LZ8-Fc融合蛋白重组表达及其稳定性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
灵芝自古便是中国传统医学中的珍贵药材,被认为具有滋补强身、扶正固本之效。近代科学研究也证实灵芝的粗提物具有抗肿瘤和增强免疫力之功能,然而多数研究认为灵芝主要活性成分为多醣体及三萜类化合物,直至1989年Kino等科学家自灵芝的菌丝体纯化出具有免疫调节功能的小分子蛋白质—灵芝免疫调节蛋白(LZ-8),确立另一种活性物质免疫调节蛋白的存在。二十多年以来,国内外数十家课题组对其进行了深入研究,利用多种基因工程表达系统获得了重组LZ-8,揭示了LZ-8的晶体结构和主要理化性质,最为重要的是发现了LZ-8具有多种达到临床治疗价值的免疫调节和抗肿瘤活性。虽然LZ-8具有药用价值,但其被开发成为新药仍不被看好,主要原因是分子量小,仅13kDa,极容易被机体代谢,体内稳定性差,难以发挥其生物学作用。此外,LZ-8来源于灵芝,属于异源蛋白,易引起机体免疫系统产生严重的排异反应。考虑到以上问题,在本研究中将LZ-8与人IgG Fc段融合(LZ8-Fc)在毕赤酵母中进行重组表达,建立了中试发酵和纯化工艺,初步研究了LZ8-Fc的体内稳定性和LZ-8的融合表达策略,本论文的实验数据为融合蛋白表达共性问题中的不稳定性因素提供了理论基础,将对其长效剂型的开发具有一定的参考意义。
     本研究中使用GGSS柔性肽段连接rLZ8和人IgG1中的Fc段,根据毕赤酵母密码子偏好性重新设计基因序列,两端设EcoRI(GAATTC)和KpnI(GGTACC)酶切位点,进行全基因合成。将目的基因片段连接至AOX1型启动子的甲醇诱导分泌型表达载体—pPICZɑ A,重组后的质粒命名为pPICZɑ A-LZ8-Fc。重组质粒电转化入毕赤酵母菌株X33,在摇瓶规模进行转化克隆的表达筛选,并初步优化了甲醇诱导表达条件。
     在40升中试发酵规模下,通过摸索发酵过程工艺参数,包括pH值、DO值、罐压、温度、通气量,优化LZ8-Fc重组蛋白的甲醇诱导发酵工艺;发酵液上清SDS-PAGE电泳和Western Blot鉴定结果均显示,从甲醇诱导表达阶段,开始有目的蛋白条带,至发酵后期出现了降解的LZ-8蛋白条带。LZ8-Fc融合蛋白发酵上清经过两步切向流过滤处理,将样品经MabSelect Sure亲和层析和Superdex75凝胶过滤层析进行纯化,确定其稳定的纯化工艺,获得了纯度较高的LZ8-Fc融合蛋白,电泳显示为单一条带,质谱分析结果与预期一致。但是Western Blot结果表明LZ8-Fc融合蛋白在纯化过程中发生了降解。经检测,LZ8-Fc融合蛋白浓度为248g/mL,高效液相色谱的分子筛鉴定,LZ8-Fc融合蛋白的纯度为98.33%。
     采用绵羊血红细胞凝集实验鉴定发现与相同摩尔质量的LZ-8蛋白比较,LZ8-Fc凝血活性降低。小鼠脾细胞的γ干扰素活性实验显示,LZ8-Fc未表现出LZ-8刺激脾细胞产生γ-干扰素的免疫调节活性。半衰期检测采用大鼠尾静脉给药的方法,按照5min,30min,1h,2h,4h,8h,24h,48h八个时间点取血,结果表明血清中LZ8在8h内明显下降,24h后超出检测范围,LZ8-Fc融合蛋白在4h后超出检测范围。
     根据SCOP网站的数据库中的信息表明,LZ-8和IgG Fc段的晶体结构均为球蛋白,因而我们利用分子筛为原理的HPLC分析LZ8-Fc在自然状态下的保留时间,进而推断出LZ8-Fc的分子组装方式,实验结果显示LZ8-Fc仍以二聚体形式进行组装的。本研究中还发现一个重要的实验现象,即将LZ8-Fc浓缩至浓度(2.5mg/mL)时,LZ8-Fc分子出现了断裂。本研究中采用分子动力学计算分析LZ8-Fc分子的稳定性,并结合圆二色光谱结构分析,发现融合表达后分子的二级结构出现了很大变化,这可能是影响LZ-8分子稳定性的主要原因。
     本研究为增强LZ-8的体内稳定性,降低其作为异源蛋白的免疫原性进行了初步探索。虽然LZ8-Fc分子仍不够稳定,但本论文的实验数据表明在融合蛋白表达后的应用中普遍存在的一个重要的问题,即位于N末端的蛋白可能会影响下游蛋白质的正确折叠。因此,融合表达中应尽量保留下游蛋白原有的N末端,为其他在融合蛋白表达的设计上提供了理论依据。
Ganoderma lucidum (G. lucidum) has been used in traditional Chinese medicineherbs for countries, and it is regarded as effective nutrients for human bodies. Modernmedical studies have confirmed that G. lucidum extracts have anti-tumor andimmune-regulatory functions. However, most of the studies focused on the mainactive components of G. lucidum such as polysaccharides and triterpenoids. In1989,Kino and colleagues extracted and purified a fraction of small molecule proteins fromthe mycelia of G. lucidum, and named it Ling Zhi immune-regulatory protein (LZ-8).This discovery confirmed the existence of immunomodulatory proteins. Ever sincethen, dozens of research groups investigated in-depth studies on LZ-8through variousgenetic expression systems to obtain the recombinant LZ-8. The crystal structure ofLZ-8has been revealed and the main physico-chemical properties are known. Mostimportantly, the therapeutic value of immunomodulation and antitumor activities ofLZ-8have been studied. Nevertheless, the pharmaceutical development based onLZ-8has not been favorable mainly due to the small molecular weight of LZ-8(13kDa) and its poor stability in vivo. In addition, LZ-8belongs to heterologousprotein family derived from G. lucidum, which leads to serious immune rejection. Inthis study we fused LZ-8with human IgG Fc fraction to produce the LZ8-Fc fusionprotein in a yeast (pichia pastoris) expressing system. The fermentation andpurification technology of LZ8-Fc was established, and its stability in vivo waspreliminary studied. This study will benefit the pharmaceutical development of LZ-8.
     For technical approaches, the flexible peptide (GGSS) was used to connect LZ8and IgG1Fc fraction. The DNA sequence was optimized to yeast codons. The EcoRIand KpnI restrictive enzyme sites were inserted to both terminals of the LZ8-Fccoding sequence.
     The the LZ8-Fc coding sequence was inserted to the plasmid (pPICZɑA). AOX1promoter was also inserted in the vectorfor methanol secretory induction. Therecombinant plasmid was named pPICZɑA-LZ8-Fc and transformed to the yeast strain (X33). The preliminary methanol-inducible expression condition of LZ8-Fc wasoptimized..
     In the40-liter pilot-scale fermentation, the fermentation parameters, includingpH, DO, tank pressure, temperature, ventilation, were further optimized for methanolinduction of LZ8-Fc expression.
     The results of SDS-page electrophoresis and Western Blot analysis on thesupernatant of fermentation indicated that LZ8-Fc protein bands were detectableduring methanol induction, and the degradation bands of LZ8-Fc were detectableafterwards. The fermentation supernatant was treated by a two-stage tangential flowfiltration. Afterwards, the samples were purified by MabSelect Sure affinity andSuperdex75gel filtration chromatography. It was determined that the purificationprocess was steady, and high purity LZ8-Fc fusion proteins were obtained.The resultof electrophoresis showed a single band, and the result of mass spectrometry analysiswas expected. However, the Western Blot analysis indicated that the LZ8-Fc wasdegraded during purification. The LZ8-Fc fusion protein concentration was248g/mL,and the purity was98.33%, detected by high-performance liquid chromatographicidentification. The hemagglutinating activity examination showed that LZ8-Fc hadlower activity than LZ-8in sheep red blood cell agglutination. γ interferon activityof splenocytes was carried out in mice. The result indicated that LZ8-Fc had nostimulation activity of γ-interferon on spleen cells compared with LZ-8. The half-lifedetection was performed by tail vein injection. The blood was collected at5min,30min,1h,2H,4H,8h,24h,48h time points, and the results indicated that rLZ8concentration in serum decreased significantly at8h and out of detection at24h, whileLZ8-Fc was out of detection at4h.
     According to the information of SCOP online database, it showed that the crystalstructure of LZ-8and IgG Fc were both globulin. Thus, the retention time analysis ofLZ8-Fc was performed through molecular screen HPLC. The LZ8-Fc molecularassembly was a dimer. This study also found the phenomena that LZ8-Fc proteinstructure was broken in high concentration (2.5mg/mL). Molecular dynamics,combined with the structural analysis of circular dichroism spectra were utilized in thestability analysis of LZ8-Fc. It was discovered that considerable changes happened tothe secondary structure of LZ8-Fc after expression, which may explain the poor stability of LZ-8.
     This study was carried out to enhancing the stability of LZ-8in vivo and toreduce its immunogenicity as a heterologous protein. Although the LZ8-Fc protein isnot very stable, the results suggested it is important to improve the expression offusion protein. The downstream of the N-terminal of the protein may interrupt thefolding of LZ8-Fc. Therefore, the downstream protein was suggested to retain, whichprovided a theoretical basis for further studies on fusion proteins.
引文
[1] Wasser SP, Weis AL. Therapeutic effects of substances occurring in higherBasidiomycetes mushrooms: a modern perspective [J]. Crit Rev Immunol,1999,19(1):65-96.
    [2] Otagiri K, Ohkuma T, Ikekawa T, et al. Intensification of antitumor-immunity byprotein-bound polysaccharide, EA6, derived from Flammulina velutipes(Curt.exFr.)sing combined with murine leukemia L1210vaccine in animal Experiments[J].J Pharmaco biodynam,1983,6(2):96-104.
    [3] Ikekawa T. Enokitake, Flammulina velutipes. Antitumor activity of extracts andpolysaccharides [J]. Food Rev Int,1995,11(1):203-206.
    [4] Wang HX, Ng TB. Flammulin. a novel ribosome-inactivating protein fromfruiting bodies of the winter mushroom Flammulina velutipes[J]. Biochem CellBiol,2000,78(6):699-702.
    [5] Fukushima M, Ohashi T, Fujiwara Y, et al. Cholesterol-lowering effects ofmaitake (Grifola frondosa) fiber, shiitake (Lentinus edodes) fiber, and enokitake(Flammulina velutipes) fiber in rats[J]. Exptl Biol Med (Maywood),2001,226(8):758-765.
    [6] Ko JL, Hsu CI, Lin RH, et al. A new fungal immunomodulatory protein, FIP-fveisolated from the edible mushroom, Flammulina velutipes and its completeamino acid sequence [J]. Eur J Biochem,1995,228(2):244-249.
    [7] Kino K, Yamashita A, Yamaoka K.et al. Isolation and characterization of a newimmunomodulatory protein, ling zhi-8(LZ-8), from Ganoderma lucidium [J].Journal of Biological Chemistry,1989,264(1):472–478.
    [8] Tanaka S, Ko K, Kino K, et al. Complete amino acid sequence of animmunomodulatory protein, Ling Zhi-8(LZ-8). An immunomodulator from afungus, Ganoderma lucidium, having similarity to immunoglobulin variableregions [J]. J Biol Chem,1989,264(28):1637216377.
    [9] Lin WH, Hung CH, Hsu CI, et al. Dimerization of the N-terminal amphipathicα-helix domain of the fungal immunomodulatory protein from Ganodermatsugae (Fip-gts) defined by a yeast two-hybride system and site-directedmutagenesis [J]. J Biol Chem,1997,272:20044-20048.
    [10] Lin YW, Yeh CH, Huang YH, et al. A new immunomodulatory protein fromGanoderma microsporum inhibits epidermal growth factor mediated migrationand invasion in A549lung cancer cells [J]. Process Biochem2010,45:1537-1542.
    [11] Hsu HC, Hsu CI, Lin RH, et al. Fip-vvo, a new fungal immunomo-dulatoryprotein isolated from Volvariella volvacea [J]. Biochem J,1997,323(Pt2):557-565.
    [12] She QB, Ng TB, Liu WK. A novel lectin with potent immunomodu-latory activityisolated from both fruiting bodies and cultured mycelia of the edible mushroomVolvariella volvacea [J]. Biochem Biophys Res Commun,1998,247:106-111.
    [13] Tanaka S, Ko K, Kino K, et al. Complete amino acid sequence of animmunomo-dulatory protein, ling zhi-8(LZ-8). An immunomodulator from afungus, Ganoderma lucidium, having similarity to immunoglobulin variableregions [J]. J Biol Chem,1989,264(28):16372-16377.
    [14] Murasugi A, Tanaka S, Komiyama N, et al. Molecular cloning of a cDNA and agene encoding an immunomodulatory protein, Ling Zhi-8, from a fungus,Ganoderma lucidum [J]. J Biol Chem,1991,266:2486-2493.
    [15] Murasugi A, Tanaka S, Komiyama N, et al. Molecular cloning of a cDNA and agene encoding an immunomodulatory protein, Ling Zhi-8, from a fungus,Ganoderma lucidum[J]. J Biol Chem,1991,266:2486-2493.
    [16] Shai Y. Molecular recognition between membrane-spanning polypeptides[J].Trends in Biochemical Sciences,1995,20(11):460-464.
    [17] Seow SV, Kuo IC, Paaventhan P, et al. Crystallization and preliminary X-raycrystallographic studies on the fungal immunomodulatory protein Fve from thegolden needle mushroom (Flammulina velutipes)[J]. Acta Crystallogr D BiolCrystallogr,2003,59:1487-1489.
    [18] Paaventhan P, Joseph JS, Seow SV, et al. A1.7structure of Fve, a member ofthe new fungal immunomodulatory protein family [J]. J Mol Biol,2003,332(2):461-470.
    [19] Huang L, Sun F, Liang C, et al. Crystal structure of LZ-8from the medicinalfungus Ganoderma lucidium [J]. Proteins.2009,75(2):524-527.
    [20] Bork P, Holm L, Sander C. The immunoglobulin fold, structural classification,sequence patterns and common core [J]. Journal of Molecular Biology,1994,242(4):309-320.
    [21] Ko JL, Lin SJ, Hsu CI, et al. Molecular cloning and expression of a fungalImmunomodul-atory protein, FIP-fve, from Flammulina velutipes [J]. J FormosMed Assoc,1997,96(7):517-524.
    [22] Hsieh KY, Hsu CI, Lin JY, et al. Oral administration of an ediblemushroom-derived protein inhibits the development of food-allergic reactions inmice [J]. Clin Exp Allergy,2003,33(11):1595-1602.
    [23] Liang CY, Zhang SQ, Liu ZY, Sun F. Ganoderma lucidum immunomodulatoryprotein(LZ-8)expressed in Pichia pastoris and the identification ofimmunocom-petence [J]. Chin J Biotech,2009,25(3):441-447.
    [24] Qin X, Ding YX, Shang CH, et al. Functional expression of LZ8, a fungalImmunomodulatory protein from Ganoderma lucidium in Pichia pastoris [J]. JGen Appl Microbiol,2008,5(6):393-398.
    [25] van der Hem LG, van der Vliet JA, Bocken CF, et al. Ling Zhi-8: studies of a newimmunomodulating agent [J]. Transplantation.1995,60(5):438-443.
    [26] Yeh CH, Chen HC, Yang JJ, et al Polysaccharides PS-G and protein LZ-8fromReishi (Ganoderma lucidum) exhibit diverse functions in regulating murinemacrophages and T lymphocytes [J]. J Agric Food Chem.2010,58(15):8535-8544.
    [27] Lin YL, Liang YC, Tseng YS. An immunomodulatory protein, Ling Zhi-8,induced activation and maturation of human monocyte-derived dendritic cells bythe NF-kappaB and MAPK pathways [J]. J Leukoc Biol.2009,86(4):877-889.
    [28] Zhou H, Sun F, Li H, et al. Effect of recombinant Ganodermalucidum Immunoregulatory protein on cyclophosphamide-induced leukopenia inmice [J]. Immunopharmacol Immunotoxicol.2013,35(3):426-33.
    [29] Lin JW, Hao LX, Xu GX, et al. Molecular cloning and recombinant expression ofa gene encoding a fungal immunomodulatory protein from Ganoderma lucidumin Pichia pastoris [J]. World J Microbiol Biotechnol,2009,25(3):383-390.
    [30] Chien-Ting Wu, Tung-Yi Lin, Hsien-Yeh Hsu, et al. Ling Zhi-8mediatesp53-dependent growth arrest of lung cancer cells proliferation via the ribosomalprotein S7-MDM2-p53pathway [J]. Carcinogenesis2011,32(12):1890-1896.
    [31] LIANG Chong-Yang, XU Wei-Qing, CAO Yan-Xin et al. Dynamic Observationof Cellular Localization of Fluorescein Isothiocyanate Labeled RecombinantGanoderma Lucidum Immunoregulatory Protein(rLZ-8) in NB4APL Cell [J].Chemical Journal of Chinese Universities,2009,30(3):489-492.
    [32] Liang C, Li H, Zhou H,et al. Recombinant Lz-8from Ganoderma luciduminduces endoplasmic reticulum stress-mediated autophagic cell death inSGC-7901human gastric cancer cells [J]. Oncol Rep.2012,27(4):1079-1089.
    [33] Michelle M. Martínez-Montemayor, Raysa Rosario Acevedo, et al.Ganodermalucidum (Ling-Zhi) inhibits cancer cell growth and expression of key moleculesin inflammatory breast cancer [J], Nutrition and Cancer,2011,63,(7):1085-1094.
    [34] Chi-Chen Lin, Yen-Ling Yu, Chia-Chiao Shih, et al. A novel adjuvant Ling Zhi-8enhances the eYcacy of DNA cancer vaccine by activating dendritic cells [J].Cancer Immunol Immunother,2011,60:1019-1027.
    [35] Ching-Liang Chu, Dz-Chi Chen,Chi-Chen Lin. A novel adjuvant Ling Zhi-8forcancer DNA vaccines [J]. Human Vaccines,2011,7:1161-1164.
    [36] Wu CM,Wu T Y,Kao S S,et al. Expression and purification of a recombinantFip-fve protein from Flammulina velutipes in baculovirus-infected insect cell [J].J.Appl.Microbio1,2008,104(5):1354-1362.
    [37] Evans TC, Jr Benner J, Xu MQ. The cyclization and polymerization of bacteriallyexpressed proteins using modified self-splicing inteins [J]. J Biol Chem,1999,274(26):18359-18363.
    [38]梁重阳,张淑芹,刘志屹,等.灵芝免疫调节蛋白(LZ-8)在毕赤酵母中的表达及其免疫活性鉴定[J].生物工程学报,2009,25(3):441-447.
    [39] Nowell PC, Hungerford, DA. A minute chromosome in chronic granulocyticleukemia [J]. Science,1960,132(3438):1488-1501
    [40] Tomlins SA, Rhodes DR, Perner S, Dhanasekaran SM, Mehra R, Sun XW, VaramballyS, Cao X et al. Recurrent fusion of TMPRSS2and ETS transcription factor genes inprostate cancer [J]. Science,2005,310(5748):644-8.
    [41] Mitelman F, Johansson B, Mertens F. The impact of translocations and genefusions on cancer causation [J]. Nature reviews,2007, Cancer7(4):233-45.
    [42] Teixeira MR. Recurrent fusion oncogenes in carcinomas [J]. Critical reviews inoncogenesis,2006,12(3-4):257-71
    [43] Vega F, Medeiros LJ. Chromosomal translocations involved in non-Hodgkinlymphomas [J]. Archives of pathology&laboratory medicine,2003,127(9):1148-60.
    [44] Nacu S, Yuan W, Kan Z, Bhatt D, Rivers CS, Stinson J, Peters BA, Modrusan Z,Jung K, Seshagiri Somasekar, Wu Thomas D. Deep RNA sequencing analysis ofreadthrough gene fusions in human prostate adenocarcinoma and referencesamples [J]. BMC Med Genomics,2011,4(1):11.
    [45] Maher CA, Kumar-Sinha C, Cao X, Kalyana-Sundaram S, Han B, Jing X, Sam L,Barrette T et al. Transcriptome Sequencing to Detect Gene Fusions in Cancer [J].Nature,2009,458(7234):97-101.
    [46] Skotheim RI, Thomassen GO, Eken M, Lind GE, Micci F, Ribeiro FR, CerveiraN, Teixeira MR, Heim S, Rognes Torbjorn, Lothe Ragnhild A. A universal assayfor detection of oncogenic fusion transcripts by oligo microarray analysis [J].Molecular cancer,2009,8:5
    [47] Prendergast FG, Mann KG. Chemical and physical properties of aequorin and thegreen fluorescent protein isolated from Aequorea forsk lea [J]. Biochemistry,1978,17(17):3448-53.
    [48] Williams DP, Parker K, Bacha P, et al. Diphtheria toxin receptor binding domainsubstitution with interleukin-2: Genetic construction and properties of adiphtheria toxinrelated interleukin-2fusion protein [J]. Protein Eng,1987,1(6):493-498.
    [49] Mao HY. A self-cleavable sortase fusion for one-step puriwcation of freerecombinant proteins [J]. Protein Expression and Purification,2004,37:253-263.
    [50] Fabrice L G, Uwe R, Melvyn L, et al. Effect of linker sequences between theantibody variable domains on the formation stability and biological activity of abispecific tandem diabody [J]. Protein Engineering Deign and Selection,2004,17(4):357-366.
    [51] Yu H, Ma Q, Lin J, et al. Expression and purification of GST-FHL2Fusionprotein [J].Genet Mol Res,2013,12(4):6372-6378.
    [52] Gillies SD.A new platform for constructing antibody-cytokine fusion proteins(immunoc-ytokines) with improved biological properties and adaptable cytokineactivity [J]. Protein Eng Des Sel,2013,26(10):561-569.
    [53] Hemmerle T, Hess C, Venetz D, et al. Tumor targeting properties of antibodyfusion proteins based on different members of the murine tumor necrosissuperfamily [J]. J Biotechnol,2014,20;172:73-76.
    [54] Wodak SJ, Janin J. Location of structural domains in protein [J]. Biochemistry,1981Nov10;20(23):6544-6552.
    [55] Uhlén M, Moks T.Gene fusions for purpose of expression: an introduction [J].Methods Enzymol,1990;185:129-143.
    [56] Russell RB, Domain insertion [J]. Protein Eng,1994,7(12):1407-1410.
    [57] Dahiyat BI, Mayo SL. De novo protein design: fully automated sequenceselection [J]. Science,1997,278(5335):82-7.
    [58] Gordon DB, Marshall SA, Mayo SL. Energy functions for protein design [J].Current Opinion in Structural Biology,1999,9(4):509-13.
    [59] Kuhlman B, Dantas G, Ireton GC, Varani G, Stoddard BL, Baker D. Design of anovel globular protein fold with atomic-level accuracy [J]. Science,2003,302(5649):1364-8.
    [60] Sterner R, Merkl R, Raushel FM. Computational design of enzymes [J].Chemistry&biology,2008,15(5):421-3.
    [61] Wu X, Yang ZY, Li Y, Hogerkorp CM, Schief WR, Seaman MS, et al. Rationaldesign of envelope identifies broadly neutralizing human monoclonal antibodiesto HIV-1[J]. Science,2010,329(5993):856-61.
    [62] Boas F, E&Harbury P. B. Potential energy functions for protein design [J].Current Opinion in Structural Biology,2007,17(2):199-204.
    [63] Zhou T, Georgiev I, Wu X, Yang ZY, Dai K, Finzi A, Kwon YD, Scheid JF, et al.Structural basis for broad and potent neutralization of HIV-1by antibody VRC01[J]. Science,2010,329(5993):811-7.
    [64] Privett HK, Kiss G, Lee TM, Blomberg R, Chica RA, Thomas LM, et al. Iterativeapproach to computational enzyme design [J]. Proceedings of the NationalAcademy of Sciences of the United States of America,2012,109(10):3790-5.
    [65] Stranges PB, Machius M, Miley MJ, Tripathy A, Kuhlman B. Computationaldesign of a symmetric homodimer using β-strand assembly [J]. Proceedings ofthe National Academy of Sciences of the United States of America,2011,108(51):20562-7.
    [66] Der BS, Kuhlman B. Strategies to control the binding mode of de novo designedprotein interactions [J]. Current Opinion in Structural Biology,2013,23(4):639-46.
    [67] Zhang H, Lin W, Kannan K, et al. Aberrant chimeric RNA GOLM1-MAK10encoding a secreted fusion protein as a molecular signature forhuman esophagealsquamous cell carcinoma [J]. Oncotarget.2013,4(11):2135-43.
    [68] Tong Zhou, Jianjun Tao, Linguo Li, et al. Modification, expression andbioactivity analysis of hK-Fc fusion protein [J]. Chin J Biotech2009,25(11):1697-1704.
    [69] Qu Meihua, Yu Jiyun, Hu Meiru, et al. Expression and Purification of HumanCD28-Ig Fusion Potein in Eukaryotic Cells [J]. J Med Mol Biol,2005,2(5):337-341.
    [70]李和军,张家永,李频,等人CD40-IgGlFc段融合蛋白对EBV转化的B细胞凋亡的影响[J].免疫学杂志,2009,25(3):279-282.
    [71] Gao Jie,Chang Ting,Wang Jian,et al. Construction of eukaryotic expressionvector of AChR-lgG Fc fragment fusion protein and its expressin in CHOkl cells[J]. Chin J Neuroimmunol&Neurol,2010,17(3),188-191.
    [72]杨建军,张昕洞,周洁等. rhEPO-Fc融合蛋白的表达、纯化及质量研究[J].中国生物工程杂志,2007,27(6):6-9.
    [73] Chamow SM, Ashkenazi A. Immunoadhesins:pri nctples and applications [J].Trends Biotechnol,1996,14(2):52-60.
    [74] Capon DJ,Chamow SM,Mordenti J, et al. Designing CD4Immunoadhesins forAIDS therapy[J]. Nature,1989,337(6207):525-531.
    [75] Kyriakides C,Favuzza J,Wang Y et al. Recombinant soluble P-selectinglycoprotein ligand1moderates local and remote injuries following experimentallower-torso ischaemia [J].Br J Surg,2001,88(6):825-830.
    [76] Simon A,van Deuren M,Tighe PJ et al. Genetic Analysis as a Valuable Key toDiagnosis and Treatment of Periodic Fever [J].Arch Intern Med,2001,161(20):2491-2493.
    [77] Kyriakides C,Favuzza J,Wang Y et al. Recombinant soluble P-selectinglycoprotein ligand1moderates local and remote injuries following experimentallower-torso ischaemia [J]. Br J Surg,2001,88(6):825-830.
    [78] Todo T,Martuza R L,Dallman M J,et al. In situ expression of soluble B7.1in thecontext of oncolytic herpes simplex virus induces potent antitumor immunity[J].Cancer Res,2001,61(1):153-l6l.
    [79]王磊,何剑,肖卫华.人干扰素α2b和IgG Fc片段融合蛋白显著延长体内半衰期[J].生物工程学报,2008,24(1):53-62.
    [80] Ferrari-Lacraz S, Zheng X X, Kim Y S, et al. An antagonist IL-15/Fc proteinprevents costimulation blockade resistant rejection [J].J Immunol,2001,167(6):3478-3485.
    [81] Tisch R,Wang B,Weaver D J,et al. Antigen-specific mediated suppression of betacell autoimmunity by plasmid DNA vaccination [J].J Immunol,2001,166(3):2122-2132.
    [82] Powell JS, Pasi KJ, Ragni MV, et al. Phase3study of recombinant factor IX Fcfusion protein in hemophilia B[J]. N Engl J Med,2013,369(24):2313-2323.
    [83] Forsberg G, Ohlsson L, Brodin T,et al. Therapy of human non-small-cell lungcarcinoma using antibody targeting of a modified superantigen [J].Br J Cancer,2001,85(1):129-136.
    [84] Liao S,Khare PD,Arakawa F, et al. Targeting of LAK activity to CEA-expressingtumor cells with an anti-CEA scFv/IL-2fusion protein [J].Antmancer Res,2001,21(3B)1673-1680.
    [85] Marshall KW, Marks JD. Engineering and characterization of a novel fusionprotein incorporating B7.2and an anti-ErbB-2single-chain antibody fragmentfor the activation of Jurkat T cells [J].J Immunother,2001,24(1):27-36.
    [86] Otagiri M. A molecular functional smdy on the interactions of drugs with plasmaproteins [J].Drug Metab Pharmacokinet,2005,20(5):309-323.
    [87] Lucas L H, Price K E, Larive C K. Epitope mapping and competitive binding ofHSA drug site II ligands by NMR diffusion measurements [J]. J Am Chem Soc,2004,126(43):14258-14266.
    [88]边蕾,石屹峰.蛋白质药物长效化技术的现状和进展[J].中国生物工程杂志,2009,29(1):114-118.
    [89] Chuang V T, Kragh-Hansen U, Otagiri M. Pharmaceutical strategies utilizingrecombinant human serum albumin[J]. Pharm Res,2002,19(5):569-577.
    [90] Nguyen A,Reyes AE,Zhang M,et al.The pharmacokinetics of an albumin-bindingFab (AB.Fab)call be modulated as a function of affinity for albumin[J].ProteinEng Des Sel,2006,19(7):291-297.
    [91] Chuang V T, Kragh-Hansen U, Otagiri M. Pharmaceutical strategies utilizingrecombinant human serum albumin[J]. Pharm Res,2002,19(5):569-577.
    [92] Lubenow N,Creinacher A. Hirudin in heparin induced thrombocytopenia [J].Semin Thro mb Hemost,2002;28:431-438.
    [93] Zhou AY, Bai YJ, Zhao M, et al.KH902, a recombinant human VEGFreceptor fusion protein, reduced the level of placental growth factor in alkali burninduced-corneal neovascularization [J]. Ophthalmic Res,2013,50(3):180-186.
    [94] Hemmerle T, Hess C, Venetz D, et al.Tumor targeting properties ofantibody fusion proteins based on different members of the murine tumornecrosis superfamily [J]. J Biotechnol.2014,172:73-76.
    [95] Woo JH, Liu YY, Mathias A, et al. Gene optimization is necessary to express abivalent anti-human anti-T cell immunotoxin in Pichia pastoris [J]. ProteinExpression and Purification2002,25:270-282.
    [96] Sharp PM, Tuohy TM, Mosurski KR: Codon usage in yeast: cluster analysisclearly differentiates highly and lowly expressed genes [J]. Nucleic AcidsResearch,1986,14:5125-5143.
    [97] Kim CH, Oh Y, Lee TH. Codon optimization for high-level expression of humanerythropoietin (EPO) in mammalian cells [J]. Gene,1997,199:293-301.
    [98] Hitzeman RA, Hagie FE, Levine HL, et al. Expression of a human gene forinterferon in yeast [J]. Nature,1981,293(5835):717-22.
    [99] Cregg JM, Cereghino JL, Shi J, et al. Recombinant protein expression in Pichiapastoris [J]. Mol Biotechnol,2000,16:23-52.
    [100] Boze H, Celine L, Patrick C, et al. High-level secretory production ofrecombinant porcine follicle-stimulating hormone by Pichia pastoris [J]. ProcessBiochemistry2001,36:907-913.
    [101] Hong F, Meinander NQ, Jonsson LJ. Fermentation strategies for improvedheterologous expression of laccase in Pichia pastoris [J]. Biotechnology andBioengineering,2002,79:438-449.
    [102] Liu SC, Webster DA, Stark BC. Cloning and expression of the Vitreoscillahemoglobin gene in pseudomonads: Effects on cell growth [J]. AppliedMicrobiology and Biotechnology,1995,44:419-424.
    [103] Li Z, Xiong F, Lin Q, et al. Low-temperature increases the yield of biologicallyactive herring antifreeze protein in Pichia pastoris [J]. Protein Expr Purif2001,21:438-445.
    [104] Hao YY, Chu J, Wang YH, et al. The inhibition of aggregation of recombinanthuman consensus interferon-alpha mutant during Pichia pastoris fermentation [J].Applied Microbiology and Biotechnology,2007,74:578-584.
    [105] Shi X, Karkut T, Chamankhah M, et al. Optimal conditions for the expression of asingle-chain antibody (scFv) gene in Pichia pastoris [J]. Protein Expr Purif,2003,28:321-330.
    [106] Cos O, Ramon R, Montesinos JL, et al. Operational strategies, monitoring andcontrol of heterologous protein production in the methylotrophic yeast Pichiapastoris under different promoters: a review [J]. Microb Cell Fact2006,5:17.
    [107] Mallela M.G. Krishna and S.Walter Englander: The N-terminal to C-terminalmotif in folding and function [J].PNAS,2005,102:1053-1058.
    [108] Sandeep Kumar, Yuk Yin Sham, et al: Protein Folding and Function: TheN-Terminal Fragment in Adenylate Kinase [J]. Biophysical Jounal,2001,80:2439-2454.
    [109] Nickolai Alexandrov: Structural argument for N-terminal initiation of proteinfolding [J]. Protein Science,1933,2:1989-1991.
    [110] Kumar Shankar, Rosenberg John M, Bouzida Djamal Swendsen Robert H, et al.The weighted histogram analysis method for free-energy calculations onbiomolecules I The method [J]. Journal of Computational Chemistry,1992,13(8):1011-1021.
    [111] Sugita Yuji, Yuko Okamoto. Replica-exchange molecular dynamics method forprotein folding [J]. Chem Phys Letters,1999,314:141-151.
    [112] David E, Shaw Paul Maragakis, Kresten Lindorff-Larsen, Stefano Piana, Ron Oet al. Atomic-Level Characterization of the Structural Dynamics of Proteins [J].Science,2010,330,6002:341-346.
    [113] Chakrabarty A, T Cagin. Coarse grain modeling of polyimide copolymers[J]. Polymer,2010,51:2786-2794.
    [114] Paci E, M Vendruscolo, M Karplus. Validity of Go Models: Comparison with aSolvent-Shielded Empirical Energy Decomposition [J]. Biophys J,2002,83(6):3032-3038.
    [115] Kresten Lindorff Larsen, Stefano Piana, Ron O, et al. How Fast-Folding ProteinsFold [J], Science,2011,334(6055):517-520.
    [116] Lamoureux G, Harder E, Vorobyov IV, Roux B, MacKerell AD. A polarizablemodel of water for molecular dynamics simulations of biomolecules [J]. ChemPhys Lett,2006,418:245-249.
    [117] B Jayasena C, D Reddy and S Subbiah. Separation, folding and shearing ofgraphene layers during wedge-based mechanical exfoliation [J]. Nanotechnology,2013,24(20).
    [118] Buddhika Jayasena and Sathyan Subbiah. A novel mechanical cleavage methodfor synthesizing few-layer graphemes [J]. Nanoscale Research Letters,2011,6:95.
    [119] Offman MN, M Krol, I Silman, JL Sussman, AH Futerman. Molecular basis ofreduced glucosylceramidase activity in the most common Gaucher disease mutant,N370S [J]. J. Biol. Chem,2010,285(53):42105-42114.
    [120] Booth V, Koth CM, Edwards AM, Arrowsmith CH. Structure of a conserveddomain common to the transcription factors TFIIS, elongin A, and CRSP70[J].Journal of Biological Chemistry,2000,275:31266-31268.
    [121] Lin-Tai Da, Wang D, Huang X. Dynamics of pyrophosphate ion release and itscoupled trigger loop motion from closed to open state in RNA polymerase II [J].Journal of the American Chemical Society,2012,134:2399-2406.
    [122] Eun C, Ortiz-Sánchez JM, Da L, Wang D, McCammon JA. Molecular DynamicsSimulation Study of Conformational Changes of Transcription Factor TFIISduring RNA Polymerase II Transcriptional Arrest and Reactivation [J]. PLoS One,2014,19:9(5).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700