固定细胞发酵产纤维素酶及纤维素乙醇的生产应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
木质纤维素是自然界中最丰富的可再生资源,其生物炼制技术的开发应用极具前景。木质纤维素酶能将木质纤维素转化为可发酵的还原糖,进而转化为生物乙醇等生化产品,在生物炼制过程中起着至关重要的作用。本研究主要围绕制备高活性纤维素酶和高浓度纤维素乙醇而展开。首先通过产高活性纤维素酶菌株的筛选、鉴定,固定细胞共发酵,分泌蛋白分析、鉴定,以及菌丝细胞发酵形态分析等方法,制备一种新型的可高效水解蔗渣的纤维素酶产品。然后进一步研究了纤维素酶在木质纤维素底物生产高浓度乙醇中的实际应用,内容涉及木质纤维素制备乙醇的三个主要过程,即木质纤维素底物的预处理、酶水解以及发酵。主要研究结果如下:
     1.采用以蔗渣为唯一碳源的固体培养基,从糖厂蔗渣堆中分离出了40株生长良好的真菌菌株。通过比较发酵液的CMC(羧甲基纤维素)酶活、滤纸酶活、纤维二糖酶活、木聚糖酶活以及蔗渣糖化效率等评价指标,筛选获得了两株高产纤维素酶的菌株SCUT-18和SCUT-20。经18S rDNA测序和菌丝形态鉴定,确定两株菌分别是泡盛曲霉(Aspergillus awamori)和烟曲霉(Aspergillusfumigatus)。
     2.利用泡盛曲霉和烟曲霉两株菌进行混菌液态发酵(发酵条件为:28oC,90rpm,初始pH值4.8),发酵液对蔗渣的糖化效率较单菌发酵提高了约30%。在培养基中添加2%麸皮后,发酵液对蔗渣的糖化效率从32.2%提高到42.6%。进而,以聚丙烯纤维布作为细胞固定化基质进行了固定细胞混菌发酵,发酵液对蔗渣的糖化效率进一步提高到48.3%。当酶载量为8FPU/g干蔗渣,于50oC,140rpm,反应48h,固定细胞混菌发酵所得发酵液水解蔗渣效率提高至68.6%,高于Genencor商业酶ACCELLERASE1500在同样酶解条件下的蔗渣水解效率62.1%。
     3.一方面,泡盛曲霉和烟曲霉的混菌发酵体系较单菌发酵更加复杂,其相关分析更难深入,另一方面,模式菌株相关的基因序列以及蛋白分析等信息较为丰富,因此,模式菌株单菌发酵更有利于菌株细胞形态以及分泌蛋白等研究的深入进行。本研究继而采用高产木质纤维素酶的模式菌株——绿色木霉(Trichoderma viride QM9414)作为发酵菌株,以蔗渣和麸皮为碳源,在7L传统发酵罐和7L旋转纤维床生物反应器Rotating Fibrous Bed Bioreactor(RFBB)中分别进行绿色木霉游离细胞和固定细胞单菌发酵。对发酵液酶活性、蔗渣水解效率以及菌丝形态进行分析,结果表明,与游离细胞发酵相比,固定细胞发酵所得发酵液的滤纸酶活性提高了35.4%,糖化蔗渣的效率则提高了69.7%;菌丝形态的差异则揭示了固定细胞发酵对细胞提供氧气和营养物质方面的优势。
     4.利用二维电泳(2-DE)和MALDI-TOF-TOF质谱等技术方法,分析了固定细胞发酵和游离细胞发酵过程中绿色木霉分泌蛋白的差异。结果表明,固定细胞发酵和游离细胞发酵的分泌蛋白存在显著差异,24个表达水平有显著差异的蛋白被成功鉴定,分别为纤维二糖水解酶CBHⅠ和CBHⅡ、内切葡聚糖酶EGⅡ和EGⅣ、α淀粉酶以及膨胀因子(swollenin)。与游离细胞发酵相比,固定细胞发酵促使绿色木霉细胞分泌和表达了更多的CBHⅡ,而游离细胞发酵则促使更多的CBHⅠ分泌和表达。这些结果很可能解释了固定细胞发酵培养液和游离细胞发酵培养液水解蔗渣效率存在差异的原因。
     5.为了进一步了解纤维素酶在纤维素乙醇制备中的实际应用情况以及纤维素乙醇制备的整体过程与其中各因素间的相互影响,并制备高浓度纤维素乙醇,开展了一系列研究,包括如何促进酶解效率,如何消除酶解发酵过程中的抑制作用简化发酵工艺等。研究表明,不同预处理方式(稀酸法,碱法,SPORL亚硫酸盐法)所得木质纤维素底物的水解效率随pH变化的曲线存在很大的差异。经SPORL法预处理的木质纤维素黑松在水解体系pH高达6.2时(几乎所有文献报道的最佳酶解pH为4.8-5.2)水解效率最大。以SPORL法预处理的黑松作为底物,在研究所得的最适pH6.2,采用分批加料同时糖化发酵的策略,将预处理后的底物的固体和液体部分一起充分利用,进行19.5%(w/w)的高浓度底物发酵,获得了高达47.4g/L的乙醇浓度,乙醇的转化率为285L/ton干底物。这是一个极具商业潜能的结果。
Lignocellulose is the most abundant renewable resource and its application in biorefineryis potential. Lignocellulases can convert lignocellulose to fermentable sugars for variousbiochemicals, including bioethanol. Thus, lignocellulases play an important role inbiorefinery. The objectives in this study were mainly to obtain a novel cellulase productionwith high activity and a high titer ethanol production. Based on this, two strains producingcellulases with high activity were first screened and identified, and then, coculture andimmobilized cell fermentations were conducted. In order to explore the advantages ofimmobilized cell fermentation, cell morphology and secretory proteins were also investigated.Subsequently, the practical application of cellulases in cellulosic ethanol production wasfurther studied to obtain a high titer ethanol, which involved the main three processes ofproducing cellulosic ethanol, i.e. pretreatment, hydrolysis and fermentation. The detailedcontents are as follows:
     (1) In this chapter, forty mycelial isolates were selected and purified from naturallyfermented SCB with the medium in which SCB was the only carbon source. Based on theactivities of CMCase, FPase, cellobiase, and xylanase and the saccharification yield ofsugarcane bagasse, two cellulase-overproducing isolates, SCUT-18and SCUT-20werescreened. By determining18S rDNA sequences and examining mycelial morphologies, thesetwo isolates were identified as Aspergillus awamori and Aspergillus fumigatus, respectively.
     (2) In this chapter, the submerged coculture of Aspergillus awamori and Aspergillusfumigatus was studied (culture conditions:28oC,90rpm, initial pH4.8), and the resultsshowed that the saccharification yield of SCB by the coculture broth was~30%higher thanthose by the individual culture broths. Adding2%wheat bran in the cocultured fermentationincreased the saccharification yield of the produced broth from32.2%to42.6%. When usingthe broth produced by the coculture with cells immobilized on a polypropylene cloth, thesaccharification yield further increased to48.3%. A higher saccharification yield of68.6%was obtained when the immobilized-cell fermentation broth was concentrated5-fold toincrease its protein content to a comparable level to that of the commercial lignocellulases,Genencor ACCELLERASE1500, which gave a saccharification yield of62.1%(hydrolysisconditions:50oC,140rpm,48h).
     (3) On the one hand, coculture fermentation of A. awamori and A. fumigatus was morecomplex than individual fermentation, which made further analysis on coculture fermentationmore difficult; on the other hand, the information on gene sequences and protein analysis of a model strain is richer than that of an ordinary one. Thus, the individual fermentation of themodel strain is more helpful to the further study on cell morphology and secretory proteins. Inthis chapter, the submerged fermentations with free cells in a7L stirred-tank reactor (STR)and immobilized cells in a7L rotating fibrous-bed bioreactor (RFBB) by the cellulase-overproducing model strain Trichoderma viride were conducted by using sugarcane bagasseand wheat bran as the carbon source. Through the analysis of enzyme activities,saccharification yield of SCB and cell morphology, it was found that immobilized-cellfermentation gave35.5%higher FPase activity and69.7%higher saccharification yield ofSCB compared to free-cell fermentation and the difference in cell morphology between thetwo fermentations demonstrated the advantages of oxygen and nutrients transfer to cells inimmobilized-cell fermentation.
     (4) In this chapter, the difference in secretory proteins between the broths of free-cell andimmobilized-cell fermentations by T. viride was analyzed with two-dimensional gelelectrophoresis (2-DE) and MALDI-TOF-TOF mass spectrometry. The results showed thatthe secretory proteins had significant differences between the broths of the two fermentationsand24protein spots with significantly differential expression levels were successfullyidentified, including CBHI, CBHII, EGII, EGIV, α-amylase and swollenin. Among them,cellobiohydrolase CBHIΙ was highly expressed and secreted in the immobilized-cellfermentation, while the free-cell fermentation produced more CBH, and the activity ofCBHII is2-fold higher than that of CBHI, which probably was responsible for explaining thedifference of saccharification of sugarcane bagasse between free-cell fermentation andimmobilized-cell fermentation.
     (5) In this chapter, to further (1) learn the practical application of cellulases in cellulosicethanol production,(2) the whole process of producing cellulosic ethanol,(3) the correlationsof factors in production process, and (4) produce a high titer ethanol, a series of studies weredone, including the relationships between lignocellulose pretreatment method and enzymatichydrolysis efficiency, improvement of enzymatic hydrolysis and elimination of inhibitors inhydrolysis and fermentation processes. The results showed that enzymatic saccharificationresponse curves of lignocellulose substrates by various pretreatments (dilute acid, alkaline,and SPORL) were very different based on pH. The maximal saccharification of the lodgepolepine pretreated by SPORL occurred at the substrate suspension of pH6.2which wassignificantly different from pH4.8-5.2reported in literature. Then, the lodgepole pinepretreated by SPORL was used as the substrate, a fed-batch simultaneous saccharification andfermentation with the liquor derived from pretreatment was conducted at up to19.5%total solids loading at the optimal pH6.2. A maximum ethanol titer of47.4g/L was achieved,resulting in a calculated yield of285L/ton of dry substrate. This result is potential incommerce.
引文
[1] Geddes C.C, Nieves I.U., Ingram L.O. Advances in ethanol production [J]. CurrentOpinion in Biotechnology,2011,22:1-8.
    [2] Wiesenthal T., Leduc G., Christidis P., et al. Biofuel support policies in Europe: lessonslearnt for the long way ahead [J]. Renewable and Sustainable Energy Reviews,2009,13:789-800.
    [3] Hoekman S.K. Biofuels in the US-challenges and opportunities [J]. Renewable Energy,2009,34:14-22.
    [4] Kim Jun-Seok, Park Soon-Chul, Kim J.W., Park J.C., Park S.M., Lee J.S. Production ofbioethanol from lignocellulose: Status and perspectives in Korea [J]. BioresourceTechnology,2010,101:4801-4805.
    [5] Mirasol F. Green Job, a class act [J]. Chemical Business,2010,277:30-31.
    [6] Hogan T. Factors that impact crude oil pricing [C]//NPRA Annual Meeting, March22-24,2009, San Antonio, TX, USA.
    [7] Gerald Ondrey. Bioalcoholic fuels [J]. Chemical Engineering,2010,117(5):25-29.
    [8] Zhang Y., Xu J., et al. Research progress of fuel-ethanol production by lignocelluloses [J].China Biotechnology,2008,28:311-315.
    [9] Galbe M., Zacchi G. Pretreatment of lignocellulosic materials for efficient bioethanolproduction [J]. Adv Biochem Eng Biotechnol,2007,108(0):41-65.
    [10] Mosier N., Wyman C., Dale B., et al. Features of promising technologies forpretreatment of lignocellulosic biomass [J]. Bioresource Technol,2005,96(6):673-686.
    [11] Zhao X., Zhang L., Liu D. Biomass recalcitrance. Part II: Fundamentals of differentpretreatments to increase the enzymatic digestibility of lignocellulose [J]. Biofuels,Bioproducts and Biorefining,2012, doi:10.1002/bbb.1350.
    [12] Zhao X., Zhang L., Liu D. Biomass recalcitrance. Part I: the chemical compositions andphysical structures affecting the enzymatic hydrolysis of lignocellulose [J]. Biofuels,Bioproducts and Biorefining,2012, doi:10.1002/bbb.1331.
    [13] Zhu J.Y., Pan X.J., Wang G.S,. et al. Sulfite pretreatment (SPORL) for robust enzymaticsaccharification of spruce and red pine [J]. Bioresource Technology,2009,100(8):2411-2418.
    [14] Ogier J.C., Ballerini D., et al. Ethanol production from lignocellulosic biomass [J]. Oil&Gas Science and Technology,1999,54(1):67-94.
    [15] Lee Y.Y., Iyer P., et al. Dilute-acid hydrolysis of lignocellulosic biomass [J]. AdvancedBiochemical Engineering Biotechnology,1999,65:93-115.
    [16] Eveleigh D.E. Cellulase: a perspective [J]. Philosophical Transactions of the RoyalSociety of London Series A-mathematical Physical and Engineering Sciences,1987,321:435-447.
    [17] Adsul M.G., Ghuleb J.E., Singhb R., Shaikhb H., Bastawdea K.B., Gokhalea D.V.,Varmab A.J. Polysaccharides from bagasse: applications in cellulase and xylanaseproduction [J]. Carbohydrate Polymers,2004,57:67-72.
    [18] Taherzadeh M.J., Karimi K. Enzyme-based hydrolysis processes for ethanol fromlignocellulosic materials: a review [J]. Bioresources,2007,2(4):707-738.
    [19]李宪臻,黄云战,徐德贵,金凤燮,高培基。天然纤维素的微生物降解机理研究进展[J]。食品与发酵工业,1996,2:74-78.
    [20] F gerstam L.G., Pettersson L.G. The1,4-β-glucan cellobiohydrolases of Trichodermareesei QM9414[J]. FEBS Letters,1980,119(1):97-100.
    [21] Tomme P., Van Tilbeurgh H., Pettersson G., et al. Studies of the cellulolytic system ofTrichoderma reesei QM9414: analysis of domain function in two cellobiohydrolases bylimited proteolysis [J]. European Journal of Biochemistry,1988,170(3):575-581.
    [22] Wood T.M., McCrae S.I. The cellulase of Penicillium pinophilum: synergism betweenenzyme components in solubilizing cellulose with special reference to the involvement oftwo immunologically-distinct cellobiohydrolases [J]. Biochemical Journal,1986,234(1):93-99.
    [23] Mansfield S.D., Saddler J.N., Gubitz G.M. Characterization of endoglucanases from thebrown rot fungi Gloeophyllum sepiarium and Gloeophyllum trabeum [J]. Enzyme andMicrobial Technology,1998,23(1-2):133-140.
    [24] Lamed R., Kenig R., Morag E., et al. Efficient cellulose solubilization by a combinedcellulosome-glucosidase system [J]. Applied Biochemistry and Biotechnology,1991,27(2):173-183.
    [25] Din N., Damude H.G., Gilkes N.R., et al. C1-Cx revisited: intramolecular synergism in acellulase [J]. Proceedings of the National Academy of Sciences of the United States ofAmerica,1994,91(24):11383-11387.
    [26] Gupta R., Lee Y.Y. Mechanism of Cellulase reaction on pure cellulosic substrates [J].Biotechnology and Bioengineering,2009,102(6):1570-1581.
    [27] Fierobe H.P., Mechaly A., Tardif C., et al. Design and production of active cellulosomechimeras: selective incorporation of dockerin-containing enzymes into defined functionalcomplexes [J]. Journal of Biological Chemistry,2001,276(24):21257-21261.
    [28] Murashima K., Kosugi A., Doi R.H. Synergistic effects of cellulosomal xylanase andcellulases from Clostridium cellulovorans on plant cell wall degradation [J]. Journal ofBacteriology,2003,185:1518-1524.
    [29] Salohimo M., Paloheimo M., Hakola S., Pere J., Swanson B., Nyyss nen E., Bhatia A.,Ward M., Penttil M. Swollenin, a Trichoderma reesei protein with sequence similarity tothe plant expansins, exhibits disruption activity on cellulosic materials [J]. EuropeanJournal of Biochemistry,2002,269:4202-4211.
    [30] Cardona C.A., Sa′nchez O′.J. Fuel ethanol production: Process design trends andintegration opportunities [J]. Bioresource Technology,2007,98(12):2415-2457.
    [31] Singh A., Singh N., Bishnoi N.R. Production of cellulases by Aspergillus heteromorphusfrom wheat straw under submerged fermentation [J]. International Journal ofEnvironmental Science and Engineering,2009,1:1.
    [32] Herr D. Secretion of cellulase and β-glucosidase by Trichoderma viride ITCC-1433insubmerged culture on different substrates [J]. Biotechnology and Bioengineering,2004,21(8):1361-1371.
    [33] Demain A.L., Newcomb M., Wu J.H.D. Cellulase, Clostridia, and Ethanol [J].Microbiology and Molecular Biology Reviews,2005,69(1):124-154.
    [34] Si Z. Cellulose digestion mechanism of ruminant animals [J]. Animal Science andVeterinary Medicine,2004,21(3):46-48.
    [35] Li L., Fr hlich J., et al. Termite gut symbiotic archaezoa are becoming living metabolicfossils [J]. Eukaryotic Cell,2003,2(5):1091-1098.
    [36] Qu Jun-ge, Yao Xiao-min, et al. Screening of cellulase-producing marine bacteria fromNingbo sea area [J]. Journal of Shanghai Ocean University,2012,21(2):252-256.
    [37] Li Z.M., Wang Y.B. Advancement of cellulase-producing strains breeding [J]. Food andNutrition in China,2009,9:45-47.
    [38] Ahamed A., Vermette P. Enhanced enzyme production from mixed cultures ofTrichoderma reesei RUT-C30and Aspergillus niger LMA grown as fed batch in a stirredtank bioreactor [J]. Biochemical Engineering Journal,2008,42:41-46.
    [39] Xia L.M., Shen X.L. High-yield cellulase production by Trichoderma reesei ZU-02oncorn cob residue [J]. Bioresource Technology,2004,91(3):259-262.
    [40] Niranjane A.P., Madhou P., Stevenson T.W. The effect of carbohydrate carbon sourceson the production of cellulase by Phlebia gigantea [J]. Enzyme and Microbial Technology,2007,40:1464-1468.
    [41] Jeya M., Zhang Ye-Wang, Kim In-Won, Lee Jung-Kul. Enhanced saccharification ofalkali-treated rice straw by cellulase from Trametes hirsuta and statistical optimization ofhydrolysis conditions by RSM [J]. Bioresource Technology,2009,100:5155-5161.
    [42] Lopez M.J., Vargas-Garc a M.C., Su rez-Estrella F., et al. Lignocellulose-degradingenzymes produced by the ascomycete Coniochaeta ligniaria and related species:application for a lignocellulosic substrate treatment [J]. Enzyme and MicrobialTechnology,2007,40:794-800.
    [43] Xu Qing-qiang, Zhang Zhi-ming, et al. Screening, identification and properties study ofmarine bacteria producing alkaline cellulase [J]. Marine Sciences,2009,33(7):1-5.
    [44] Acharya S., Chaudhary A. Optimization of fermentation conditions for cellulasesproduction by Bacillus licheniformis MVS1and Bacillus sp MVS3isolated from Indianhot spring [J]. Brazilian Archives of Biology and Technology,2012,55(4):497-503.
    [45] Harkki A., Mantyla A., Penttila M., Muttilainen S., Buhler R., Suominen P., Knowles J.,Nevalainen H. Genetic engineering of Trichoderma to produce strains with novel cellulaseprofiles [J]. Enzyme and Microbial Technology,1991,13(3),227-233.
    [46] Chand P., Aruna A., Maqsood A. M., Rao L. V. Novel mutation method for increasedcellulase production [J]. Journal of Applied Microbiology,2005,98(2),318-323.
    [47]迟乃玉,张庆芳.微生物发酵生产低温纤维素酶的方法[P].中国:200610002014,2006/07/26.
    [48]陈洪章,徐建.现代固态发酵原理及应用[M].北京:化学工业出版社,2004:5-6.
    [49]刘婧.斜卧青霉纤维素酶液态发酵工艺研究[D].内蒙古自治区呼和浩特:内蒙古农业大学,2011.
    [50] Van Dijck P.W.M. Aspergillus Systematics in the Genomic Era-an InternationalWorkshop, The importance of Aspergilli in biotechnology [R]. Utrecht: DSM FoodSpecialties, April12-14,2007.
    [51] Tolan J.S., Foody B. Cellulase from submerged fermentation [J]. Advances inBiochemical Engineering/Biotechnology,1999,65:41-67.
    [52] Wojtczak G., Breuil C., Yamuda J., Saddler J.N. A comparision of the thermostability ofcellulose from various thermophilic fungi [J]. Applied Miocrobiology and Biotechnology,1987,27:82-87.
    [53]陈璘娜,顾金刚,徐凤花,姜瑞波。产纤维素酶真菌混合发酵研究进展[J]。中国土壤与肥料,2007,4:16-21.
    [54] Sternberg D. β-Glucosidase of Trichoderma: its biosynthesis and role in saccharificationof cellulose [J]. Applied and Environmental Microbiology,1976,31:648-654.
    [55] Wen Z., Liao W., Chen S. Production of cellulase/β-glucosidase by the mixed fungiculture of Trichoderma reesei and Aspergillus phoenicis on dairy manure [J]. AppliedBiochemistry and Biotechnology,2005,121-124:93-104.
    [56] Duff S.J.B., Cooper D.G., Fuller O.M. Effect of media composition and growthconditions on production of cellulase and β-glucosidase by a mixed fungal fermentation[J]. Enzyme and Microbial Technology,1987,9:47-52.
    [57] Takashima S., Likura H., Nakamura A., et al. Overproduction of recombinantTrichoderma reesei cellulases by Aspergillus oryzae and their enzymatic properties [J].Journal of Biotechnology,1998,65(2-3):163-171.
    [58] Gutierrez-Correa M., Tengerdy R.P. Production of cellulase on sugar cane bagasse byfungal mixed culture solid substrate fermentation [J]. Biotechnology Letter,1997,19:665-667.
    [59] Flachner B., Brumbauer A., Reczey K. Stablization of β-glucosidase in Aspergillusphoenicis QM329pellets [J]. Enzyme and Microbial Technology,1999,24:362-367.
    [60] Gutierrez-Correa M., Portal L., Moreno P., Tengerdy R.P. Mixed culture solid substratefermentation of Trichoderma reesei with Aspergillus niger on sugar can bagasse [J].Bioresource Technology,1999,68:173-178.
    [61]司美茹,薛泉宏,蔡艳。混合发酵对纤维素酶和淀粉酶活性的影响[J]。西北农林科技大学学报(自然科学版),2002,50(5):69-74.
    [62]蒲一涛,钟毅沪,郑宗坤。混合培养对固氮菌和纤维素分解菌生长及固氮的影响[J]。氨基酸和生物资源,2000,2(1):1-4.
    [63]涂璇,薛泉宏,司美茹,龚明福。多元混菌发酵对纤维素酶活性的影响[J]。工业微生物,2004,34(1):30-34.
    [64] Domingues F.C., Queiroz J.A., Cabral J.M.S., Fonseca L.P. The influence of cultureconditions on mycelial structure and cellulase production by Trichoderma reesei Rut C-30[J]. Enzyme and Microbial Technology,2000,26:394-401.
    [65] Tay A., Yang S.T. Production of L(+)-lactic acid from glucose and starch byimmobilized cells of Rhizopus oryzae in a rotating fibrous bed bioreactor [J].Biotechnology and Bioengineering,2002,80:1-12.
    [66] Thongchul N., Yang S.T. Controlling biofilm growth and lactic acid production byRhizopus oryzae in a rotating fibrous bed bioreactor: Effects of dissolved oxygen,rotational speed, and urea concentration [J]. Journal of the Chinese Institute of ChemicalEngineers,2006,37:49-61.
    [67] Villena G.K., Gutiérrez-Correa M. Production of cellulase by Aspergillus niger biofilmsdeveloped on polyester cloth [J]. Letters in Applied Microbiology,2006,43:262-268.
    [68] Akihiro H., James C.O., Hideki A., Hideo T. Acetylation of loofa (Luffa cylindrica)sponge as immobilization carrier for bioprocesses involving cellulase [J]. Journal ofBioscience and Bioengineering,2007,103:311-317.
    [69] Talabardon M., Yang S.T. Production of GFP and glucoamylase by recombinantAspergillus niger: effects of fermentation conditions on fungal morphology and proteinsecretion [J]. Biotechnology Progress,2005,21:1389-1400.
    [70] Xu Z.N., Yang S.T. Production of mycophenolic acid by Penicillium brevicompactumimmobilized in a rotating fibrous-bed bioreactor [J]. Enzyme and Microbial Technology,2007,40:623-628.
    [71] Wang Z., Wang Y., Yang S.T., Wang R., Ren H. A novel honeycomb matrix for cellimmobilization to enhance lactic acid production by Rhizopus oryzae [J]. BioresourceTechnology,2010,101:5557-5564.
    [72] Xia L.M., Shen X.L. High-yield cellulase production by Trichoderma reseei ZU-02oncorn cob residue [J]. Bioresource Technology,2004,91:259-262.
    [73] Zhang Hai-Jing, Liu H., Lv Li-Yan, Chen Guo-Qiang, Li Zhi-Li. Research progress onsecretome [J]. Chinese Journal of Analytical Chemistry,2007,35:912-918.
    [74] Tjalsma H., Bolhuis A., Jongbloed Jan D.H., Bron S.B., Dijl Jan M.V. Signal peptide-dependent protein transport in Bacillus subtilis: a genome-based survey of the secretome[J]. Microbiology and Molecular Biology Reviews,2000,64:515-547.
    [75] Sheehan J., Himmel M. Enzymes, energy, and the environment: a strategic perspectiveon the U.S. Department of Energy’s research and development activities for bioethanol [J].Biotechnology Progress,1999,15:817-827.
    [76] Saloheimo M., Pakula T.M. The cargo and the transport system: secreted proteins andprotein secretion in Trichoderma reesei (Hypocrea jecorina)[J]. Microbiology,2012,158,46-57.
    [77] Adav S.S., Chao L.T., Sze S.K. Quantitative secretomic analysis of Trichoderma reeseistrains reveals enzymatic composition for lignocellulosic biomass degradation [J].Molecular and Cellular Proteomics,2012,11(7), DOI:10.1074.
    [78] Manavalan A., Adav S.S., Sze S.K. iTRAQ-based quantitative secretome analysis ofPhanerochaete chrysosporium [J]. Journal of Proteomics,2011,75(2):642-654.
    [79] Phillips C.M., Iavarone A.T., Marletta M.A. Quantitative proteomic approach forcellulose degradation by Neurospora crassa [J]. Journal of Proteome Research,2011,10(9):4177-4185.
    [80] Adav S.S., Li A.A., Punt P., et al. Quantitative iTRAQ secretome analysis of Aspergillusniger reveals novel hydrolytic enzymes [J]. Journal of Proteome Research,2010,9(8):3932-3940.
    [81] Saykhedkar S., Ray A., Ayoubi-Canaan P., et al. A time course analysis of theextracellular proteome of Aspergillus nidulans growing on sorghum stover [J].Biotechnology for Biofuels,2012,5:52.
    [82] Saykhedkar S., Ray A., Ayoubi-Canaan P., et al. A time course analysis of theextracellular proteome of Aspergillus nidulans growing on sorghum stover [J].Biotechnology for Biofuels,2012,5:52.
    [83] Adav S.S., Ravindran a., Chao L.T., et al. Proteomic analysis of pH and strainsdependent protein secretion of Trichoderma reesei [J]. Journal of Proteome Research,2011,10:4579-4596.
    [84] Martinez D., Challacombe J., Morgenstern I., et al. Genome, transcriptome, andsecretome analysis of wood decay fungus Postia placenta supports unique mechanisms oflignocellulose conversion [J]. Proceedings of National Academy of Sciences of the UnitedStates of America,2009,106(6):1954-1959.
    [85] Foreman P. K., Brown D., Dankmeyer L., Dean R., Diener S., Dunn-Coleman N. S.,Goedegebuur F., Houfek T. D., England G. J., et al. Transcriptional regulation ofbiomassdegrading enzymes in the filamentous fungus Trichoderma reesei [J]. J BiolChem,2003,278:31988-31997.
    [86] Saloheimo M., Lund M., Penttila M. E. The protein disulphide isomerase gene of thefungus Trichoderma reesei is induced by endoplasmic reticulum stress and regulated bythe carbon source [J]. Mol Gen Genet,1999,262:35-45.
    [87] Malhotra J. D., Kaufman R. J. The endoplasmic reticulum and the unfolded proteinresponse [J]. Semin Cell Dev Biol,2007,18:716-731.
    [88] Hetz C., Glimcher L. H. Fine-tuning of the unfolded protein response: Assembling theIRE1a interactome [J]. Mol Cell,2009,35:551-561.
    [89] Porras M., Barrau C., Romero F. Effects of soil solarization and Trichoderma onstrawberry production [J]. Crop Protection,2007,26:782-787.
    [90] Verma M., Brar S.K., Tyagi R.D., Surampalli R.Y., Valero J.R. Industrial wastewatersand dewatered sludge: rich nutrient source for production and formulation of biocontrolagent, Trichoderma viride [J]. World Journal of Microbiology and Biotechnology,2007,23:1695-1703.
    [91] Li Xing-hua, Yang Hua-jun, Roy B., et al. Enhanced cellulase production of theTrichoderma viride mutated by microwave and ultraviolet [J]. Microbiological Research,2010,165:190-198.
    [92] Zhou J., Wang Yong-Hong, Chu J., Zhuang Ying-Ping, Zhang Si-Liang, Yin P.Identification and purification of the main components of cellulases from a mutant strainof Trichoderma viride T100-14[J]. Bioresource Technology,2008,99:6826-6833.
    [93] Battista O.A. Hydrolysis and crystallization of cellulose [J]. Industrial and EngineeringChemistry Research,1950,43(2):502-507.
    [94] Walseth C.S. The influence of the fine structure of cellulose on the action of cellulases[J]. TAPPI,1952,35(5):233-236.
    [95] Fan L.T., Lee Y.-H., Beardmore D.H. Mechanism of the enzymatic hydrolysis ofcellulose: Effects of major structural features of cellulose on enzymatic hydrolysis [J].Biotechnology and Bioengineering,1980,22(1):177-199.
    [96] Fan L.T., Lee Y.-H., Beardmore D.R. The influence of major structural features ofcellulose on rate of enzymatic hydrolysis [J]. Biotechnology and Bioengineering,1981,23(2):419-424.
    [97] Sasaki T., Tanaka T., Nanbu N., et al. Correlation between X-ray diffractionmeasurements of cellulose crystalline structure and the susceptibility to microbialcellulase [J]. Biotechnology and Bioengineering,1979,21(6):1031-1042.
    [98] Lynd L.R., Weimer P.J., Van Zyl W.H., et al. Microbial cellulose utilization:fundamentals and biotechnology [J]. Microbiology and Molecular Biology Reviews,2002,66(3):506-577.
    [99] Mansfield S.D., Mooney C., Saddler J.N. Substrates and enzyme characteristics that limitcellulose hydrolysis [J]. Biotechnology Progress,1999,15(5):804-816.
    [100] Rivers D.B., Emert G.H. Factors affecting the enzymatic hydrolysis of municipal solidwaste components [J]. Biotechnology and Bioengineering,1988,31(3):278-281.
    [101] Shewale I.G., Sadana J.C. Enzymatic hydrolysis of cellulosic materials by Sclerotiumrolfsii culture filtrate for sugar production [J]. Canadian Journal of Microbiology,1979,25(6):773-783.
    [102] Sinitsyn A.P., Gusakov A.V., Vlasenko E.Y. Effect of structural and physicochemicalfeatures of cellulosic substrates on the efficiency of enzymatic hydrolysis [J]. AppliedBiochemistry and Biotechnology,1991,30(1):43-59.
    [103] Hong J., Ye X., Zhang Y.H.P. Quantitative determination of cellulose accessibility tocellulase based on adsorption of a nonhydrolytic fusion protein containing CBM and GFPwith its applications [J]. Langmuir,2007,23(25):12535-12540.
    [104] Zhu Z., Sathitsuksanoh N., Vinzant T., et al. Comparative study of corn stoverpretreated by dilute acid and cellulose solvent-based lignocellulose fractionation:Enzymatic hydrolysis, supramolecular structure, and substrate accessibility [J].Biotechnology and Bioengineering,2009,103(4):715-724.
    [105] Zhu J.Y., Pan X.J. Woody biomass pretreatment for cellulosic ethanol production:Technology and energy consumption evaluation [J]. Bioresource Technology,2010,101:4992-5002.
    [106] Kumar P., Barrett D.M., Delwiche M.J., Stroeve P. Methods for pretreatment oflignocellulosic biomass for efficient hydrolysis and biofuel production [J]. Industrial andEngineering Chemistry Research,2009,48(8):3713-3729.
    [107] Luo X.L., Zhu J.Y. Effects of drying induced fiber hornification on enzymaticsaccharification of lignocelluloses [J]. Enzyme and Microbial Technology,2011,48(1):92-99.
    [108] Luo X.L., Zhu J.Y., Gleisner R., et al. Effects of wet pressing-induced fiberhornification on enzymatic saccharification of lignocelluloses [J]. Cellulose,2011,18(4):1055-1062.
    [109] Rollin J.A., Zhu Z., Sathitsuksanoh N., et al. Increasing cellulose accessibility is moreimportant than removing lignin: a comparison of cellulose solvent-based lignocelluloseractionation and soaking in aqueous ammonia [J]. Biotechnology and Bioengineering,2011,108(1):22-30.
    [110] Shen X., Xia L. Production and immobilization of cellobiase from Aspergillus nigerZU-07[J]. Process Biochemistry,2004,39:1363-1367.
    [111] Berlin A., Maximenko V., Gilkes N., Saddler J. Optimization of enzyme complexes forlignocellulose hydrolysis [J]. Biotechnology and Bioengineering,2007,97(2):287-296.
    [112] Zheng Y., Pan Z., Zhang R., et al. Non-ionic surfactants and non-catalytic proteintreatment on enzymatic hydrolysis of pretreated creeping wild ryegrass [J]. AppliedBiochemistry and Biotechnology,2008,146(1-3):231-248.
    [113] Tu M.B., Zhang X., Paice M., et al. Effect of surfactants on separate hydrolysisfermentation and simultaneous saccharification fermentation of pretreated lodgepole pine[J]. Biotechnology Progress,2009,25(4):1122-1129.
    [114] Sun Y., Cheng J. Hydrolysis of lignocellulosic materials for ethanol production: areview [J]. Bioresource Technology,2002,83:1-11.
    [115] Farinas C. S., Loyo M. M., et al. Finding stable cellulase and xylanase: evaluation ofthe synergistic effect of pH and temperature [J]. New Biotechnology,2010,27(6):810-815.
    [116] Reinikainen T., Teleman O., Teeri T. T. Effects of pH and high ionic strength on theadsorption and activity of native and mutated cellobiohydrolase I from Trichodermareesei [J]. Proteins: Structure, Function, and Genetics,1995,22:392-403.
    [117] Kyriacou A., Neufeld R.J., MacKenzie C.R. Effect of physical parameters on theadsorption characteristics of fractionated Trichoderma reesei cellulase components [J].Enzyme Microb Technol,1988,10:675-681.
    [118] Peitersen N., Madeiros J., Mandels M. Adsorotion of Trichoderma cellulase oncellulose [J]. Biotechnol. Bioeng.1977,19:1091-1094.
    [119] Kim D.W., Jae H.Y., Jeong Y.K. Adsorption of cellulase from Trichoderrna viride onmicrocrystalline cellulose [J]. Appl. Microbiol. Biotechnol.,1988,28:148-154.
    [120] Kyriacou A., Neufeld R.J., Mackenzie C.R. Reversibility and competition in theadsorption of Trichoderrna reesei cellulase components [J]. Biotechnol. Bioeng.,1989,33:631-637.
    [121] Bezerra R.M.F., Dias A.A. Enzymatic kinetic of cellulose hydrolysis-Inhibition byethanol and cellobiose [J]. Appl Biochem Biotechnol,2005,126(1):49-59.
    [122] Xiao Z.Z., Zhang X., Gregg D.J., et al. Effects of sugar inhibition on cellulases andbeta-glucosidase during enzymatic hydrolysis of softwood substrates [J]. Appl BiochemBiotechnol,2004,113(16):1115-1126.
    [123] Hahn-H gerdal B., Galbe M., Gorwa-Grauslund M.F., Liden G., Zacchi G. Bioethanol-the fuel of tomorrow from the residues of today [J]. Trends Biotechnol,2006,24:549-556.
    [124] Hahn-H gerdal B., Karhumaa K., Fonseca C., Spencer-Martins I., Gorwa-GrauslundM.F. Towards industrial pentose-fermenting yeast strains [J]. Appl Microbiol Biotechnol,2007,74:937-953.
    [125] Yu S., Jeppsson H., Hahn-H gerdal B. Xylulose fermentation by Saccharomycescrevisiae and xylose-fermenting yeast strains [J]. Appl Microbiol Biotechnol,1995,44(3-4):314-320.
    [126] Richard P., Toivari M.H., Penttil M. Evidence that the gene YLR070c ofSaccharomyces cerevisiae encodes a xylitol dehydrogenase [J]. FEBS Lett,1999,457:135-138.
    [127] Jeffries T.W., Jin Y-S. Metabolic engineering for improved fermentation of pentose byyeasts [J]. Appl Microbiol Biotechnol,2004,63:495-509.
    [128] Madhavan A., Tamalampudi S., Ushida K., et al. Xylose isomerase from polycentricfungus Orpinomyces: gene sequencing, cloning, and expression in Saccharomycescerevisiae for bioconversion of xylose to ethanol [J]. Appl Microbiol Biotechnol,2009,82:1067-1078.
    [129] Larsson S., Palmqvist E., Hahn-H gerdal B., Tengborg C., Stenberg K., Zacchi G.,Nilvebrant N.O. The generation of fermentation inhibitors during dilute acid hydrolysisof softwood [J]. Enz. Microb. Technol.,1998,24:151-159.
    [130] Galbe M., Zacchi G. A review of the production of ethanol from softwood [J]. AppliedMicrobiology and Biotechnology,2002,59(6):618-628.
    [131] Liu K., Lin X., Yue J., Li X., Fang X., Zhu M., Lin J., Qu Y., Xiao L. Highconcentration ethanol production from corncob residues by fed-batch strategy [J].Bioresource Technology,2010,101(13):4952-4958.
    [132] Palmqvist E., Hahn-Hagerdal B. Fermentation of lignocellulosic hydrolysates. II:Inhibitors and menchanisms of inhibition [J]. Bioresource Technology,2000,74(1):25-33.
    [133] Fukudaa H., Kondob A., Tamalampudia S. Bioenergy: Sustainable fuels from biomassby yeast and fungal whole-cell biocatalysts [J]. Biochemical Engineering Journal,2009,44(1):2-12.
    [134] Lynd L.R., van Zyl W.H., McBride J.E., et al. Consolidated bioprocessing of cellulosicbiomass: an update [J]. Current Opinion in Biotechnology,2005,16(5):577-583.
    [1] Kim S., Dale B.E. Global potential bioethanol production from wasted crops and cropresidues [J]. Biomass and Bioenergy,2004,26(4):361-375.
    [2] Margeot A., Hahn-H gerdal B., Edlund M., et al. New improvements for lignocellulosicethanol [J]. Current Opinion in Biotechnology,2009,20(3):372-380.
    [3] Balat M., Balat H., z C. Progress in bioethanol processing [J]. Progress in Energy andCombustion Science,2008,34:551-573.
    [4] Gnansounou E., Dauriat A. Techno-economic analysis of lignocellulosic ethanol: Areview [J]. Bioresource Technology,2010,101:4980-4991.
    [5] Geddes C.C, Nieves I.U., Ingram L.O. Advances in ethanol production [J]. CurrentOpinion in Biotechnology,2011,22:1-8.
    [6] Singh A., Singh N., Bishnoi N.R. Production of cellulases by Aspergillus heteromorphusfrom wheat straw under submerged fermentation [J]. International Journal ofEnvironmental Science and Engineering,2009,1:1.
    [7] Herr D. Secretion of cellulase and β-glucosidase by Trichoderma viride ITCC-1433insubmerged culture on different substrates [J]. Biotechnology and Bioengineering,2004,21(8):1361-1371.
    [8] Xia L.M., Shen X.L. High-yield cellulase production by Trichoderma reesei ZU-02oncorn cob residue [J]. Bioresource Technology,2004,91(3):259-262.
    [9] Jeya M., Zhang Ye-Wang, Kim In-Won, Lee Jung-Kul. Enhanced saccharification ofalkali-treated rice straw by cellulase from Trametes hirsuta and statistical optimization ofhydrolysis conditions by RSM [J]. Bioresource Technology,2009,100:5155-5161.
    [10] Lopez M.J., Vargas-Garc a M.C., Su rez-Estrella F., et al. Lignocellulose-degradingenzymes produced by the ascomycete Coniochaeta ligniaria and related species:application for a lignocellulosic substrate treatment [J]. Enzyme and MicrobialTechnology,2007,40:794-800.
    [11] Kurakake M., Kisaka W., Ouchi K., Komaki T. Pretreatment with ammonia water forenzymatic hydrolysis of corn husk, bagasse, and switchgrass [J]. Applied Biochemistryand Biotechnology,2001,90:251-259.
    [12] Zhao X., Peng F., Cheng K., Liu D. Enhancement of the enzymatic digestibility ofsugarcane bagasse by alkali-peracetic acid pretreatment [J]. Enzyme and MicrobialTechnology,2009,44:17-23.
    [13] Adsul M.G., Ghule J.E., Shaikh H., Singh R., Bastawde K.B., Gokhale D.V., Varma A.J.Enzymatic hydrolysis of delignified bagasse polysaccharides [J]. Carbohydrate Polymers,2005,62:6-10.
    [14] Rabelo S.C., Filho R.M., Costa A.C. A comparison between lime and alkaline hydrogenperoxide pretreatments of sugarcane bagasse for ethanol production [J]. AppliedBiochemistry and Biotechnology,2008,148:45-58.
    [15] Ghose T.K. Measurement of Cellulase Activities [J]. Pure and Applied Chemistry,1987,59:257-268.
    [16] Ponce-Noyola T., Torre M. Regulation of cellulases and xylanases from a derepressedmutant of Cellulomonas flavigena growing on sugar-cane bagasse in continuous culture[J]. Bioresource Technology,2001,(14)78:285-291.
    [17]齐祖同,孔华忠,孙曾美。中国真菌志(第五卷):曲霉属及其相关有性型[M]。北京:科学出版社,1997:94-95。
    [18]齐祖同,孔华忠,孙曾美。中国真菌志(第五卷):曲霉属及其相关有性型[M]。北京:科学出版社,1997:28-30。
    [19] Qu Jun-ge, Yao Xiao-min, et al. Screening of cellulase-producing marine bacteria fromNingbo sea area [J]. Journal of Shanghai Ocean University,2012,21(2):252-256.
    [20] Ahamed A., Vermette P. Enhanced enzyme production from mixed cultures ofTrichoderma reesei RUT-C30and Aspergillus niger LMA grown as fed batch in a stirredtank bioreactor [J]. Biochemical Engineering Journal,2008,42:41-46.
    [21] Ogier J. C., Ballerini D., et al. Ethanol production from lignocellulosic biomass [J]. Oil&Gas Science and Technology,1999,54(1):67-94.
    [22] Tolan J.S., Foody B. Cellulase from submerged fermentation [J]. Advances inBiochemical Engineering/Biotechnology,1999,65:41-67.
    [23] Sogin M.L., Thomas D., et al. Evolutionary relationships within the fungi: analysis ofnuclear small subunit rRNA sequences [J]. Molecular Phylogenetics and Evolution,1992,9:231-241.
    [24] Accensi F., Cano J., et al. Distribution of ochratoxin A producing strains in theAspergillus niger aggregate [J]. Antonie van Leeuwenhoek,2001,79:365-370.
    [1] Ladisch M.R., Mosier N.S., Kim Y., et al. Converting cellulose to biofuels [J]. ChemicalEngineering Progress,2010,106(3):56-63.
    [2] Margeot A., Hahn-H gerdal B., Edlund M., et al. New improvements for lignocellulosicethanol [J]. Current Opinion in Biotechnology,2009,20(3):372-380.
    [3] Geddes C.C, Nieves I.U., Ingram L.O. Advances in ethanol production [J]. CurrentOpinion in Biotechnology,2011,22:1-8.
    [4] Ahamed A., Vermette P. Enhanced enzyme production from mixed cultures ofTrichoderma reesei RUT-C30and Aspergillus niger LMA grown as fed batch in a stirredtank bioreactor [J]. Biochemical Engineering Journal,2008,42:41-46.
    [5] Duff S.J.B., Cooper D.G., Fuller O.M. Cellulase and beta-glucosidase production bymixed culture of Trichoderma reesei Rut-C30and Aspergillus phoenicis [J].Biotechnology Letters,1985,7(3):185-190.
    [6] Gupte A., Madamwar D. Production of cellulolytic enzymes by coculturing of Aspergillusellipticus and Aspergillus fumigatus grown on bagasse under solid state fermentation [J].Applied Biochemistry and Biotechnology,1997,62(2-3):267-274.
    [7] Gutierrez-Correa M., Portal L., Moreno P., Tengerdy R. P. Mixed culture solid substratefermentation of Trichoderma reesei with Aspergillus niger on sugar cane bagasse [J].Bioresource Technology,1999,68:173-178.
    [8] Ikram-ul-Haq M.M.J., Khan T.S., Zafar S. Cotton saccharifying activity of cellulasesproduced by co-culture of Aspergillus niger and Trichoderma viride [J]. Research Journalof Agriculture and Biological Sciences,2005,1(3):241-245.
    [9] Singh A., Singh N., Bishnoi N.R. Production of cellulases by Aspergillus heteromorphusfrom wheat straw under submerged fermentation [J]. International Journal ofEnvironmental Science and Engineering,2009,1:1.
    [10] Herr D. Secretion of cellulase and β-glucosidase by Trichoderma viride ITCC-1433insubmerged culture on different substrates [J]. Biotechnology and Bioengineering,2004,21(8):1361-1371.
    [11] Xia L.M., Shen X.L. High-yield cellulase production by Trichoderma reesei ZU-02oncorn cob residue [J]. Bioresource Technology,2004,91(3):259-262.
    [12] Domingues F.C., Queiroz J.A., Cabral J.M.S., Fonseca L.P. The influence of cultureconditions on mycelial structure and cellulase production by Trichoderma reesei Rut C-30[J]. Enzyme and Microbial Technology,2000,26:394-401.
    [13] Tay A., Yang S.T. Production of L(+)-lactic acid from glucose and starch byimmobilized cells of Rhizopus oryzae in a rotating fibrous bed bioreactor [J].Biotechnology and Bioengineering.2002,80:1-12.
    [14] Freeman A., Lilly M.D. Effect of processing parameters on the feasibility and operationalstability of immobilized viable microbial cells [J]. Enzyme and Microbial Technology,1998,23:335-345.
    [15] Thongchul N., Yang S.T. Controlling biofilm growth and lactic acid production byRhizopus oryzae in a rotating fibrous bed bioreactor: Effects of dissolved oxygen,rotational speed, and urea concentration [J]. Journal of the Chinese Institute of ChemicalEngineers,2006,37(1):49-61.
    [16] Villena G.K., Gutiérrez-Correa M. Production of cellulase by Aspergillus niger biofilmsdeveloped on polyester cloth [J]. Letters in Applied Microbiology,2006,43:262-268.
    [17] Akihiro H., James C.O., Hideki A., Hideo T. Acetylation of loofa (Luffa cylindrica)sponge as immobilization carrier for bioprocesses involving cellulase [J]. Journal ofBioscience and Bioengineering,2007,103:311-317.
    [18] Talabardon M., Yang S.T. Production of GFP and glucoamylase by recombinantAspergillus niger: effects of fermentation conditions on fungal morphology and proteinsecretion [J]. Biotechnology Progress,2005,21:1389-1400.
    [19] Anthony T., Raj K.C., et al. High molecular weight cellulase-free xylanase from alkali-tolerant Aspergillus fumigatus AR1[J]. Enzyme and Microbial Technology,2003,32:647-654.
    [20] Botella C., Diaz A., et al. Xylanase and pectinase production by Aspergillus awamori ongrape pomace in solid state fermentation [J]. Process Biochemistry,2007,42:98-101.
    [21] Pandey A., Soccol C. R., Nigam P., Soccol V. T. Biotechnological potential of agro-industrial residues. Ι: sugarcane bagasse [J]. Bioresource Technology,2000,74:69-80.
    [22] Harkki A., Mantyla A., Penttila M., Muttilainen S., Buhler R., Suominen P., Knowles J.,Nevalainen H. Genetic engineering of Trichoderma to produce strains with novel cellulaseprofiles [J]. Enzyme and Microbial Technology,1991,13(3):227-233.
    [23] Lo Chi-Ming, Ju Lu-Kwang. Sophorolipids-induced cellulase production in cocultures ofHypocrea jecorina Rut C30and Candida bombicola [J]. Enzyme and MicrobialTechnology,2009,44:107-111.
    [24] Chand P., Aruna A., Maqsood A.M., Rao L.V. Novel mutation method for increasedcellulase production [J]. Journal of Applied Microbiology,2005,98(2):318-323.
    [25] Jing D., Li P., Xiong X., Wang L. Optimization of cellulase complex formulation forpeashrub biomass hydrolysis [J]. Applied Microbiology and Biotechnology,2007,75:793-800.
    [26] Shen X., Xia L. Production and immobilization of cellobiase from Aspergillus niger ZU-07[J]. Process Biochemistry,2004,39:1363-1367.
    [27] Chen M., Zhao J., Xia L. Enzymatic hydrolysis of maize straw polysaccharides for theproduction of reducing sugars [J]. Carbohydrate Polymers,2008,71:411-415.
    [28] Bader J., Mast-Gerlach E., Popovic M.K., Bajpai R., Stahl U. Relevance of microbialcoculture fermentations in biotechnology [J]. Journal of Applied Microbiology,2010,109:371-387.
    [29] Xia L., Cen P. Cellulase production by solid state fermentation on lignocellulosic wastefrom the xylose industry [J]. Process Biochemistry,1999,34:909-912.
    [30] Tari C., G gus N., Tokatli F. Optimization of biomass, pellet size and polygalacturonaseproduction by Aspergillus sojae ATCC20235using response surface methodology [J].Enzyme and Microbial Technology,2007,40:1108-1116.
    [31] Najafpour G., Younesi H., Ismail K.S.K. Ethanol fermentation in an immobilized cellreactor using Saccharomyces cerevisiae [J]. Bioresource Technology,2004,92:251-260.
    [32] Mozes N., Marchal F., Hermesse M.P., Van Haecht J.L., Reuliaux L., Leonard A.J.,Rouxhet P.G. Immobilization of microorganisms by adhesion: interplay of electrostaticand nonelectrostatic interactions [J]. Biotechnology and Bioengineering,1987,30(3):439-450.
    [33] Napha L., Wanna M., Arunwan B., Wichien Y. Production of vinegar by Acetobactercells fixed on a rotating disc reactor [J]. Applied Microbiology and Biotechnology,1989,32(1):27-31.
    [34] Jeffries T.W. Engineering yeasts for xylose metabolism [J]. Current Opinion inBiotechnology,2006,17(3):320-326.
    [35] Jeffries T.W., Kurtzman C.P. Strain selection taxonomy and genetics of xylose-fermenting yeasts [J]. Enzyme and Microbial Technology,1994,16(11):922-931.
    [36] Wen Z., Liao W., Chen S. Production of cellulase/β-glucosidase by the mixed fungiculture Trichoderma reesei and Aspergillus phoenicis on dairy manure [J]. ProcessBiochemistry,2005,40:3087-3094.
    [37] Kuo Chia-Hung, Lee Cheng-Kang. Enhanced enzymatic hydrolysis of sugarcane bagasseby N-methylmorpholine-N-oxide pretreatment [J]. Bioresource Technology,2009,100:866-871.
    [38] Kurakake M., Kisaka W., Ouchi K., Komaki T. Pretreatment with ammonia water forenzymatic hydrolysis of corn husk, bagasse, and switchgrass [J]. Applied Biochemistryand Biotechnology,2001,90:251-259.
    [39] Zhao X., Peng F., Cheng K., Liu D. Enhancement of the enzymatic digestibility ofsugarcane bagasse by alkali-peracetic acid pretreatment [J]. Enzyme and MicrobialTechnology,2009,44:17-23.
    [40] Adsul M.G., Ghule J.E., Shaikh H., Singh R., Bastawde K.B., Gokhale D.V., Varma A.J.Enzymatic hydrolysis of delignified bagasse polysaccharides [J]. Carbohydrate Polymers,2005,62:6-10.
    [41] Rabelo S.C., Filho R.M., Costa A.C. A comparison between lime and alkaline hydrogenperoxide pretreatments of sugarcane bagasse for ethanol production [J]. AppliedBiochemistry and Biotechnology,2008,148:45-58.
    [42] J rgensen H., Vibe-Pedersen J., Larsen J., Felby C. Liquefaction of lignocellulose at highsolids concentrations [J]. Biotechnology and Bioengineering,2007,96(5):862-870.
    [1] Ge Wen-zhong, Li N. The advance of application of Trichoderma viride [J]. Journal ofHeilongjiang August First Land Reclamation University,2005,17(2):75-80.
    [2] Li Xing-hua, Yang Hua-jun, Roy B., et al. Enhanced cellulase production of theTrichoderma viride mutated by microwave and ultraviolet [J]. Microbiological Research,2010,165:190-198.
    [3] Porras M., Barrau C., Romero F. Effects of soil solarization and Trichoderma onstrawberry production [J]. Crop Protection,2007,26:782-787.
    [4] Verma M., Brar S.K., Tyagi R.D., Surampalli R.Y., Valero J.R. Industrial wastewaters anddewatered sludge: rich nutrient source for production and formulation of biocontrol agent,Trichoderma viride [J]. World Journal of Microbiology and Biotechnology,2007,23:1695-1703.
    [5] Ujor V.C., Peiris D.G., Monti M., et al. Quantitative proteomic analysis of the response ofthe wood-rot fungus, Schizophyllum commune, to the biocontrol fungus, Trichodermaviride [J]. Letters in Applied Microbiology,2012,54(4):336-343.
    [6] Schellart J.A., Visser F.M., Zandstra T., Middelhoven W.J. Starch degradation by themould Trichoderma viride.. The mechanism of starch degradation [J]. Antonie vanLeeuwenhoek International Journal of General and Molecular Microbiology,1976,42:229-238.
    [7] Griffin H.L., Sloneker J.H., Inglett G.E. Cellulase production by Trichoderma viride onfeedlot waste [J]. Applied and Environmental Microbiology,1974,27(6):1061-1066.
    [8] Xu F., Wang J., Chen S., et al. Strain improvement for enhanced production of cellulase inTrichoderma viride [J]. Applied Biochemistry and Microbiology,2011,47(1):53-58.
    [9] Khan M.R., Amin F. Cellulase of Trichoderma viride for biological degradation ofcellulosic wastes [J]. Asian Journal of Chemistry,2012,24(6):2524-2528.
    [10] Freeman A., Lilly M.D. Effect of processing parameters on the feasibility and operationalstability of immobilized viable microbial cells [J]. Enzyme and Microbial Technology,1998,23:335-345.
    [11] Kapoor Mukesh, Nair Lavanya M., Kuhad Ramesh Chander. Cost-effective xylanaseproduction from free and immobilized Bacillus pumilus strain MK001and its applicationin saccharification of Prosopis juliflora [J]. Biochemical Engineering Journal,2008,38:88-97.
    [12] Villena G.K., Gutiérrez-Correa M. Production of cellulase by Aspergillus niger biofilmsdeveloped on polyester cloth [J]. Letters in Applied Microbiology,2006,43:262-268.
    [13] Yuan Q.S., Zhao J. Immobilization technology of enzymes, in: Yuan Q.S., Zhao J.,Enzymes and enzyme engineering. East China University of Science and TechnologyPress, Shanghai,2005,224-263.
    [14] Tay A., Yang S.T. Production of L(+)-lactic acid from glucose and starch byimmobilized cells of Rhizopus oryzae in a rotating fibrous bed bioreactor [J].Biotechnology and Bioengineering.2002,80:1-12.
    [15] Xu Z.N., Yang S.T. Production of mycophenolic acid by Penicillium brevicompactumimmobilized in a rotating fibrous-bed bioreactor [J]. Enzyme and Microbial Technology,2007,40:623-628.
    [16] Thongchul N., Yang S.T. Controlling biofilm growth and lactic acid production byRhizopus oryzae in a rotating fibrous bed bioreactor: Effects of dissolved oxygen,rotational speed, and urea concentration [J]. Journal of the Chinese Institute of ChemicalEngineers,2006,37(1):49-61.
    [17] Talabardon M., Yang S.T. Production of GFP and glucoamylase by recombinantAspergillus niger: effects of fermentation conditions on fungal morphology and proteinsecretion [J]. Biotechnology Progress,2005,21:1389-1400.
    [18] Voragen A.G., Beldman J.G., Rombouts F.N. Cellulases of mutant strain of Trichodermaviride QM9414[J]. Methods in Enzymology,1988,160:243-251.
    [19] Jun H., Kieselbach T., J nsson L.J. Enzyme production by filamentous fungi: analysis ofthe secretome of Trichoderma reesei grown on unconventional carbon source [J].Microbial Cell Factories,2011,10:68.
    [20] Saykhedkar S., Ray A., Ayoubi-Canaan P., et al. A time course analysis of theextracellular proteome of Aspergillus nidulans growing on sorghum stover [J].Biotechnology for Biofuels,2012,5:52.
    [21] Adav S.S., Chao L.T., Sze S.K. Quantitative secretomic analysis of Trichoderma reeseistrains reveals enzymatic composition for lignocellulosic biomass degradation [J].Molecular and Cellular Proteomics,2012,11(7), DOI:10.1074.
    [22] Martins L.F., Kolling D., Camassola M., et al. Comparison of Penicellium echinulatumand Trichoderma reesei cellulases in relation to their activity against various cellulosicsubstrates [J]. Bioresource Technology,2008,99:1417-1424.
    [23] Zhu Y., Wu Z., Yang S.T. Butyric acid production from acid hydrolysate of corn fibre byClostridium tyrobutyricum in a fibrous-bed bioreactor [J]. Process Biochemistry,2002,38:657-666.
    [24] Murashima K., Kosugi A., Doi R.H. Synergistic effects of cellulosomal xylanase andcellulases from Clostridium cellulovorans on plant cell wall degradation [J]. Journal ofBacteriology,2003,185:1518-1524.
    [25] Kurakake M., Kisaka W., Ouchi K., Komaki T. Pretreatment with ammonia water forenzymatic hydrolysis of corn husk, bagasse, and switchgrass [J]. Appl. Biochem.Biotechnol.,2001,90:251-259.
    [26] Zhao X., Peng F., Cheng K., Liu D. Enhancement of the enzymatic digestibility ofsugarcane bagasse by alkali-peracetic acid pretreatment [J]. Enzyme Microb. Technol.,2009,44:17-23.
    [27] Adsul M.G., Ghule J.E., Shaikh H., Singh R., Bastawde K.B., Gokhale D.V., Varma A.J.Enzymatic hydrolysis of delignified bagasse polysaccharides [J]. Carbohyd. Polym.,2005,62:6-10.
    [28] Kuo C.H., Lee C.K. Enhanced enzymatic hydrolysis of sugarcane bagasse by N-methylmorpholine-N-oxide pretreatment [J]. Bioresource Technol.,2009,100:866-871.
    [29] Rabelo S. C., Filho R. M., Costa A. C. A comparison between lime and alkalinehydrogen peroxide pretreatments of sugarcane bagasse for ethanol production [J]. Appl.Biochem. Biotechnol.,2008,148:45-58.
    [30] Jiang L., Wang J., Liang S., Wang X., Cen P., Xu Z.. Butyric acid fermentation in afibrous bed bioreactor with immobilized Clostridium tyrobutyricum from cane molasses[J]. Bioresource Technology,2009,100:3401-3409.
    [31] Wen Z., Liao W., Chen S. Production of cellulase/β-glucosidase by the mixed fungiculture of Trichoderma reesei and Aspergillus phoenicis on dairy manure [J]. AppliedBiochemistry and Biotechnology,2005,121-124:93-104.
    [32] Duff S.J.B., Cooper D.G., Fuller O.M. Effect of media composition and growthconditions on production of cellulase and β-glucosidase by a mixed fungal fermentation[J]. Enzyme and Microbial Technology,1987,9:47-52.
    [33] Takashima S., Likura H., Nakamura A., et al. Overproduction of recombinantTrichoderma reesei cellulases by Aspergillus oryzae and their enzymatic properties [J].Journal of Biotechnology,1998,65(2-3):163-171.
    [34] Flachner B., Brumbauer A., Reczey K. Stablization of β-glucosidase in Aspergillusphoenicis QM329pellets [J]. Enzyme and Microbial Technology,1999,24:362-367.
    [35] Anthony T., Raj K.C., et al. High molecular weight cellulase-free xylanase from alkali-tolerant Aspergillus fumigatus AR1[J]. Enzyme and Microbial Technology,2003,32:647-654.
    [36] Botella C., Diaz A., et al. Xylanase and pectinase production by Aspergillus awamori ongrape pomace in solid state fermentation [J]. Process Biochemistry,2007,42:98-101.
    [37] Xu Feng, Jin Haojie, Li Huamin, et al. Genome shuffling of Trichoderma viride forenhanced cellulase production [J]. Annals of Microbiology,2012,62(2):509-515.
    [38] Manczinger L., Komonyi O., Antal Z., et al. A method for high-frequency transformationof Trichoderma viride [J]. Journal of Microbiological Methods,1997,29(3):207-210.
    [1] Saloheimo M., Pakula T.M. The cargo and the transport system: secreted proteins andprotein secretion in Trichoderma reesei (Hypocrea jecorina)[J]. Microbiology,2012,158,46-57.
    [2] Adav S.S., Chao L.T., Sze S.K. Quantitative secretomic analysis of Trichoderma reeseistrains reveals enzymatic composition for lignocellulosic biomass degradation [J].Molecular and Cellular Proteomics,2012,11(7), DOI:10.1074.
    [3] Manavalan A., Adav S.S., Sze S.K. iTRAQ-based quantitative secretome analysis ofPhanerochaete chrysosporium [J]. Journal of Proteomics,2011,75(2):642-654.
    [4] Do Vale L.H.F., Gomez-Mendoza D.P., Kim Min-Sik, Pandey A., Ricart C.A.O., FilhoE.X.F., Sousa M.V. Secretome analysis of the fungus Trichoderma harzianum grown oncellulose [J]. Proteomics,2012,12(17):2716-2728.
    [5] Saykhedkar S., Ray A., Ayoubi-Canaan P., et al. A time course analysis of theextracellular proteome of Aspergillus nidulans growing on sorghum stover [J].Biotechnology for Biofuels,2012,5:52.
    [6] Phillips C.M., Iavarone A.T., Marletta M.A. Quantitative proteomic approach for cellulosedegradation by Neurospora crassa [J]. Journal of Proteome Research,2011,10(9):4177-4185.
    [7] Adav S.S., Li A.A., Punt P., et al. Quantitative iTRAQ secretome analysis of Aspergillusniger reveals novel hydrolytic enzymes [J]. Journal of Proteome Research,2010,9(8):3932-3940.
    [8] Porras M., Barrau C., Romero F. Effects of soil solarization and Trichoderma onstrawberry production [J]. Crop Protection,2007,26:782-787.
    [9] Verma M., Brar S.K., Tyagi R.D., Surampalli R.Y., Valero J.R. Industrial wastewaters anddewatered sludge: rich nutrient source for production and formulation of biocontrol agent,Trichoderma viride [J]. World Journal of Microbiology and Biotechnology,2007,23:1695-1703.
    [10] Li Xing-hua, Yang Hua-jun, Roy B., et al. Enhanced cellulase production of theTrichoderma viride mutated by microwave and ultraviolet [J]. Microbiological Research,2010,165:190-198.
    [11] Zhou J., Wang Yong-Hong, Chu J., Zhuang Ying-Ping, Zhang Si-Liang, Yin P.Identification and purification of the main components of cellulases from a mutant strainof Trichoderma viride T100-14[J]. Bioresource Technology,2008,99:6826-6833.
    [12] Seiboth B., Hakola S., Mach R.L. Role of four major cellulases in triggering of cellulasegene expression by cellulose in Trichoderma reesei [J]. Journal of Bacteriology,1997,179:5318-5320.
    [13] Mach R.L., Seiboth B., Myasnikov A. The bgl1gene of Trichoderma reesei QM9414encodes an extracellular, cellulose-inducible glucosidase involved in celulase induction bysophorose [J]. Molecular Microbiology,1995,16:687-697.
    [14] Isabelle H.G., Antoine M., Alain D., Gwéna l J., Daniel M., Sabrina L., Hughes M.,Jean-Claude S., Frédéric M., Marcel A. Comparative secretome analyses of twoTrichoderma reesei RUT-C30and CL847hypersecretory strains [J]. Biotechnology forBiofuels,2008,1:18.
    [15] Sun W.C., Cheng C.H., Lee W.C. Protein expression and enzymatic activity of cellulasesproduced by Trichoderma reesei Rut C-30on rice straw [J]. Process Biochemistry,2008,43:1083-1087.
    [16] Vinzant T.B., Adney W.S., Decker S.R., Baker J.O., Kinter M.T., Sherman N.E., FoxJ.W., Himmel M.E. Fingerprinting Trichoderma reesei hydrolases in a commercialcellulase preparation [J]. Applied Biochemistry and Biotechnology,2001,91-93:99-107.
    [17] Jiang Y.J., Yang B., Harris N.S., Deyholos M.K. Comparative proteomic analysis ofNaCl stress-responsive proteins in Arabidopsis roots [J]. Journal of Experimental Botany,2007,58:3591-3607.
    [18] Salohimo M., Paloheimo M., Hakola S., Pere J., Swanson B., Nyyss nen E., Bhatia A.,Ward M., Penttil M. Swollenin, a Trichoderma reesei protein with sequence similarity tothe plant expansins, exhibits disruption activity on cellulosic materials [J]. EuropeanJournal of Biochemistry,2002,269:4202-4211.
    [19] Brotman Y., Briff E., Viterbo A., Chet I. Role of swollenin, an expansin-like proteinfrom Trichoderma, in plant root colonization [J]. Plant Physiology,2008,147:779-789.
    [20] Chen X., Ishida N., Todaka N., Nakamura R., Maruyama J., Takahashi H., Kitamoto K.Promotion of Efficient Saccharification of Crystalline Cellulose by Aspergillus fumigatusSwo1[J]. Applied and Environmental Microbiology,2010,76:2556-2561.
    [21] Zhou Q.X., Lv X.X., Zhang X., Meng X.F., Chen G.J., Liu W.F. Evaluation of swolleninfrom Trichoderma pseudokoningii as a potential synergistic factor in the enzymatichydrolysis of cellulose with low cellulase loadings [J]. World Journal of Microbiologyand Biotechnology,2011,27:1905-1910.
    [22] Noguchi A., Inohara-Ochiai M., Ishibashi N., Fukami H., Nakayama T., Nakao M. Anovel glucosylation enzyme: molecular cloning, expression, and characterization ofTrichoderma viride JCM22452α-amylase and enzymatic synthesis of some flavonoidmonoglucosides and oligoglucosides [J]. Journal of Agricultural and Food Chemistry,2008,56:12016-12024.
    [23] De Azevedo A.M., De Marco J.L., Felix C.R. Characterization of an amylase productionby a Trichoderma harzianum isolate with antagonistic activity against Crinipellisperniciosa, the causal agent of witches’ broom of cocoa [J]. FEMS Microbiology Letters,2000,188:171-175.
    [24] Schellart J.A., Visser F.M., Zandstra T., Middelhoven W.J. Starch degradation by themould Trichoderma viride.. The mechanism of starch degradation [J]. Antonie vanLeeuwenhoek International Journal of General and Molecular Microbiology,1976,42:229-238.
    [1] Goldemberg J. Ethanol for a sustainable energy future [J]. Science,2007,315:808-810.
    [2] Somerville C., Youngs H., Taylor C., Davis S. C., Long S. P. Feedstocks forlignocellulosic biofuels [J]. Science,2010,329(5993):790-792.
    [3] Wang, Z.J., Lan, T.Q., Zhu, J.Y. Using lignosulfonate and elevated pH can enhanceenzymatic hydrolysis of lignocelluloses [J]. Biotechnology for Biofuels,2012,6:9.
    [4] Zhu, J.Y., Pan, X.J., Wang, G.S., Gleisner, R. Sulfite pretreatment (SPORL) for robustenzymatic saccharification of spruce and red pine [J]. Bioresource Technology,2009,100(8):2411-2418.
    [5] Zhu J.Y., Pan X.J., Wang G.S,. et al. Sulfite pretreatment (SPORL) for robust enzymaticsaccharification of spruce and red pine [J]. Bioresource Technology,2009,100(8):2411-2418.
    [6] Lin Z-X, Zhang H-M, Ji X-J, Chen J-W, Huang H. Hydrolytic enzyme of cellulose forcomplex formulation applied research [J]. Applied Biochemistry and Biotechnology,2011,164(1):23-33.
    [7] Hoyer, K., Galbe, M., Zacchi, G. Effects of enzyme feeding strategy on ethanol yield infed-batch simultaneous saccharification and fermentation of spruce at high dry matter [J].Biotechnology for Biofuels,2010,3:14.
    [8] Jin, M., Gunawan, C., Balan, V., Lau, M.W., Dale, B.E. Simultaneous saccharificationand co-fermentation (SSCF) of AFEX pretreated corn stover for ethanol productionusing commercial enzymes and Saccharomyces cerevisiae424A(LNH-ST)[J].Bioresource Technology,2012,110:587-594.
    [9] Monavari, S., Bennato, A., Galbe, M., Zacchi, G. Improved one-step steam pretreatmentof SO2-impregnated softwood with time-dependent temperature profile for ethanolproduction [J]. Biotechnology Progress,2010,26(4):1054-1060.
    [10] Nieves, I.U., Geddes, C.C., Mullinnix, M.T., Hoffman, R.W., Tong, Z., Castro, E.,Shanmugam, K.T., Ingram, L.O. Injection of air into the headspace improves fermentationof phosphoric acid pretreated sugarcane bagasse by Escherichia coli MM170[J].Bioresource Technology,2011,102(13):6959-6965.
    [11] Tian, S., Luo, X.L., Yang, X.S., Zhu, J.Y. Robust cellulosic ethanol production fromSPORL-pretreated lodgepole pine using an adapted strain Saccharomyces cerevisiaewithout detoxification [J]. Bioresource Technology,2010,101:8678-8685.
    [12] Zhu, J.Y., Zhu, W., O’Bryan, P., Dien, B.S., Tian, S., Gleisner, R., Pan, X.J. EthanolProduction from SPORL-Pretreated Lodgepole Pine: Preliminary Evaluation of MassBalance and Process Energy Efficiency [J]. Applied Microbiology and Biotechnology,2010,86(5):1355-1365.
    [13] Galbe M., Zacchi G. A review of the production of ethanol from softwood [J]. AppliedMicrobiology and Biotechnology,2002,59(6):618-628.
    [14] Nagle, N.J., Elander, R.T., Newman, M.M., Rohrback, B.T., Ruiz, R.O., Torget, R.W.Efficacy of a tot washing process for pretreated yellow poplar to enhance bioethanolproduction [J]. Biotechnology Progress,2002,18:734-738.
    [15] Tengborg, C., Galbe, M., Zacchi, G. Reduced inhibition of enzymatic hydrolysis ofsteam-pretreated softwood [J]. Enzyme and Microbial Technology,2001,28(9-10):835-844.
    [16] Liu, H., Zhu, J.Y. Eliminating inhibition of enzymatic hydrolysis by lignosulfonate inunwashed sulfite-pretreated aspen using metal salts [J]. Bioresource Technology,2010,101(23):9120-9127.
    [17] Liu, K., Lin, X., Yue, J., Li, X., Fang, X., Zhu, M., Lin, J., Qu, Y., Xiao, L. Highconcentration ethanol production from corncob residues by fed-batch strategy [J].Bioresource Technology,2010,101(13):4952-4958.
    [18] Zhang, M., Wang, F., Su, R., Qi, W., He, Z. Ethanol production from high dry mattercorncob using fed-batch simultaneous saccharification and fermentation after combinedpretreatment [J]. Bioresource Technology,2010b,101(13):4959-4964.
    [19] Hector, R.E., Dien, B.S., Cotta, M.A., Qureshi, N. Engineering industrial Saccharomycescerevisiae strains for xylose fermentation and comparison for switchgrass conversion [J].Journal of Industrial Microbiology and Biotechnology,2011,38(9):1193-1202.
    [20] Davis M. W. A rapid modified method for compositional carbohydrate analysis oflignocellulosics by high pH anion-exchange chromatography with pulsed amperometricdetection (HPAEC/PAD)[J]. Journal of Wood Chemistry and Technology,1998,18(2):235-352.
    [21] Liu H., Zhu J. Y., Chai X. S. In situ, rapid, and temporally resolved measurements ofcellulase adsorption onto lignocellulosic substrates by UV-vis spectrophotometry [J].Langmuir,2011,27(1):272-278.
    [22] Nakagame S., Chandra R. P., Saddler J. N. The influence of lignin on the enzymatichydrolysis of pretreated biomass substrates. In: Sustainable Production of Fuels,Chemicals, and Fibers from Forest Biomass [M]. Washington, DC: American ChemicalSociety,2011:145-167.
    [23] Norde W. Adsorption of proteins from solution at the solid-liquid interface [J]. Advancesin Colloid and Interface Science,1986,25(C):267-340.
    [24] Mansfield S. D., Mooney C., Saddler J. N. Substrate and enzyme characteristics thatlimit cellulose hydrolysis [J]. Biotechnology Progress,1999,15:804-816.
    [25] Sewalt V. J. H., Glasser W. G., Beauchemin K. A. Lignin impact on fiber degradation.3.Reversal of inhibition of enzymatic hydrolysis by chemical modification of lignin and byadditives [J]. Journal of Agricultural and Food Chemistry,1997,45(5):1823-1828.
    [26] Zhu J. Y., Pan X. J., Wang G. S., Gleisner R. Sulfite Pretreatment (SPORL) for RobustEnzymatic Saccharification of Spruce and Red Pine [J]. Bioresource Technology,2009,100(8):2411-2418.
    [27] Kumar L., Chandra R., Saddler J. N. Influence of steam pretreatment severity on post-treatments used to enhance the enzymatic hydrolysis of pretreated softwoods at lowenzyme loadings [J]. Biotechnology and Bioengineering,2011,108(10):2300-2311.
    [28] Nakagame S., Chandra R. P., Kadla J. F., Saddler J. N. Enhancing the enzymatichydrolysis of lignocellulosic biomass by increasing the carboxylic acid content of theassociated lignin [J]. Biotechnology and Bioengineering,2011,108(3):538-548.
    [29] Nakagame S., Chandra R. P., Kadla J. F., Saddler J. N. The isolation, characterizationand effect of lignin isolated from steam pretreated Douglas-fir on the enzymatichydrolysis of cellulose [J]. Bioresource Technology,2011,102(6):4507-4517.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700