活性污泥系统水力—生物耦合模型建立及其应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着水污染的日益严重,水中污染物质的去除得到了高度重视。目前,国内水污染控制中水处理工程的设计以及污水处理厂的建设运行管理都根据过往的调试经验进行,将耗费大量人力物力,因此通过计算机仿真程序对污水处理过程进行模拟从而为污水处理工程的设计以及运行管理提供优化方案是大势所趋。当前污水处理工程的主要方法为活性污泥法。国际上有包括国际水协ASM课题组、UCT课题组以及EAWAG、TUDP等多个课题组致力于活性污泥模型的研究。EAWAG、TUDP分别推出的ASM3 Bio-P模型和TUDP模型都可以模拟营养物质全去除过程,比较具有代表性,但这些模型都属于均质模型,无法反应污染物质随水流方向的变化趋势。
     为了更符合污水处理实际情况,本研究基于ASMs模型和TUDP模型,根据微生物耦合机理,改进生物模型,添加抑制形式的开关函数,耦合其他模型的较优部分得到ATCM(ASMs TUDP Coupling Model)模型。通过对水力场的推导,建立水力场控制方程和边界条件,将水力模型与生物模型耦合,得到水力-生物耦合模型HBCM(Hydraulic Biological Coupling Model)。
     采用数值解法中的有限元法对HBCM模型进行求解。使用MATLAB语言建立活性污泥系统AAO工艺的模拟程序。该程序可模拟AAO工艺的厌氧池、缺氧池、好氧池的生化反应和污染物质随流场一维方向的改变,并可直观地通过图形看到污染物质随时间和空间的变化过程。
     本研究中HBCM模型的校核工作是基于德清县狮山污水处理厂AAO工艺的工艺参数、水质参数的基础数据开展。AAO工艺的工艺参数由污水处理厂设计资料以及管理资料提供。同时,本研究在德清污水处理厂开展了连续三十日的水质监测工作。模型参数沿用国际推荐的默认值。经过校核,数值模型与实际情况较吻合。
     将校核后的模型应用于德清狮山污水处理厂污水处理过程优化运行管理的研究,改变不同工艺参数、流量和进水水质参数,模拟污染物质去除过程,预测污水出水水质,提出德清污水处理厂污水处理过程优化运行的改进方案。
Nowadays, removal of pollutant in wastewater has been focusedbecause of the more serious water pollution. The calibration ofwastewater treatment project is always very difficult that it is carried outbase on the experience and result better or worse after the calibration isunknown. Simulation program of wastewater treatment plant is quitedemanded as guide for WWTP optimization management and design.Activated sludge system is more applied in WWTP and many model ofactivated sludge system have been proposed such as ASMs and TUDPModel and so on. All of these models described the pollutant removalprocess in homogeneous conditions.
     This study focused on a new model establishing which is base onASMs and TUDP model. Hydraulic model is deduced according to thediffusion theory. Hydraulic model and the new biological model ATCMare coupled based the mass balance theory so the new modelHydraulic-Biological Model is set up.
     Finite element mathematics analysis is employed for model solving. A simulation program is designed based on MATLAB and it can simulateentire process of activate sludge system AAO technics. Also thesimulation results are shown in fig form so manager can realize theresults convenience and intuitionistic.
     The validation and calibration of model are carried out based on thedatum from Deqing Shishan wastewater treatment plant and modelparameters are equal to the values EAWAG recommended. The HBCMmodel has been proved valid compared the datum tested in DeqingShishan WWTP.
     The research on HBCM application in AAO technics is carried out.The process is simulated when technic variable changed in different valusand results will show the best technic variables for WWTP manage.
引文
1.国家环境保护总局.2004年中国环境状况公报[S].http://www.zhb.gov.cn/plan/zkgb,2005.
    2.赵耘挚.SBR及其改良工艺数学模型与仿真软件研究[D].上海:东华大学,2003.
    3. Buswel, A. M., Long, H. L. Microbiology and Theory of Activated Sludge [J]. Am Pollut Wks Assn., 1923, 10(2): 309.
    4. Goel. R., Mino. T., Satoh. H., Matsuo. T. Modelling hydrolysis processes considering intracellular storage [J]. Wat Sci Tech, 1999, 39(1): 97-105.
    5. Orhon, D. et al. The effect of hydraulics on the performance of activated sludge systems Ⅰ, Ⅱ [J]. War Res, 23(12): 1511-1522.
    6. van, Loosdrecht, M.C.M., Henze, M. Maintenance, endogenous respiration, lysis, decay and predation[J]. Water Sci. Technol, 1999, 39 (1): 107-117.
    7. Dold P.L., Ekama G.A., G.V.R. A general model for the activated sludge process [J]. Prog. Wat. Tech., 1980, 12: 47-77.
    8. Van Loosdrecht. M., Jetten. M. Microbiological conversion in nitrogen removal [J]. Wat. Sci. Tech., 1998, 38(1): 1-7.
    9. Robertson. L A., Kuenen J G.Combined heterotrophic nitrification and aerobic denitrification in Thiosphaera pantotropha and other bacteria [J]. Ant Van Leeuwenhoek, 1990, 56, 289-299.
    10. Muller E B., Stouthamer A H., Verseveld H W. Simultaneous NH3 oxidation and N2 production at reduced O2 concentrations by sewage sludge subcultured with chemolithotrophic medium [J]. Biodegradation, 1995, 6: 339-349.
    11. Mulder A, van de GraafA A, Robertson L A, et al. Anaerobic am Monium oxidation discove red in adenitrifying fluidized bed reactor [J]. Ferns Microbiol. Ecol, 1995, 16(3):177-184.
    12. Bock, E I., Stueven R., Zart D., Nitrogen loss caused by denitrifying Nitrosomonas cells using ammonium or hydrogen as electron donors and nitrite as electron acceptor [J]. Arch Microbiol, 1995, 163: 16-20.
    13. Schmidt I., Bock E. Anaerobic ammonia oxidation with nitrogen dioxide by Nitrosomonas eutropha [J]. Archives of Microbiology, 1997, 167:106-11.
    14. Jetten M ,Strous Met al. The anaerobic oxidation of ammonium [J]. FEMS Microbiol Rev, 1999, 22: 421-437.
    15.张忠祥,钱易等.废水生物处理新技术[M].北京:清华大学出版社,2004.
    16. Schulthess. R.v., Kuhni. M., Gujer. W. Release of nitric and nitrous oxides from denitrifying activated sludge [J]. Wat Res, 1995, 29(1): 215-226.
    17. Wild D., Schulthess. R v., Gujer. W. Structured modeling of denitirfication intermediates [J]. Wat. Sci. Tech, 1995, 31(2): 45-54.
    18. Kuba T., van Loosdrecht M.C.M., Eurnleitner. E, Heijnen J.J. Kinetics and stoichimetry in the biological phosphorus removal process with short cycle times [J]. Wat Res, 1997, 31 (4): 918-928.
    19. Sorm R., Wanner J., Saltarelli R., Bortone G, Tilche A. Verification of anoxic phosphate uptake as the main biochemical mechanism of the DEPHANOX PROCESS [J]. Wat Sci Tech. 1997, 35(10): 87-94.
    20. Maurer M., Abramovich D., Siegrist H., Gujer W. Kinetics of biologically induced phosphorus precipitation in wastewater treatment[J]. Wat Res, 1999, 33(2): 484-493.
    21. A.Carucci, K. Lindrea, M. Majone and R. Ramadorif. Different mechanisms for the anaerobic storage of organic substrates and their effect on enhanced biological phosphate removal (EBPR)[J]. Wat Sci Tech, 1999, 39(6): 21-28.
    22. Saito T., Brdjanovic D., van Loosdrecht M.C.M. Effect of nitrite on phosphate uptake by phosphate accumulating organisms[J]. Wat Res, 2004, 38: 3760-3768.
    23. Eckenfelder, W.W., O'conno, D.J. The aerobic treatment of organic wastes[C]. Proc. 9th industrial waste conf., Purdue University, Lafayette, Indiana, USA, 1955.
    24. Mckinney, R.E. Mathematics of complete mixing activated sludge[J]. J. San. Eng. Div., ASCE, 1962, 88(3): 87-113.
    25. Lawrence A.W., McCarty P.L. Unified basis for biological treatment design and operation[J] San. Eng. Div., ASCE, 1962, 88(3): 87-113.
    26. Hu Z R., Wentzel M C., Ekama G A. Modelling biological nutrient removal activated sludge systems[J]. Water Research, 2003, 37: 3430-3444.
    27. Henze M., Gujer W., Mino T. et al. Activated sludge model NO.1[C]. IAWPRC Scientific and Technical report No. 1. London: IAWPRC, 1987.
    28. Gujer W., Henze M., Mino T. et al. Activated sludge model NO.3[J]. Wat. Sci. Technol, 1999, 39(1): 183-193.
    29. Koch, G, Kuhni, M., Gujer, W., Siegrist, H. Calibration and validation of activated sludge model no. 3 for Swiss municipal wastewater[J]. Water Res, 2000, 34: 3580-3590.
    30. Gujer W., Henze M., Mino T. et al. The activated sludge model NO.2: Biological Phosphorus Removal[J]. Wat Sci Tech, 1995, 31(2): 1-11.
    31.吴俊奇,汪慧贞.活性污泥法2号模型(ASM2)简介[J].给水排水,1998,24(6):13-18.
    32. Krist V. Gernaey, Mark C.M. van Loosdrecht, Mogens Henze. Activated sludge wastewater treatment plant modelling and simulation: state of the art[J]. Environmental Modelling & Software, 2004, 19: 763-783.
    33. Smolder G J F., Bulstra D J., Jacobs R., van Loosdrecht M C M., Heijnen JJ. A metabolic model of the biological phosphorus removal process: I effect of the sludge retention time[J]. Biotech Bioeng, 1995, 48: 222-233.
    34. Smolders G.J.E, Bulstra D.J., Jacobs R., van Loosdrecht M C M., Heijnen JJ. A metabolic model of the biological phosphorus removal process: Ⅱ validation during start up conditions[J]. Biotech Bioeng, 1995, 48: 234-245.
    35. Henze, M., Gujer, W., Mino, T., Matsuo, T., Wentzel, M.C., Marais, G.V.R., van Loosdrecht, M.C.M. Activated Sludge Model No. 2d, ASM2D[J]. Water Sci. Technol, 1999, 39 (1): 165-182.
    36. Barker, P.S., Dold, P.L. General model for biological nutrient removal activated sludge systems: model presentation[J]. Water Environ Res, 1997, 69: 969-984.
    37. van Veldhuizen, H.M., van Loosdrecht, M.C.M., Heijnen, J.J. Modelling biological phosphorus and nitrogen removal in a full scale activated sludge process[J]. Water Res. 1999, 33: 3459-3468.
    38. Brdjanovic, D., van Loosdrecht, M.C.M., Versteeg, P., et al. Modelling COD, N and P removal in a full-scale WWTP Haarlem Waarderpolder[J]. Water Res, 2000, 34: 846-858.
    39. Meijer S.C.F., van Loosdrecht. M.C.M., Heijnen J.J. Metabolic modeling of full scale biological nitrogen and phoshphorus removaing WWTP's [J]. Wat Res, 2001, 35:2711-2723.
    40. Salem S., Berends D., Heijnen J.J., van Loosdrecht. M.C.M. Model-based evaluation of a new upgrading concept for N-removal [J]. Wat Sci Tech, 2002, 45(6): 169-176.
    41. Siegdst H., Rieger L, Koch G. et al. The EAWAG Bio-P module for activated sludge model No.3[J]. Wat Sci Tech, 2002, 45(6): 61-76.
    42. Rieger L, Koch G., Kuhni M., Gujer W. et al. The EAWAG Bio-P module for activated sludge model No.3 [J]. Wat Res, 2001, 35: 3887-3903.
    43. Seco A., Ribes J., Serralta J., Ferrer J. Biological nutrient removal model NO.1 (BNRM1)[J]. Wat Sci Tech, 2004, 50(6): 69-78.
    44. Serralta J., Ferrer J., Borras L., Seco A. An extension of ASM2d including pH calculation [J]. Wat Res, 2004, 38: 4029-4038.
    45. Batstone D.J., Keller J., Angelidaki I., Kalyuzhnyi S.V., Pavlostathis S.G., Rozzi A., Sanders W.TM., Siegrist H., Vavilin V.A. The IWA anaerobic digestion Model No 1(ADM1)[J]. Wat Sci Tech, 45(10): 65-73.
    46. Musvoto E.V., Wentzel M.C., Ekama G.A. Integrated chemical physical processes modeling: Ⅰ development of a kinetic based model for mixed weak acid/base model for mixed weak acid/base systems [J]. Wat Res, 2000, 34:1857-1867.
    47. Musvoto E.V., Wentzel M.C., Ekama G.A. Integrated chemical physical processes modeling: Ⅱ simulation aeration treatment of anaerobic digester supernatants [J]. Wat Res, 2000, 34: 1868-1880.
    48.孙培德,宋英琦.基于微生物相互作用机理的完全耦合活性污泥模型研[J].环境科学学报,2006,26(9):567-576
    49. San, H. A. Impact of dispersion and reaction kinetics on performance by biological reactors-solution by "S" series[J]. Water Res. 1994, 28:1639-1651
    50. Cowan, R. M., Love, N. G., Sock, S. M., et al. Activated sludge and other aerobic suspended culture processes[J]. Water Environ. Res. 1995, 67(4): 433-450
    51. Stamou, A. I. Modelling of oxidation ditches using an open channel flow 1-D advection-dispersion equation and ASM1 precess description[J]. Wat. Sci. Tech. 1997, 36(5): 269-276
    52. Stamou, A. I., Katsh'i, A., Mantziaras, I., et al. Modelling of an alternating oxidation ditch system[J]. Water Sci. Tech. 1999, 39 (4): 169-176
    53. Lee, T. T., Wang, F.Y., and Newell, R. B. Advances in distributed parameter approach to the dynamics and control of activated sludge processes for wastewater treatment[J]. Water Res, 2006, 40(5): 853-869
    54. Lee, T. T., Wang, F.Y., and Newell, R.B. On the modelling and simulation of a BNR activated sludge process using a distributed parameter approach[J]. Water Sci. Tech, 1999, 39(6): 79-88
    55. Lee, T. T., Wang, F.Y., and Newell, R.B. Distributed parameter approach to the dynamics of a complex biological process[J]. ChE J, 1999, (10): 2245-268
    56. Makinia, J. and Wells, S. A. A general model of the activated sludge reactor with dispersive flow-Ⅰ. Model development and parameter estimation[J]. Wat. Res., 2000, 34:3987-3996
    57. Makinia, J. and Wells, S. A. A general model of the activated sludge reactor with dispersive flow-Ⅱ: model verication and application[J]. Wat. Res. 2000, 34:3997-4006
    58. Ky, R. C., Comeau, Y., Perrier, M. and Takacs, I.. Modelling biological phosphorus removal from a cheese factory effluent by an SBR [J]. Wat. See. Tech., 2001, 43(3): 257-264
    59. Batstone, D. J., Keller, J., Angelidaki, I., et al. Anaerobic digestion model No. 1 (ADM1)[C]. Scientific and Technical Report No. 13. IWA Publishing, London, UK, 2002.
    60. Zhao H, Hao O.J., McAvoy T.J. Approaches to modeling nutrient dynamics: ASM2, simplified model and neural nets [J]. Wat. Sci. Tech, 1999, 39(1): 227-234.
    61. Maryns F., Bauwens W. The application of the activated sludge model No.1 to a river environment [J]. Wat. Sci. Technol, 1997, 36(5): 201-208.
    62. Wlchem M., Obenaus F., Wulf P. et al. Modelling of full-scale wastewater treatment plants with different treatment processes using the Activated Sludge Model No.3 [J]. Wat. Sci. Technol, 2001, 44(1): 49-56.
    63.陈立.EFOR程序的仿真模拟功能应用研究[J].中国给水排水,1998,14(5):15-18.
    64.汪慧贞,吴俊奇.活性污泥数学模型的发展和使用[J].中国给水排水,1999,15(5):20-21.
    65.张代钧,卢培利,严晨敏等.活性污泥2号模型用于城市污水处理厂脱氮除磷改造的研究[J].环境科学学报,2003,23(3):332-337.
    66.杨青,刘隧庆,甘树应.城市污水处理厂动态模拟研究[J].上海环境科学,2001(5):278-281.
    67.杨青,刘隧庆,甘树应.ASM3在城市污水处理厂改造中的应用[J].中国给水排水,2002, 18(12):68-70.
    68.施汉昌,刁惠芳,刘恒等.污水处理厂运行模拟、预测软件的应用[J].中国给水排水,2001,17(10):31-63.
    69.季民,霍金胜,胡振荃等.活性污泥数学模型的研究和应用[J].中国给水排水,2001,17(8):18-22.
    70.陈晓龙,杨海真,顾国维.活性污泥2号模型的应用与校正[J].工业用水与废水.2003,34(1):1-4.
    71.张亚雷,李咏梅译.活性污泥数学模型[M].上海:同济大学出版社,2002.
    72.王沫然编著.MATLAB6.0与科学计算[M].北京:电子工业出版社,2001.
    73.许波,刘征编著.Matlab工程数学应用[M].北京:清华大学出版社,2000.
    74.甘立军.活性污泥1号模型水质特性参数测定研究[D].同济大学硕士论文,2003.
    75.陈莉荣,肖作义,彭党聪.活性污泥1号模型含碳组分测定方法探讨[J].环境工程,2004, 22(1):67-69.
    76.杨正丹.城市污水处理厂计算机仿真及其应用研究[D].杭州,浙江工商大学,2004.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700