绿色建筑节水技术体系与全生命周期综合效益研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
发展绿色建筑节水与水资源利用符合我国建设资源节约型、环境友好型社会的战略国策,有利于节约资源,保护环境,实现建筑与生态的和谐发展。针对我国的绿色建筑刚刚起步,新出台的《绿色建筑评价标准》节水与水资源利用的指标缺少系统技术支撑的问题,在调研总结各项单项节水技术与工程实践的基础上,开展绿色建筑建筑节水技术体系研究;针对建筑中水设施长期存在的负荷设计不合理,运行效率低,出水不稳定等问题,选择人工湿地组合工艺分别开展针对不同用途的中水处理试验研究;针对民众和开发商在绿色建筑起步阶段,对绿色建筑增量成本和效益认识模糊的现状,系统开展绿色建筑节水项目增量成本与全生命周期综合效益研究。主要研究内容与结论如下:
     ①通过对城市和建筑节水单项技术的深入调查与分析研究,全面系统地构建了适合绿色建筑的包括供水节水系统、中水处理与回用、雨水收集与利用、基于非传统水源利用的景观水体水质保障、非传统水源利用输配系统安全保障等在内的节水技术体系,规范和改进了适合绿色建筑特点的具体节水技术措施,并在西部某绿色建筑住宅小区开展示范,实现了节水率达37.8%,非传统水源利用率达30.4%的指标,年减少市政供水20.2万吨,利用非传统水源14.6万吨,可为今后建筑达到《绿色建筑评价标准》节水与水资源利用的相关指标提供技术支撑。
     ②开展“混凝沉淀+人工湿地”组合工艺处理优质杂排水回用于市政杂用水的效能试验研究。混凝沉淀预处理中水的正交试验结果表明,出水BOD5与温度、负荷、加药量之间符合回归正交方程:BOD5=2.05 Nv-0.41t-0.82ρ+38.9;人工湿地后处理中水的正交试验结果表明,出水BOD5与温度、负荷符合回归正交方程: BOD5=1190NA-0.32t +12.2。根据这两种连续工艺的回归正交方程,可得出不同季节不同负荷条件下组合工艺工程投资经济最优化模型:通过该模型的应用,结合绿色建筑不同季节的中水水量需求,可以合理确定该组合工艺的中水处理规模,为处理水质水量波动大、以优质杂排水为水源、选用“混凝沉淀+人工湿地”组合工艺的中水处理提供技术支撑。
     ③开展“接触氧化+人工湿地”组合工艺处理优质杂排水回用于景观用水的效能试验结果表明,影响该组合工艺出水水质达标的限制性指标为TN。通过温度和负荷对人工湿地工艺的影响因素试验结果表明,当优质杂排水经过常规负荷0.72KgBOD5/m3·d的接触氧化预处理后再进入人工湿地进行后处理,为使出水稳定达到《景观回用水水质标准》,人工湿地的最大水力负荷为夏季(30℃-36℃)时0.50m/d;冬季(8℃-12℃)时0.33m/d,夏季与冬季的最大水力负荷比为3∶2。根据试验结果,结合绿色建筑不同季节的中水水量需求,可以合理确定该组合工艺的中水处理规模,有效指导“混凝沉淀+人工湿地”组合工艺处理优质杂排水,且回用于景观环境用水的设计与运行。
     ④根据全生命周期的概念,结合绿色建筑节水的实际特点,首次系统全面地提出了集节水直接效益、环境社会效益和全生命周期成本在内的绿色建筑节水项目全生命周期综合效益的经济模型,采用蒙特卡罗模拟预测法对全生命周期产生的不确定性进行有效的分析和削弱,建立了基于蒙卡罗模拟预测的成本函数和参数变量系统,并借助水晶球软件进行分析。通过对西部某绿色建筑住宅小区节水示范项目的模拟应用,其全生命周期综合效益4713.2万元,全生命周期直接增量成本是1858.6万元,效益费用比是2.5:1,可见绿色建筑的全生命周期综合效益显著。
     绿色建筑技术体系与全生命周期综合效益的研究成果,将为今后绿色建筑节水的推广与实践提供技术支撑,为政府和开发商对绿色建筑节水项目的决策提供经济理论依据,为绿色建筑节水的深入研究与发展奠定基础,具有重要的现实意义。
The development of water-saving in green building is according with the national strategic policy of building a resources-conserving and environment-friendly society and it is beneficial to saving energy, protecting environment, and harmonious development of constructions and ecosystem. According to the lack of technical support system for water-saving indices in newly issued evaluation standard for green building and since green building develop just beginning, green building technical system was researched based on system analysis and summary of water-saving techniques and engineering practices. Aiming at the long-existing problem of unsuitable design load, low operation efficiency and unstable effluent in many intermediate water systems (IWS), treatment of different use reclaimed water by combinational technique of artificial wetland was experimentally studied. In view of incomprehension to incremental cost and benefit of green building, comprehensive benefit in full life cycle and incremental cost of water-saving project in green building were systematically researched. The conclusions are as follows:
     ①Based on investigation and analysis of water-saving techniques in cities and structures, water saving technology system was constructed, including water supply system, reclaimed water treatment and utilization system, rainoff collection and use system, water quality control system for landscape water body using unconventional water resources, and safety guarantee system for unconventional water resources transmission and distribution. The water-saving techniques were improved to suit for green building and were demonstrated in a green building district in western China, which realizes 37.8% (202 kiloton) municipal water saved, 30.4% (146kiloton) unconventional water utilized, and could offer technological support for buildings achieved requirements of evaluation standard for green building.
     ②Experimental study on the efficacy of superior drainage treated by combinational technique of coagulation sedimentation and artificial wetland was launched. The results showed that: the regression equations relating to effluent BOD5, temperature, load and addition dosage is: BOD5 = 1190NA-0.32t +12.2. The optimization model of investment is:
     According to the model, reasonable scale of IWS can be determined. The results offered technological support for reclaimed water treatment, which regards superior drainage as the source, has great variation in water quality and quantity, and is purified by combinational technique of coagulation sedimentation and artificial wetland.
     ③Experimental study on the efficacy of superior drainage treated by combinational technique of contact oxidation and artificial wetland was launched. The results showed that: TN is the restrictive index of the technique treatment effect. To meet the requirements of Water Quality Standard for Scenic Environment Use, the peak hydraulic load of artificial wetland is 0.50m/d in high temperature(30℃-36℃), and 0.33m/d in low temperature(8℃-12℃), and the superior drainage must pre-treated by contact oxidation on load of 0.72KgBOD5/m3·d. The load ratio of the peak hydraulic under two temperature conditions is 3∶2. According to the results, reasonable scale of IWS can be determined.
     ④Based on concepts of full life cycle and present situation of water-saving in green building, calculation model of comprehensive benefit in full life cycle for green building water-saving project (including direct benefit of water-saving, economical and social benefits, and life cycle cost) was first put forward and used in this study. Monte carlo simulation was adopted on analysis the uncertainties of full life cycle and minimize it, and then, cost function and parameter variable system was established based on monte carlo simulation, and was analysed by crystal ball software. The system was applied to a green building district in western China, and the results showed that green building got remarkable comprehensive benefit. The comprehensive benefit in full life cycle was 47.132 million yuan, the direct incremental cost was 18.586 million yuan, and the ratio of benefit to cost was 2.5:1.
     The researchs of technical system and comprehensive benefit in full life cycle of green building have important realistic meanings. It will offer technological support for water-saving, will provide economic theory for decision making in water-saving scheme selection, and will lay a foundation of further study on green building water-saving.
引文
[1]中国建筑科学研究院,等编.绿色建筑评价标准GB50378-2006[S].北京:中国建筑工业出版社, 2006.
    [2]中华人民共和国建设部,科学技术部.绿色建筑技术导则.建科[2005]199号.
    [3]中国城市科学研究会.绿色建筑2008 [M].北京:中国建筑工业出版社, 2008.
    [4]马芸,鲍世民.国外绿色建筑发展概况[J].中国地产市场, 2006, 68(2): 18-22.
    [5] The leadership in energy and environmental design. Green Building Rating SystemTM 2. 0 [M]. New York: The US Green Building Council, 2001. 4-25.
    [6] LEED for existing buildings upgrades, operations and maintenance[S]. 2005.
    [7] LEED for new construction&major renovations[S]. 2005.
    [8] LEED for commercial interiors[S]. 2005.
    [9] Building Reasearch Establishment. Building Reasearch Establishment Environmental Assessment Method [M]. 1990.
    [10] Michael Ross Jayne, John Mackay. BREEAM provides new and growing opportunities for work for building surveyors [J]. Structural Survey, 1999, 17(1): 18-25.
    [11] Ian G. Theaker and Raymond J. Cole. The role of local governments in fostering green buildings:a case study [J]. Building Research & Information, 2000, 28(5-6):394-408.
    [12] Raymond Cole, Nils Larsson. GBC 2000 Assessment Manual. Ottawa: Green Building Challenge [M]. 2000. 85-88.
    [13]李路明.国外绿色建筑评价体系略览[J].世界建筑, 2002, (5): 68-70.
    [14]陈立.绿色建筑水循环安全保障[M] .北京:中国建筑工业出版社, 2007.
    [15]邬扬善.日本中水发展概况、趋势及其运行机制分析.给水排水, 2002, 28(2):60-64.
    [16]付婉霞.建筑节水技术与中水回用[M] .北京:化学工业出版社, 2003.
    [17] B. Janosovaa, J. Miklankova, P. Hlavinek, T. Wintgens Drivers for wastewater reuse:regional analysis in the Czech Republic Elsevier, 2006, 187:103–114.
    [18] Metcaf, Eddf. Wastewater Engineering, Third Edition, USA: McGRAW-HILL International Edtion, 1991, 182:107-113.
    [19] F. Naji, T. Lustig. On-site water recycling—a total water cycle management approach Elsevier, 2006, 188:195–202.
    [20] Klaus W Koenig. Die Bedeutung der Regenwasser bewirtschaftung. Umweltpraxis [J]. Building Research & Information, 2003, (1): 2-6.
    [21] Herrmann T, Schmida U. hydraulic and environmental Rainwater utilization in Germany: efficiency, dimensioning, aspects[J] . Urban Water 1999;1(4):307-16.
    [22]李俊奇,车武.德国城市雨水利用技术考察分析[J] .城市环境与城市生态, 2002, 16(1):47-49.
    [23] Gantner K. Nachhaltigkeit urbaner Regenw asserbew irtschaftungsm ethodenTeil Grundlagen [J]. GWF Wasser und Abwasser, 2003, 144(3): 240-247.
    [24] ZaizcnM, Tclrakaway, MatsumotoH, etal. The collectionorain waterfrom domestadiumsin Japan[J]. UrbanWater, 1999(1):355-359.
    [25] Enedir Ghisi, Daniel F. Ferreira. Potential for potable water savings by using rainwater and greywater in a multi-storey residential building[J]. Brazil Elsevier, 2007, 42:2512–2522.
    [26] Atv-dvwk Arbeitsblatt. Planung, Bau und Betriebvon Anlagen zurVersickerung von Nieders chlageswasser[M]. Henne:GFA–Gesellschaft zurFoerderung derAbwassertechnik e. k, 2002.
    [27]苟红英.绿色居住小区节水与水资源利用技术研究[D] .重庆大学硕士论文, 2007.
    [28]张统.建筑中水设计技术[M] .北京:国防工业出版社, 2007.
    [29]北京市城市节约用水办公室.中水工程实例及评析[M] .北京:中国建筑工业出版社, 2003.
    [30]北京市城市节约用水办公室.节水新技术与示范工程实例[M].北京:中国建筑工业出版社, 2004.
    [31]车武,李俊奇.从第十届国际雨水利用大会看城市雨水利用的现状与趋势.给水排水, 2002, 28(3): 12-14.
    [32]刘鹏,朱跃云,郭汝艳.国家体育场屋面雨水设计中的难点问题[J].给水排水, 2006, 32(8): 80-87.
    [33]车武,李俊奇.城市雨水利用技术与管理[M] .北京:中国建筑工业出版社, 2006.
    [34]李俊奇,车武.城市雨水问题与可持续发展对策[J] .城市环境与城市生态, 2005, 18(4): 6-8.
    [35]车武,李俊奇,刘红等.现代城市雨水利用技术体系[J] .北京水利, 2003(3):16-18.
    [36]聂梅生,秦佑国,江亿等.中国生态住区技术评估手册(第四版)[M] .北京:中国建筑工业出版社, 2007.
    [37]中华人民共和国建设部科学技术司,《智能与绿色建筑文集》编委会.智能与绿色建筑文集[M] .北京:中国建筑工业出版社, 2005.
    [38]吕伟娅,关丹桔.南京聚福园:雨水利用工程的实施与运行[J] .建设科技, 2006(7):44-45.
    [39]董士波.工程造价管理:面对入世的差距[J] .建筑经济. 2001(2):22-25.
    [40]邵良杉,高树林.基于人工神经网络的投资预测[J].系统工程理论与实, 1997(2):67-71.
    [41]荀志远,于彩华.加权灰色关联度法在工程投资估算中的应用[J].建筑技术开发, 2001, 28(9):54-58.
    [42]胡志根.基于模糊预测的工程造价估算模型研究[J].系统工程理论与实践, 1997(2): 50- 55.
    [43]姬晓辉,柳瑞禹.送电线路工程投资模糊估算的探讨[J].武汉水利电力大学学报. 1996. 29(6):87-90.
    [44]王韧超.绿色建筑节水与水资源化利用增量成本及其经济性研究[D] .重庆大学硕士论文, 2007.
    [45] Brix, H. , Teatment of wastewater in the rhizosphere of wetland plants-the rootzone method[J]. Wat Sci Technol. 1987, 19: 107-118.
    [46] Devai, I. , Delaune, R. D. Evidence for phosphine production and emissionfrom Louisiana and Florida marsh soils[J]. Organic Geochemistry, 1995, 23(3): 277-279.
    [47]柴宏祥,孙永利,林玲.绿色建筑供水系统节水技术设计要点.中国给水排水, 2008, 24(14): 44-46.
    [48] Edwards, K. et al. A methodology for surveying domestic water consumption[J]. J. CIWEM, 1995, 9(10) :477-488.
    [49]赵姝丽,陈玉丽.民用建筑节水措施研究[J].节能, 2005, 275(6) :47-49.
    [50]冯萃敏,付婉霞.集中热水供应系统的循环方式与节水[J].中国给水排水, 2001, 17(9): 46-48.
    [51]孙钢,黄佩.住宅建筑内热水系统循环设置[J].给水排水, 2007, 33(6):83.
    [52] Mclann, A. et al. Water conservation for Rhode Island Lawns[J]. J. awwa, 1994, 84(4): 199- 204.
    [53]何强,柴宏祥,张丽.绿色建筑中水处理工艺及设施探讨[J].给水排水, 2007, 33(7): 90- 92.
    [54]中国国家质量监督检验检疫总局. GB/T18921-2002城市污水再生利用景观环境用水水质[S], 2002.
    [55]中国国家质量监督检验检疫总局. GB/T18920-2002城市污水再生利用城市杂用水水质[S], 2002.
    [56]建筑中水设计规范(GB50336-2002)[S].北京:中国计划出版社, 2002.
    [57]柴宏祥,何强,苟红英.绿色建筑中水预处理改进.中国给水排水[J]. 2007, 23(16): 41-42.
    [58]何强,柴宏祥.绿色建筑小区雨水资源化综合利用技术[J].环境工程学报, 2008, 2(3): 205-207.
    [59]柴宏祥,何强,张丽.绿色建筑小区景观水体水质安全保障技术.第六届亚太地区基础设施发展部长级论坛暨第二届中国城镇水务发展国际研讨会论文集, 2007, 786-790.
    [60]周律,邢丽贞,段艳萍等.再生水回用于景观水体的水质要求探讨[J].给水排水, 2007,33(4): 38-42.
    [61]师前进,何强,柴宏祥.绿色建筑住宅小区节水与水资源利用设计探讨[J].给水排水, 2008, 34(1): 77-79.
    [62]国家环保局.水和废水监测分析方法(第四版)[M].北京:中国环境科学出版社, 2002.
    [63]上海师范大学数学系概率统计教研组编,回归分析及其正交试验[M].上海:上海教育出版社, 1979.
    [64]田胜元,萧曰嵘.实验设计与数据处理[M].北京:中国建筑工业出版社, 2002.
    [65] Eva Sterner. Green Procurement of Buildings Estamation of Environmental Impact and Life Cycle Cost [J]. Doctoral Thesis of Lulea Tekniska University. 2002, (9): 34-37.
    [66] ISO 14000, Environmental Management Life Cycle Assessment Principles and Framework, 1997.
    [67] Consoli F, etal. Guidelines for life-cycle assessment: A Code of practice [J]. SETAC, FL: Pensacola, 1993.
    [68] Peuportier BLP. Life cycle assessment applied to the comparative evaluation of single family houses in French context [J]. Energy and Building, 2001(3).
    [69] Judith Heerwagen. Green buildings, organizational success and occupant productivity [J]. Building Research & Information, 2000, 28(5-6): 353-367.
    [70] Ulrich Bogenstatter. Prediction and optimization of life-cycle costs in early design [J]. Building Research & Information, 2000, 28(5-6): 376-386.
    [71] National Institute of Standards and Technology (NIST) Handbook 135: Life cycle costing manual for federal energy management program [M]. Washington: U. S. Govern-ment Printing Office, 1996.
    [72]董士波.全生命周期工程造价管理研究[D].哈尔滨工程大学博士学位论文. 2003, (12): 65-66.
    [73] Michael Bromwich, Chelokyu Hong. Activity-Based Costing Sytems and Incremental Costs [J]. Management Accounting Research. 1999, 10(3):39-60.
    [74] D. Copper Smith, G. B. Sorkin. On the Expected Incremental Cost of A Minimum Assignment[J]. Mathematical Studies. 2002, (10): 277-288.
    [75]黄秀清,司先秀.长期增量成本在实际应用中的难点分析[J].北京邮电大学学报(社会科学版), 2006, 8(1):33-37.
    [76]李世蓉,徐波译.工程建设风险管理[M].中国建筑工业出版社, 2000.
    [77]张建斌,杨家笠.经济评价中风险分析方法研究[J].石油化工技术经济, 2003, 19(5): 22-27.
    [78]扈文秀.用蒙特卡罗模拟法进行项目概率分析及其微机实现[J].西安理工大学学报,1995, 11(1): 64-71.
    [79]朱晖.投资项目基准收益率动态测算模型探讨[J].科技情报开发与经济, 2004, 14(8): 23-27.
    [80]玉峰,傅莉.关于折现率的选择与计算[J].中国农业会计. 2005, 24(9):21-22.
    [81]苏卫东,张世英.上海股市β系数的稳定性检验[J].预测, 2002, (3):44-46.
    [82]刘永涛.上海证券市场β系数相关特性的实证研究[J].管理科学, 2004, 17(1):31-33.
    [83]张步云.关于供水项目折现率与优化项目管理的一些思考[J].城镇供水, 2006, 23(2):56-58.
    [84]国家城市给水排水工程技术研究中心.给水排水工程概预算与经济评价手册[M].中国建筑工业出版社, 1993.
    [85]孙海虹,叶晓甦.基于蒙特卡罗模拟技术的工程造价风险因素分析[J].重庆建筑大学学报, 2005, 27(6):121-126.
    [86]赵恒.水晶球软件及其在数学建模中的应用[J].工程数学学报, 2005, 22(8):69-74.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700