太湖底泥重金属赋存特征及其评价
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文针对太湖底泥中Cd、Pb、Cr、Cu、Zn、Ni和As7种重金属元素的总量,Cd、Pb、Cr、Cu. Zn、Ni6种重金属的赋存形态进行研究,以实验分析以及理论分析相结合的方法,对重金属的含量水平、分布特征、赋存形态及AVS和SEM时空分布特征进行形态研究,并选择基于重金属总量的评价方法(富集系数法)、基于硫化物控制理论(AVS和SEM比值法)、并基于相平衡分配法对太湖底泥中重金属的沉积物质量基准进行研究,结果表明:太湖表层沉积物中7种重金属均超过背景值,表现出较高的累积效应;且这7种重金属的离散性均相对较大;7种重金属均具有中等程度空间自相关性,说明太湖表层底泥中重金属与点源污染有很大关系,已经受到了人类活动的影响;太湖底泥中重金属的含量总体来说从高到底程逐级递减的趋势,表明近年来受到的污染有加重的趋势;而重金属含量一般到第四层、达到20cm处就趋于稳定。太湖表层底泥中不同重金属的形态含量和分布有较大差异;相关性分析表明:Cr、Zn、Cu、Cd这4中重金属元素之间存在极显著的相关关系,可能存在相似的污染来源。太湖底泥中6种重金属有效态含量均有从表层至深层逐渐递减的趋势,且随着深度的增加,可交换态和可氧化态的含量有逐渐降低的趋势。AVS和SEM的分析结果表现,AVS和SEM均有较大的变异系数,SEMzn>SEMNi>SEMpb>SEMCu> SEMcd;从毒性效应来看,太湖表层沉积物中Cd和Pb可能对底栖生物存在毒性效应风险,应引起有关部门重视。通过与背景值的比较,Cd的富集系数最高,远远高于其它6种金属,可能对生态环境可能存在危害。太湖沉积物6种重金属的平衡分配系数(Kp)分别为:2.66x103、5.74x103、6.67×103、4.50×103、0.96x103、10.87x103;根据美国地表水水质基准和我国地表水水质标准,计算出太湖沉积物重金属的质量相对基准值,基本介于TEL和PEL之间。
This paper in connection with concentration characters of seven heavy metals (Cr, Ni, Cu, Zn, As, Cd and Pb) and BCR three stage sequential extraction procedure was applied to examine the speciation and concentration of six heavy metals(Cr, Ni, Cu, Zn, Cd and Pb) in sediments of Taihu lake, combining the method of experimental analysis and theoretical analysis, study concentration characters, distribution characters, Chemical speciation and the concentration of AVS and SEM of heavy metals in the sediments and study its pollution assessment as the method of choosing the evaluation method which is based on heavy metal total concentration (enrichment coefficients method), AVS and SEM Ratio method, and Using Equilibrium-Partitioning Approach. The results indicated that, heavy metals concentrations in the sediments were significantly higher than the background values, a clear cumulative effect of these metals. Geostatistical analysis showed that there was moderate spatial self-correlation between heavy metals in the sediments from the studied area, which indicates that the spatial distribution of the heavy metal concentrations was influenced by human activities factors. The vertical distribution of total metal contents and their fractions decreased with depth and it is stable at the depth of 20cm. The fractions of heavy metals varied greatly in the surface sediment of Taihu lake Correlation analysis showed that Cr Ni Cu and Cd this 4 heavy metal elements have the extremely remarkable correlational dependence, possible to have the similar pollution origin. Acid volatile sulfide (AVS) and simultaneously extractable metal (SEM) analytic results showed that the concentration distribution of AVS and SEM has large differences, and SEMZn> SEMNi> SEMPb> SEMCu> SEMcd. From the toxicity point of view heavy metals in the surface sediments have potentially toxic to benthic organisms. The partitioning coefficient(Kp) of six heavy metals in sediments of Taihu Lake were:2.66×103,5.74×103,6.67×103,4.50×103, 0.96×103,10.87×103.With equilibrium partitioning approach and water quality criteria sediment quality guidelines for metals in Taihu lake were derived, which is basically situated between TEL and PEL.
引文
[1]常学秀,文传浩,王焕校.重金属污染与人体健康[[J].云南环境科学,2000.19(1):59-61.
    [2]Chapman PM, Wang FY, Admas WJ, et al. Appropriate applications of sediment quality values for metals and metalloids[J].Environ Sci Technol,1999,33:3935-3941.
    [3]陈静生,周家义.中国水环境重金属研究[M].北京:中国环境科学出版社,1992,151-188.
    [4]U.弗斯特纳,GTW维特曼.水环境的金属污染[M].海洋出版社,1988.
    [5]陈静生,王飞越,宋吉杰,等,中国东部河流沉积物中重金属含量与沉积物主要性质的关系[J].环境化学,1996,15(1):8—15.
    [6]LARS Hakanson.An ecological risk index for aquatic pollution control-A sedimentological approach [J].Water Research,1980,14:955-1001.
    [5]Delaune RD, Smith CJ. Release of nutrients and metal following oxidation of freshwater and sediment[J].Journal of Environment Quality,1985,14(2):164-168.
    [8]Forstner U. Wittmann G,.Metal Pollution in the Aquatic Environment and Edition[J].Springer-Verlag, Berlin,1981P.486.
    [9]王静雅,李泽琴,程温莹,等.湖相沉积物中重金属环境污染研究进展[J].地球科学进展,2004,19:434~438.
    [10]金相灿.沉积物污染化学.北京:中国环境科学出版社,1992.
    [11]赵一阳.论大陆架底泥地球化学的若干模式[J].地质科学,1983,304—314.
    [12]冯素萍,鞠莉,沈勇,等.沉积物中重金属形态分析方法研究进展[J].化学分析计量.2006.15.4.
    [13]刘文新,李向东.深圳湾水域中重金属在不同相间的分布特征[J].环境科学学报,2002,22(3):305-309.
    [14]Bubb,J.M.;Lester,J.N.Anthropogenic heavy metal inputs to lowland river system,a case study:The River Stour,U.K.Water Air Soil Pollut.58:259-296;1994.
    [15]Jae-Kil Jang.Temporal and spatial distribution and source identification of organic pollutants in Lake Calumet area[D].University of Illinois at Chicago,2001:2-8.
    [16]Birch, G.F., Taylor, S.E., Mathai, C.2001.Small-scale spatial and temporal variance in the concentration of heavy metals in aquatic sediments:a review and some new concepts [J]. Environmental Pollution, (113):355-352.
    [15]J.V.Rios-Arana, E.J.Walsh, J.L.Gardea-Torresdey. Assessment of arsenic and heavy metals concentrations in water and sediments of the Rio Grande at El Paso-Juarez metroplex region[J].Environment Intemational.2003;29:955-951.
    [18]Gurrieri JT. Distribution of metals in water and sediment and effects on aquatic biota in the upper Stillwater River basin, Montana[J].Journal of Geochemical Exploration 1998,64:83—100.
    [19]Sutherland R A.Bed sediment-associated trace metals in an urban stream, Oahu,Hawaii[J]. Environmental Geology,2000,39:611-625.
    [21]杨勇强.珠江口及近海沉积物中重金属元素的分布、赋存形态及其潜在生态风险评价[D].广州:中国科学院广州地球化学研究所,2005:66-69.
    [21]Chapman D. Water Quantity Assessment. London:Chapman & Hall Ltd,1992,121-134.
    [22]Steven W,John MC,John H et al.Sulfide species as a sink for mercury in lake sediments.Environ Sci Technol,2005,39:6644-6648.
    [23]Di Toro D M, Mahony J D, Hansen D J,et al. Toxicity of cadmium in sediments:the role of acid volatile sulfide. Environmental Toxicology and Chemistry,1990,9:1485~1502.
    [24]Di Toro D M, Mahony J D, Hansen D J,et al. Acid volatile sulfide predicts the acute toxicity of cadmium and nickel in sediments. Environ.Sci.Technol.,1992,26:96~101.
    [25]Ankley G T, Leonard E N and Mattson V R. Prediction of bioaccumulation of metals from contaminated sediments by the oligochaete, Lumbriculus variegatus. Water Res.,1994,28: 1051~1056.
    [26]Ankley G T, Phipps G L, Leonard E N,et al. Acid-volatile sulfide as a factor mediating cadmium and nickel bioavailability in contaminated sediments.Environmental Toxicology and Chemistry,1991,10:1299~1305.
    [25]Pesch C E, Hansen D J, Boothman W S,et al. The role of acid-volatile sulfide and interstitial water metal concentrations in determining bioavailability of cadmium and nickel from contaminated sediments to the marinePolychaete Neanthes arenaceodentata.Environmental Toxicology and Chemistry,1995,14:129~141.
    [28]Howard D E, Evans R D. Acid-volatile sulfide (AVS) in a seasonally anoxic mesotrophic lake:seasonal and spatial changes in sediment AVS.Environmental Toxicology and Chemistry,1993,12:1051~1055.
    [29]Pesch C E, Hansen D J, Boothman W S,et al. The role of acid-volatile sulfide and interstitial water metal concentrations in determining bioavailability of cadmium and nickel from contaminated sediments to the marinePolychaete Neanthes arenaceodentata.Environmental Toxicology and Chemistry,1995,14:129~141.
    [30]Herlihy A T, Mills A L. Sulfate reduction in freshwater sediments receiving acid mine drainage. Appl.Environ.Microbiol.,1985,49:159~186.
    [31]Thode-Andersen S, Jorgensen B B. Sulfate reduction and the formation of35S-labeled FeS, FeS2, and SOin coastal marine sediments. Limnol.Oceanogr.,1989,34:593~806.
    [32]Oehm N J, Luben T J, Ostrofsky M L. Spatial distribution of acid volatile sulfur in the sediments of Canadohta Lake PA. Hydrobiologia,1995,345:59~85.
    [33]Leonard E N, Mattson V R, Benoit D A, et al.Seasonal variation of acid volatile sulfide concentration in sediment cores from three northeastern Minnersoda lakes[J].Hydrobiologia,1993,251:85-95.
    [34]Burton GA,Green A,Baudo R et al.Characterizing sediment acid volatile sulfide concentration in European streams.Environ Toxicol Chem,2005,26(1):1-12.
    [35]Griethuysen CA,Erwin WM,Koelmans AA.Spatial variation of metals and acid volatile sulfide in floodplain lake sediment. Environ Toxicol Chem,2003,22(3):455-465.
    [36]Yu K C, Tsai L J, Chen S H, Ho S T. Chemical binding of heavy metals in anoxic river sediments[J].Water Res,2001,35(15):4086-4096
    [37]United States Environmental Protection Agency. The incidence and severity of sediment contamination in surface waters of the United States. Vol 1:National Sediment Quality Survey, EPA 823-R-04-005,2nd ed)[M].Washington D C:United States Environmental Protecting Agency,2004:280p.
    [38]Hare L,Carignan R,Huerta-Diaz MA.A field study of metal toxicity and accumulation by benthic invertebrates; implications for the acid-volatile sulfide(AVS)model.Limnol Oceanogr,1994,39:1653-1668.
    [39]US EPA 1990.Evaluation of the equilibrium partition(EqP) approach for assessing sediment quality. Report of the sediment criteria subcommittee of the ecological processes and effects committee[R].Washington DC EPA-SAB-EPEC-990-006,4-24
    [40]OWRS/CSD Briefing Report to the EPA Science Advisory Board on the Equilibrium Partitioning Approach to Generating Sediment Quality Criteria[J].1989
    [41]Chapman P.M. Environmental quality criteria-what type should we be developing[J]. Environmental Science and Technology 1991,25:1353~1359
    [42]DITORO D M.Briefing report to the EPA science advisory board on the equilibrium partitioning approach to generating sediment quality criteria[R].Washington DC:US EPA,1989:155.
    [43]Hong S, Chen JS, Cheng BQ. Research on suspended matter and sediment quality criteria for metals in Yellow River using equilibrium partitioning-biological effect approach. Journal of Wuhan University of Technology,2006,28:61-65
    [44]Shea D. Developing national sediment quality criteria [J].Environ Sci and Technol,1988,22(11):1256~1261.
    [45]谢红彬,陈雯.太湖流域制造业结构变化对水环境演变影响分析—以苏锡常地区为例[J].湖泊科学,2002,14(1):53-39
    [46]戴秀丽,孙成.太湖沉积物中重金属污染状况及分布特征探讨[J].上海环境科学,2001,20(2):51-54.
    [45]陆敏,张卫国,师育新,等.太湖北部沉积物金属和营养元素的垂向变化及其影响因素[J].湖泊科学,2003,15(3):213-220.
    [48]成新,江溢,蒋英姿,太湖底泥与污染情况调查[C],水利部科学技术委员会,太湖高级论坛交流文集,上海:水利部太湖流域管理局,2004,265~253
    [49]Brenda Lasorsa, Atian Casas. A comparison of sample handling and analytical methods for determination of acid volatile sulfides in sediment. Marine Chemistry, 1996,52:211~220.
    [50]US EPA method 3051. Microwave Assisted Acid Digestion of Sediments, Sludges, Soils, and Oils. Revision,2004.
    [51]戴树桂.环境化学进展[M].北京:化学工业出版社,2005,195-195
    [52]刘恩峰,沈吉,朱育新.重金属元素BCR提取法及在太湖沉积物研究中的应用[J].环境科学研究,2005,18(2):55-60
    [53]Borg H, Jonsson P. Large-scale metal distribution in Baltic Sea sediments [J].Marine Pollution Bulletin,1996,32:8-21.
    [54]Glenn AU,Lee RK,Suflita JM.A rapid and simple method for estimating sulfate reduction activity and quantifying inorganic sulfides.Appl Environ Microbil,1995,63(4):1625-1630.
    [55]刘素美,张经.沉积物间隙水的几种制备方法[J].海洋环境科学:1999
    [56]CREED J T, BROEKHOFF C A, MARTIN T D. Determination of trace elements in waters and wastes by inductively coupled plasma-mass spectrometry, USEPA 200.8, 1994.
    [55]Merrington QOliver I,Smernik RJ, et al.The influence of sewage sludge properties on sludge-borne metal availability[J]. Advances in Environmental Ressearch,2003,8:21-36
    [58]中国科学院南京土壤研究所.环境中若干元素的自然背值及其研究方法[M].北京:科学出版社,1982:95-132.
    [59]孙顺才,黄漪平.太湖[M].北京:海洋出版社,1993:231-235.
    [60]崔振昂,郑志昌,林进清,等.广西北海近岸海域表层沉积物中重金属分布特征及生态风险评价[J].安全与环境工程,2010,15(1):31-35.
    [61]Wetzez R G. Limnoloy:Lake and River Eeosystems. Third Edition. San Diego:Academic Press,2001:625-625.
    [62]牛显春,周建敏,李春晖,等.茂名近岸海域底质重金属污染及潜在生态风险综合评价[J].黑龙江水专学报,2005,34(3):101-103.
    [63]Matheron G. Principles of geostatistics [J]. Economic Geology,1963.58(8):1246-1266.
    [64]汤国安,杨听.ArcGIS地理信息系统空间分析实验教程[M].北京:科学出版社,2006.
    [65]Cambardella C A, Moorman T B, Novak J M, et al. Field-scale variability of soil properties in central Iowa soils [J]. Soil Science Society of America Journal,1994,58(5):1501-1511.
    [66]郑海龙,陈杰,邓文靖,等.南京城市边缘带化工园区土壤重金属污染评价[J].环境科学学报,2005,25(9):1182-1188.
    [67]姜勇,梁文举,闻大中.沈阳郊区农业土壤中微量元素[M].北京:中国农业科学技术出版社,2003.
    [68]刘建军,吴敬禄.太湖大浦湖区近百年来湖泊记录的环境信息[J].古地理学报,2006,8 (4):559-565.
    [69]Singh K P, Mohan D, Singh V K, et al. Studies on distribution and fractionation of heavy metals in Gomti river sedi-ents-a tributary of the Ganges, India [J]. Journal of Hydrolo-gy, 2005,312:14-25.
    [70]Fan W H, Wang W X, Chen J S, et al.Cu, Ni, and Pb speciation in surface sediments from a contaminated bay of northern China [J].Marine Pollution Bulletin,2002,44:816-832.
    [71]Akcay H, Oguz A, Karapire. Study of heavy metal pollution and speciation in Buyak Menderes and Gediz river sediments[J]. Water Research,2003,35:813-822.
    [72]Farkas A, Erratico C, Vigano L. Assessment of the environmental significance of heavy metal pollution in surficial sediments of the River Po [J]. Chemosphere,2005,68:561-568.
    [73]Singh A K,Benerjee D K.Grain size and geochemical partitioning of heavy metals in sediments of the Damodar River-A tributary of the lower Ganga,Zndia[J]. Environ.Geol,1999,39(1):91-98.
    [74]王海,王春霞,王子健.太湖表层沉积物中重金属的形态分析[J].环境化学,2002,21(5):430-435
    [75]Teasdale P R,Apte S C,Ford P W,et al.Geochemical cycling and speciation of copper in waters and sediments of Macquarie Harbour,Western Tasmania[J].Estuarine,Coastal and Shelf Science,2003,55:455-485.
    [76]Filgueiras A V,Lavilla I,Bendicho C. Comparison of the standard SM&T sequential extraction method with small-scale ultrasound-assisted single extractions for metal partitioning in sediments [J].Analytical and Bio-analytical Chemistry,2002, 354(1):103-108.
    [77]朱广伟,陈英旭,周根娣,等.运河(杭州段)沉积物中重金属分布特征及变化[J].中国环境科学,2001,21(1):65-69.
    [78]Chapman D. Water Quantity Assessment[M]. London:Chapman & Hall Ltd,1992, 121-134.
    [79]Li F Y, Fan Z P, Xiao P F, et al. Contamination chemical speciation and vertical distribution of heavy metals in soils of an old and large industrial zone in Northeast China [J].Environ. Geol,2009.54:1815-1823.
    [80]United States Environmental Protection Agency.2004. The incidence and severity of sediment contamination in surface waters of the United States. Vol 1:National Sediment Quality Survey, EPA 823-R-04-005,2nd ed)[M]. Washington D C:United States Environmental Protecting Agency.280
    [81]Lacey E M, King J W, Quinn J G, et al. Sediment quality in Burlington Harbor, Lake Champlain, U.S.A[J]. Water Air and Soil Pollution,2001,126:95-120
    [82]Steven W, John M C, John H et al.2005.Sulfide species as a sink for mercury in lake sediments[J]. Environ Sci Technol.39:6644-6648
    [83]Chapman Peter M, Mann Gary S, Sediment Quality Values (SQVs) and Ecological Risk Assessment (ERA). Marine Pollution Bulletin,1999,38(5):339-344
    [84]陈云增,杨浩,张振克,等.相平衡分配法在滇池沉积物环境质量评价中的应用研究[J].环境科学学报.2006,26(9):1546-1552
    [85]霍文毅,陈静生.我国部分河流重金属水-固分配系数及在河流质量基准研究中的应用[J].环境科学,1995.18(4):10-14
    [86]John M. Besser, William G. Brumbaugh, Ann L. Allert, et al. Ecological impacts of lead mining on Ozark streams:Toxicity of sediment and pore water [J]. Ecotoxicology and Environmental safety,2009:516-526.
    [87]US EPA. Research and Development,A Geochemical Assessment of Potential Porewater to EPA-Regulated Metal and Ionizable Organic Contaminants for Use in Developing Equilibrium-Partitioning Sediment Quality Criteria.1990.18-20
    [88]洪松.水体沉积物重金属质量基准研究[D].北京大学博士学位论文,2001
    [89]Mac Donald DD, Ingersoll CG, Berger TA. Development and evaluation of consensus-based sediment quality guidelines for freshwater ecosystems[J]. Arch Environmental Toxicology,2000,39:20-31.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700