ASM3应用于城市污水处理厂的模拟预测研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
国际水协(IWA)在活性污泥1号模型(ASM1)及3号模型(ASM3)的基础上,推出了活性污泥3号模型(ASM3)。它与ASM1有关,同时又弥补了ASM1的缺陷。即在组分划分上将有机氮并入含碳有机物中;在微生物反应机理上引入了胞内贮存和内源代谢,使之更接近于实际情况;并在化学计量学矩阵的基础上引入了组分矩阵。
     本文将ASM3和Takacs二沉池模型以及反应池流态模型相结合,构建了活性污泥系统模型。为了解决活性污泥模型中微分方程的求解问题,本研究开发了以Matlab7.1为平台主要用于工程计算的活性污泥3号模型和二沉池模型相结合的活性污泥系统模拟程序;还开发了灵敏度分析程序,分析了所有化学计量学系数、动力学参数对主要出水指标COD、TN、NH3-N的灵敏度分析。灵敏度分析结果表明,只有有限的参数对出水水质有重要的影响;大多数参数对COD几乎没有影响或影响很小,少数几个参数对TN和NH3-N的影响很大。
     本文进行的程序模拟所采用的初始值是国际水协推荐的典型值,根据灵敏度分析结果,在调整了1个参数的典型值以后,即将8月份自养菌的产率系数UA的值1.0g (COD)/g(N)调整为0.925g(COD)/g(N)和将10月份自养菌的产率系数UA的值1.0g (COD)/g(N)调整为0.712g(COD)/g(N)之后,使模拟值和实测值取得了较好的吻合,8月份COD、TN和NH3-N相对误差分别为0.05%、0.55%、0.56%;10月份COD、TN和NH3-N分别为0.03%、0.17%、0.32%。
     利用校核和验证后的模型分别对8月份和10月份进行连续多日运行状况的稳态模拟和动态模拟。未考虑温度影响的8月份稳态模拟的COD、TN和NH3-N的平均相对误差分别为:21.90%、11.95%、12.68%,未考虑温度影响的10月份稳态模拟的COD、TN和NH3-N的平均相对误差分别为:26.00%、7.73%和15.40%;以及考虑了温度影响的8月份稳态模拟和10月份稳态模拟。结果表明,本程序能够很好的模拟污水处理厂的运行状态。
     最后预测了污水厂运行参数(进水流量Q,固体停留时间SRT、外回流比R和反硝化区与硝化区体积比)变化时对出水水质的影响程度,用模拟程序对污水厂满负荷运行时的出水情况进行了模拟预测。通过模拟得出污水厂运行的一些最佳控制工况,如当SRT控制在15天时,出水各项指标效果较好。模拟预测为污水厂的日常管理提供了重要的参考依据。
The Activated Sludge Model No.3 (ASM3) was proposed by International Water Association (IWA) based on the Activated Sludge Model No.1 (ASM1) and No.2 (ASM2) . It relates to ASM1 and corrects for some defects of ASM1. In ASM3 organic nitrogen is regarded as a part of organic material and storage of soluble organic substrates is added as an intermediate.m. The lysis process is exchanged for an endogenous respiration process,which makes it more approach the real biological process. Moreover, ASM3 introductsthe composition matrix lk,i together with the stoichiometric matrix vj,i.
     In this paper, a mathematical model for activated sludge system was constructed based on ASM3 and Takacs settling model,with the transfer process model. In order to solve the differential equations in the model, a computer program for the comination of ASM3 and second settling tank model has been developed on the basis of Matlab 7.1, which is a kind of computer language mainly used in engineering calculation. Also another computer program has been developed for analyzing the sensitivity of the principal effluent targets, including COD, TN and NH3-N, The result showed that only a limited number of model parameters influenced the model output water quality significantly. Most parameters have no or a bit influence on COD output, a few parameters have big influence on TN and NH3-N.
     According to the result of sensitivity analysis for 8th month and 10th month after running the modeling program with the default parameters recommended by IWA, ASM3 proved well capable of describing the operation state of the WWTP with adjustment of only one default parameters, namely, autotrophic bacteria productive coefficient from 1.0g(COD)/g(COD) to 0.925 g(COD)/g(COD) for 8th month and from 1.0g(COD)/g(COD) to 0.712g(COD)/g(COD) for 10th month.the modeling results and the simulating results expressed that there is a good agreement between the modeling values and the practical measurements for COD and TN and NH3-N. The relatively error is below 0.05%,0.55%,0.56% for 8th month and 0.03%,0.17%,0.32% for 10th month.
     In order to predict the effluent quality under different conditions, such as influent volume, SRT, external reflux ratio and volume ratio between denitrifying zone and nitrating zone, steady simulations and dynamic simulations for the operating state in a few continous days has been implemented by using the calibrated and validated model, Steady simulations and dynamic simulations for the operating state in a few continous days has been implemented by using the calibrated and validated model, the relative errors of COD ,TN and NH3-N through steady simulations without considering temperature for 8th month is 21.90%, 11.95%, 12.68% and 26.00%, 7.73%, 15.40% for 10th month. Also the relative errors of COD ,TN and NH3-N through steady simulations with considering temperature for 8th month and 10th month are showed. The results indicates that this program can better simulate the operating state of WWTP.
     In the end the developed program has been used to predict disposal effectiveness under different kinds of schemes and when the WWTP is in a full load running state. By simulating and modeling the running state of WWTP, we can get the optimum control parameters. When SRT equals to 15 days, the effluent dates of COD, TN and NH3-N can reach the standard with low running cost. The modelling results and prediction could provide a valuable reference data for the administration of WWTP.
引文
[1] Van. Veldhuizen, Van.loosdrechtetal. Modeling biological phosphorus and nitrogen removal in a full scale activated sludgeprocess[J]. Wat Res. 1999, 33(16): 3458~3468.
    [2] Henze M. et al. Activated sludge model No. 2D[J]. Wat Sci. Tech., 1999, 39(1): 165~182.
    [3] ER W, HENZE M, ea al. Activated Sludge Model No. 2d, ASM2d [J].Wat Sci Tech., 2000, 26(15): 368~385.
    [4] Henze M, Grady C P L Jr, Gujer W, et al. Activated sludge model No.1[R]. IAWPRC Sci and Technol Report No.1, IAWPRC, London, 1987.
    [5] Sollfrank U, Kappeler J, Gujer W. Temperature effects on wastewater characteri- zation and release of soluble insert organic material [J]. Wat Sci Tech, 1992.
    [6] Siegrist H, Krebs P, Buhler R, Purtschert I, Rock C, Rufer R, Denitrification in secondary clarifiers [J]. Wat Sci Tech, 1995, 31(2): 205~214.
    [7] Cokgr E U, Sozen S, Orhon D, et al. Respirometric analysis of activated sludge behavior-I. Assessment of the readily biodegradable substrate [J]. Wat Sci Tech, 1998, 32(2): 461~475.
    [8] De la Sota A, Larrea L, Novak L, Grau P, Henze M. Perfermance and model calibration of R~N~D process in pilot plant [J]. Wat Sci Tech, 1994, 30(6): 355~364.
    [9] Lesouf A, Payraudeau M, Rogalla F, Kleiber B. Optimizing nitrogen removal reactor configuration by on-site calibration of the IAWPRC activated sludge model [J]. Wat Sci Tech, 1992, 25(6): 105~124.
    [10] Orhon D, Ates E, Sozen S, Emine U C. Characterization and COD fractionation of domestic wastewater [J]. Environmental Pollution, 1997, 95(2): 191~204.
    [11] Sperando M, Paul E. Estimation of wastewater biodegradable COD fractions by combining respirometric experiments in various S0/X0 ratios [J]. Wat Res, 2000, 34(4): 1233~1246.
    [12] 高廷耀, 顾国维. 水污染控制工程. 高等教育出版社, 1999.
    [13] 顾夏生. 废水生物处理数学模式. 清华大学出版社, 1998.
    [14] Henze, M. et al. A General Model for Single-Sludge Wastewater Treatment Systems[J]. Wat. Res., 1987, 21(4): 505-515.
    [15] 卢培利, 张代钧, 刘颖, 王飞. 活性污泥法动力学模型研究进展和展望. 重庆大学学报, Vo1.25 No.3. 2002.
    [16] D. Herber. In Recent Progress in Microbiology VII International Congress for Microbiology, ed. by G. Tunevall, Almquist and Wiksell, Stockholm, 381, 1958.
    [17] W.C. Chang, C.F. Quyang, W.L. Chiang and C.W, Hou, Sludge Pre-cycle Control of Dynamic Enhanced Biological Phosphorus Removal System: an Application of On-line Fuzzy Controller[J]. Wat. Res., 1998, 32(3): 727-736.
    [18] Y.P. Tsai, C.F. Ouyang, M.Y. Wu and W.L. Chiang. Effluent Suspended Solid Control of Activated Sludge Process by Fuzzy Control Approach[J]. Wat. Environment Res., 1996, 68(6): 1045-1053.
    [19] Henze, M. et al. Activated Sludge Models ASM1, ASM2, ASM2D and ASM3[J]. scientific and technical report, 2000, No .9.
    [20] 彭永臻, 高景峰等. 活性污泥法动力学模型的研究与发展[J].. 给水排水, v26, n8, 15-19, 2000.
    [21] 国际水质协会废水生物处理设计与运行数学模型课题组著. 活性污泥数学模型[M]. 张亚雷, 李咏梅译. 上海:同济大学版社, 2002.
    [22] 吴俊奇, 汪慧贞. 活性污泥法二号模型((ASM2)简介[J]. 给水排水, 24(6), 1998.
    [23] Gujer W. et al. The Activated Sludge Model No.2: Biological Phosphorus Remova, Water Sci&Tec, 1995, 31(2): 1-11.
    [24] Henze M.et al. Activated Sludge Model No.2D[J]. Water Sci& Tech., 1999, 39 (1): 165-182.
    [25] Gujer, W., et al. Activated Sludge Model No.3[J]. Sci&Tec, 1999, 39(1): 183-193.
    [26] Anastasios I.S. Modelling of oxidation ditches using an open channel flow 1-D advection– dispersion equation and ASM1 process description [J]. Wat.Sci.Tech., 1997, 36 (5/6): P269.
    [27] Van Veldhuizen H .M. Modeling biological phosphorus and nitrogen removal in a full scale activated sludge process, Wat.Res., 1999, 33 (16), P3459.
    [28] Anastasios I.S. Modelling of oxidation ditches using an open channel flow advection –dispersion equation and ASM3 process description[J]. Wat. Sci. Tech., 2000, 20 (6): P513.
    [29] Hong Zhao et a1. Approaches to modeling nutrient dynamics: ASM2 simplified model and neural nets[J]. Wat.Sci.Tech., 1999, 39(1): P227.
    [30] Hyunook Kim et a1. SBR system for phosphorus removal: ASM2 and simplified linear model[J]. Journal of Environmental Engineering, 2001, 2: P98.
    [31] Hyunook Kim et a1. SBR system for phosphorus removal: linear model based optimization[J]. Journal of Environmental Engineering, 2001, 2: P105.
    [32] Meijer, S.C.F., et al. Metabolic modeling of full scale biological nitrogen and phosphorus removing WWTP's[J]. Wat.Res., 2001, 35 (11): P2711.
    [33] Hao Xiaodi, et a1. Model-based evaluation of two BNR process-UCT and A2N, Wat.Res., 2001, 35 (12): P2851.
    [34] Koch G, et a1. Calibration and validation of activated sludge model No.3 for Swiss municipal wastewater[J]. Wat.Res, 2000, 34 (14): P3580.
    [35] Koch G., et al. Calibration and validation of an ASM3-based steady state model for activated sludge systems-PartI: prediction of phosphorus removal[J]. Wat.Res, 2001, 35 (9): P2246.
    [36] 黄勇. 活性污泥系统动态数学模型研究[D]. 哈尔滨: 哈尔滨建筑工程学院, 1993.
    [37] 陈立. EFOR 程序的仿真模拟功能的研究运用[J]. 中国给水排水, 1998, 14(5): P15.
    [38] 季民, 霍金胜等. 活性污泥数学模型的研究与应用[J]. 中国给水排水, 2001, 17(8): P18.
    [39] 王磊. 城市污水厂模拟与控制方法基础研究[D]. 上海: 同济大学, 1998.
    [40] 陈晓龙. 活性污泥 2 号模型的应用与校正[D]. 上海: 同济大学, 2003.
    [41] 甘立军. 活性污泥 1 号模型(ASM1)水质特性参数测定研究[D]. 上海: 同济大学, 2003.
    [42] 杨青等. 城市污水处理厂动态模拟研究[J]. 上海环境科学, 2002, 21 (5): P278.
    [43] 郭劲松等. 间歇曝气活性污泥系统神经网络水质模型[J]. 中国给水排水, 2000, 16 (11): P15.
    [44] 任海英. 城市污水活性污泥处理系统模拟预测与设计(ASM2)[D]. 西安: 西安建筑科技大学, 2004.
    [45] 杨晓明. 活性污泥系统模型应用研究——以吴忠市污水处理厂为例[D]. 西安: 西安理工大学, 2005.
    [46] 李玉新. 基于 ASM3 的活性污泥模型改进及其应用研究[D]. 北京: 北京工业大学, 2005.
    [47] 秦亚桐. 基于 ASM2 的活性污泥法数学建模及模型参数校正[D]. 浙江: 浙江大学, 2006.
    [48] 郭亚萍, 顾国维. 活性污泥模型ASM3的简介[J]. 中国给水排水, 第22卷第6期, 2006, (3): P8-10.
    [49] 陈莉荣, 彭党聪, 李义科, 武文斐, 郑坤灿. 活性污泥处理系统的计算机模拟[J]. 中国给水排水, 2000.
    [50] 杨青, 甘树应, 陈季华, 刘振鸿. 活性污泥 3 号模型((ASM3)简介[J]. 中国给水排水, 2000, Vo1.16, No.l.
    [51] 卢培利, 张代钧等. 活性污泥法动力学模型研究进展和展望[J]. 重庆大学学报, 2002, 25 (3): 109~114.
    [52] 刘芳, 周雪飞, 蓝梅, 王闯, 顾国维. 活性污泥 1 号模型废水特性的测定研究[J]. 环境污染与防治, 2004, 第 26 卷, 第 2 期.
    [53] 杨正丹, 孙培德. 活性污泥模型研究及其应用新进展[J]. 环境科学动态, 2004,3: 24~26.
    [54] 郝晓地, 甘一萍, 周军. 数学模拟技术在污水处理上艺设计、优化、研发中的应用(上) [J]. 中国给水排水, 2004, 30(5): 33~36.
    [55] 郝晓地等. 欧洲城市污水处理新概念-可持续生物除磷脱氮技术(下)[J]. 中国给水排水, 2002, 28(7): 5~8.
    [56] 余颖, 乔俊飞. 活性污泥法污水处理过程的建模与仿真技术的研究[J]. 信息与控制, 2004, 33(6): 709~713.
    [57] 庞子山. 活性污泥法工艺系统优化设计模型及应用研究[D]. 重庆: 重庆大学, 2004.
    [58] 魏辉. 氧化沟数学模型的初步研究[D]. 湖南: 湖南大学, 2004.
    [59] 赵振. 活性污泥数学模型在天山污水处理厂工艺优化改造中的模拟研究[D]. 上海:东华大学, 2004.
    [60] 朱建军. 完全混合式连续进出水间歇曝气工艺的仿真研究[D]. 重庆: 重庆大学, 2004.
    [61] 孙宗健. 活性污泥模型实际应用以及适应性研究[D]. 北京: 北京工业大学, 2004.
    [62] 方世昌. 活性污泥系统数学模型在吴忠市污水处理厂的应用研究[D]. 西安:西安理工大学, 2005.
    [63] 沙锦箖. 基于 ASM1 模型改善城市污水处理厂运行工况与效果的研究[D]. 郑州: 郑州大学, 2005.
    [64] 王华丰. 基于 ASM2 的 A~2O 工艺机理模型及自动控制研究[D]. 浙江: 浙江大学, 2005.
    [65] 孙祥, 徐流美, 吴清编著. MATLAB 7.0 基础教程, 北京: 清华大学出版社, 2005.
    [66] Nowak O, Franz A, Svardal K, Muller V, Kuhn V. Parameter estimation for activated sludge models with the help of mass balances [J]. Wat Sci Tech, 1999, 39(4): 113~120.
    [67] 王维斌. 基于神经网络的活性污泥建模及其应用研究[D]. 天津: 天津大学, 2001.
    [68] A Abusam, K J Keesman, van Straten. Parameter estimation procedure for complex non-linear systems: calibration of ASM No.1 for N-removal in a full-scale oxidation ditch [J] Wat Sci Tech, 2001, 43(71): 357~365.
    [69] Kynch G.L. A theory of sedimentation[J]. Trans.Faraday Soc., 1952, 48: 166.
    [70] Dick R.L., Ewing B.B. Evaluation of activated sludge thickening theories, by J.Sanit. Eng.Div. ASCE, 1993, SA-4.
    [71] Vesilind A.P. Discussion of ‘evaluation of activated sludge thickening theories’, by R.I.Dick and B.B.Ewing. J.saint. Engng Div Am.Soc.Civ.Engrs, 1994: 185.
    [72] Bryant J.O. Continuous time simulation of the conventional activated sludge wastewater renovation system, by Ph.D. dissertation, Clemson University, Clemson, S.C., 1972.
    [73] Vitasovic Z.Z. An intergrated control strategy for the activated sludge process, by Ph.D. dissertation, Rice University, Houston, Tex, 1986.
    [74] 黄勇, 杨铨大, 王宝贞. 二沉池的数学模型及瞬变响应特性模拟研究——瞬变响应特性[J]. 中国给水排水, 1996, 12(6): P6.
    [75] Takaces,I., Party, G.G. and Nolasco, D. A dynamic model of the clarification thickening peocess[J]. Water Sci. Tech., 1991, 25(1): P1263.
    [76] Britta Krist, et al. A comprehensive model calibration procedure for ASM1[J]. WEFTEC, 2001
    [77] 飞思科技产品研发中心. MATLAB 7 基础与提高[M]. 北京: 电子工业出版社, 2005.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700