化宏观动力学研究[J].四川大学学报, 2001, 33(3): 51-59.
    [137] Fu W B, Hou L Y, Zhong B J, et al.An analysis of the ignition of premixed gases by a hot spherical surface with catalytic reforming reaction[J]. Fuel, 2003, 82(5): 539-544.
    [138] Grigorios K, Jorg F, Gerhart E. Efficient reactor concepts for coupling of endothermic and exothermic reactions[J]. Chemical Engineering Science. 2002, 57(9): 1505-1510 .
    [139] Fletcher A R, Zhu H Y, Gregory S J. Transient modeling of combined catalytic combustion/CH4 steam reforming[J]. Catalysis Today. 2003, 83(1): 141-156.
    [140]李晶,傅维镳,侯凌云,等.蓄热式催化重整氢发生器的研究[J].工程热物理学报, 2003, 24(3): 527-530.
    [141]李晶,傅维镳,侯凌云.蓄热式催化蒸汽重整氢气发生器中蓄热体数值分析[J].燃烧科学与技术, 2003, 9(3): 261-266.
    [142]侯宇.冷气体动力喷涂喷管内超音速气固两相流动数值模拟[M].重庆:重庆大学硕士学位论文, 2003.
    [143]吴倩,荆泉,李佟茗.催化剂制备条件对金属分散度的影响[J].燃料与化工, 2008, 39 (2): 46-49.
    [144] Canu P. Simulation and interpretation of catalytic combustion experimental data[J]. Catalysis Today, 2001, 64(3): 239-252.
    [145]关毅,秦永宁,张鎏.中温镍水蒸汽转化催化剂积碳动力学与机理研究[J].化学学报, 1998, 56(1): 215~222.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700