具有缓蚀性能的杀菌剂的合成及其性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着我国经济的快速增长,水资源短缺已成为制约我国经济发展的重要因素之一。我国工业用水量占全国总用水量的五分之一,但是工业用水重复利用率却远远低于发达国家的水平,其中工业循环冷却水是工业用水中的大户,因此开发研究新的水处理产品及工艺,提高工业循环冷却水的重复利用率,对于缓解和解决水资源短缺和水资源浪费的矛盾至关重要。
     本文合成了十六烷基二甲基(2一亚硫酸)乙基铵(C_(20)),采用耗氧量法、悬液定量杀菌法和最低抑菌浓度法,分别对C_(20)的生物降解性能和杀菌性能进行了测定,采用静态阻垢法和旋转挂片法对C_(20)与不同阻垢剂、缓蚀剂和杀菌剂的配伍性能进行了研究;利用扫描电子显微镜(SEM)对C_(20)及其复配药剂的阻垢机理进行了初步探讨。本文主要包括四部分内容:
     1.利用亚硫酸乙撑酯与叔胺直接反应合成了C_(20),并对合成工艺进行了改进——利用碱石灰吸收合成中间体亚硫酸乙撑酯中残留的氯化氢和水,减少了C_(20)合成过程中副产物的形成;考察了反应时间和反应温度对合成产率的影响。
     2.对C_(20)的生物降解性、杀菌性能和缓蚀性能进行了测试,实验结果表明,C_(20)在28天的降解率达到85%,具有优良的生物降解性;对循环冷却水系统中常见微生物土壤菌、硫酸盐还原菌、铁细菌和异养菌具有良好的杀菌效果;当C_(20)浓度为40mg·L-1时,缓蚀率达到54.38%,因此C_(20)具有较好的缓蚀性能。
     3.对C_(20)的配伍性能的研究表明,C_(20)与常用阻垢缓蚀剂马来酸—丙烯酸、羟基亚乙基二膦酸和工业品SWT-303复配使用后具有较好的阻垢、缓蚀性能,并采用SEM对C_(20)的阻碳酸钙垢机理进行了初步探讨。
     4.由戊二醛、C_(20)复配得到的杀菌剂CGL对异养菌具有优良的杀菌作用,且可生物降解,是一种环境友好型杀菌剂;由C_(20)、戊二醛和二乙烯三胺五亚甲基膦酸复配得到的水处理剂CCD具有较好的阻垢、缓蚀效果;由SEM研究结果初步推测,晶胞尺寸减小可能是CCD对碳酸钙垢具有良好分散作用的原因。
Along with the fast growth of the economy of our country, the shortage of water resources has become one of the important factors that restrict the development of economy. About one fifth of the total consumption amount of water in our country is industrial water and its rate of re-utilization is far lower than that of developed countries. The circulating cooling water is the biggest consumer of industrial water. Therefore, it is very important for the research and development of new water treatment agents and processes to improve the rate of re-utilization of industrial circulating cooling water and to resolve the contradiction between the shortage and waste of water resources.
    
     Hexadecylldimethyl (2–sulphite)ethyl ammonium(C_(20)) was synthesized and its biodegradability and ability of sterilization were analyzed by oxygen consumption, suspension quantitative and minimal inhibitory concentration methods respectively in this paper. The compatibilities of C_(20) with the different scale inhibitor, corrosion inhibitor and germicide were investigated with static scale inhibition and rotary hanging piece methods. The scale inhibition mechanisms of C_(20) and its compounding agents were also preliminarily studied using Scanning Electron Microscope(SEM).
     The main contents of this thesis are as follows:
     1. The C_(20) was synthesized by the reaction of ethylene sulfite and hexadecylldimethyl ammonium. The synthetic process was improved with the absorption of HCl and H2O remained in the synthetic intermediator using the soda lime and the by-product during the synthesis of C_(20) was decreased. The effects of reaction time and temperature on the yield of C_(20) were studied.
     2. The abilities of biodegradation, sterilization and corrosion inhibition of C_(20) were investigated. The results show that C_(20) has good biodegradability and the rate of biodegradation is 85% in 28 days. Good sterilizing effect of C_(20) was found to the normal microbion including soil bacteria, sulphate-reducing bacteria, iron bacteria and heterotrophic bacteria in the circulating cooling water system. The rate of corrosion inhibition is 54.38% when the concentration of C_(20) is 40 mg·L-1 and it shows good ability of corrosion inhibition.
     3. The ability of compatibility of C_(20) was investigated. The result shows that C_(20) mixing with copolymer of maleic and acrylic acid , 1-hydroxy ethylidene-1,1-diphosphonic acid and industrial product SWT-303 respectively, has good scale inhibition and corrosion inhibition abilities. The scale inhibition mechanism of C_(20) was preliminarily discussed using SEM.
     4. The excellent sterilizing ability of germicide CGL mixed by C_(20) and glutaraldehyde was observed and CGL is an environment-friendly germicide for its good biodegradability. The good scale and corrosion inhibition behaviors of CCD obtained by mixing of C_(20), glutaraldehyde and diethylene triamine penta (methylene phosphonic acid) were found. According to the results of SEM, maybe the reduction of crystallite is the main reason for the good dispersion behavior of CCD to the scale of calcium carbonate.
引文
[1]成福云.水资源短缺 21 世纪中国面临的严峻挑战[J].中国减灾,2000,10(1):28-30
    [2]胡国杰,张颖丽 20 世纪中国水环境保护面 l 临挑战[J]l:业技术经济,2002,21(6):34-35
    [3]王开章.城市地下水水源的防护与治理措施[J]地下水 2000,22(3):110-112
    [4]唐受印,戴友芝.工业循环冷却水处理[M].北京:化学工业出版社.1998
    [5]周本省.工业水处理技术[M].第二版.北京化学业出版社,2002
    [6]李文融硫酸盐还原苗菌.工业水处理[J]1986.6(1):52-54
    [7]陆善忠,窦从容.工业循环冷却水中微生物的危害及控制[J]给水排水,2004.30(6):46-48
    [8]张光华水处理化学品化学业出版社 2005
    [9]邵青水处理及循环再利用技术.化学工出版社.2002
    [10]黄艳娥,刘会嫒.二氧化氯的制备及应用[J].唐山师院学报 2003,25(5):41-43
    [11]时文歆,丁水利一氧化氯处理废水的研究现状与进展[J]中国环保没备2006(5):2-5
    [12]黄峥,郏成.二氧化氯的性质.制各方法及用途[J]广州化.1997,26(1):23-25
    [13]张哗,冯春杨,黄骏臭氧处理生活污水的应用研究[J].四川环境,2006,25(2):15-17
    [14]杨如洪活性溴杀菌剂在循环水系统的应用[J].华东电力,1997(4):19-21
    [15]肖兴成,胡雍,张健等一种高教溴基液体氧化型杀菌剂的研制和应用[J].工业水处理,2004.24(9):32-35
    [16]复明珠,雷武:工业冷却水用杀菌剂的研究[J]现代化工,1998(8):18-21
    [17]曹承进,邱树毅.杀菌剖在工业循环水处理方面的研究与应川[J]贵州化工,2005(6):5-19
    [18]周本省.冷却水系统中控制微牛物的杀曲剂[J].化工机械,1995,22(5):301-306
    [19]黄文氢,管宁.缓蚀型多功能水处理剂的综合介绍[J].化工进展,2000(6):28-30
    [20]孙保必,李莉.发展中的季铵盐杀菌剂[J].精细化工,1990,7(1):8-11
    [21] GH Harris,R S.Shelton,M GVan Campen Quaternary Ammonium Salts as Germicides 11: Acetoxy and Carbethoxy Derivatives of Aliphatic Quaternary Ammonium Salts[M]The research laboratories ofthe WMs.merrell company 1946
    [22]赵章楣,章志兴.季铵盐型阳离子杀菌剂的近期发展[J].表面活性剂工业,1991,(4):1-5
    [23]包水照.季铵盐的研究进展精细化工[J],2002,19(B8):14-16
    [24]田在龙.杀菌剂单、双链烷基季铵盐的合成[J].天然气化工,1993,21(1):36-40
    [25]GH Harris,R S Shelton,M GVan Campen Quaternary Ammonium Salts as Germicides I : Non-acyLated quaternary ammonium salts derived from aliphatic amines[M]The research laboratories of the MTM.s merrell company.1946
    [26]史忠琴,王冀生,王绍嵩.双季铵型杀菌剂的合成及其性能研究[J]。业水处理2003,5(10): 47-49
    [27]GH Harris,R. S. Shelton,M. C.Van Campen Quaternary Ammonium Salts as Germicides .IV. quaternary ammonium salts derived from substituted pyrdines[M].Thc research laboratories of the MTM.s merrell company.1951
    [28]黄金营,郑家桑,魏红飚等.长链烷基甲硝唑季铵盐的缓蚀杀菌机理研究[J].江汉石油学院学报 2004,26(4):158-160
    [29]才科,葛际.孪二连季铵盐表面活性荆[J].油田化学,2001,18(3):278-281
    [30]何云君,张铸勇甜菜系两性表面活剂的合成及应用[J].日用化学工业,1996.3:29-32
    [31]J. H. Paturu Synthesis and antibacterial properies of novel hydrolyzable cationic amphiphiles incorporation of multiple head groups leads to impressive antibacterial activity Journal of Medicinal Chemistry.2005,48(11):3823-3831
    [32]周轩榕,卢滇楠等.表面接枝季铵盐型高分子材料抗菌过程的特性研究[J].高等学校化学学报,2003.24(6):113-1135
    [33]李凤艳,汀燮卿,陈拥军.以硅为载体合成水不溶性季馈盐类杀闭剂[J].应用化学,2001.18(6):496-497
    [34]李风艳.以离子交换树脂为原料合成水不溶性杀曲剂[J].石油炼制与化工,2001,32(9): 6l-63
    [35]李风艳.以固载氯烷基硅氧烷的硅烷的硅胶中间体为原料制备水不溶性杀菌剂[J].水处理技术,2002,28(3):28-29
    [36]江山,王立,俞豪杰等新型有机高分子抗菌剂[J].高分子通报,2002,12(6):57-61 [37J L.B. Labofina. Compositions and method for eliminating films of oil on the surface of water [P],BE:895840,1982,2(19)
    [38]江红,王连军,江莞绿色化学概念在水处理剂材料中的应用及发展状况[J].无机材料学 报,2000,18(5):998-1004
    [39]梁泽生.油田杀菌剂的研制和开发[J].精细与专用化学品,2000(21):3-4
    [40]严莲荷,赵晓蕾.新型非氧化型杀菌剂的复配研究[J].水处理技术,1999,25(5):279-286 [4l]鲁逸人,赵林,谭欣等.新型杀菌剂处理油田回注水实验研究[J].长安大学学报,2004,21(4):65-67
    [42]何高荣,季淑邑冷却水处理中杀菌剂研制与应用的新进展[J],工业水处理,2002,20(6):5-9
    [43]马荣华,李风艳高铁酸钾的制备及在水处理中的应用[J].水处理技术,2003,29(5):297-298
    [44]严瑞宜.水处理剂应用手册[M].北京:化学工业山版社.2003
    [45]李红莉.有机锡化台物在中国环境行为的研究状况[J].环境科学动态,2003,(2):15-17
    [46]王锦堂.我国工业用水新杀菌剂的结构特点与合成方法[J]现代化工,2001,21(10):21-23
    [47]鞠剑峰.纳米二氧化钛复合材料的抗卣性能研究[J].精细化工,2003,20(11):641-644
    [48]吴雪洁.新型抑菌剂 Tallofin 在循环水系统的应用[J].工业水处理,2002,22(2)43—45
    [49]高宝玉.含氰基季胺盐杀菌剂的性能研究[J].山东大学学报,1999,26(3):358-362
    [50]张荣,盂冠华.新型循环冷却水州杀菌剂[J].山东化工, 2003(32):32-33
    [51]鲁逸人,赵林,谭欣等.我国工业川水杀菌剂的应用现状与展望[J].陕西工学院学报, 2004,20(3):143-145
    [52] 李绍全.循环冷却水用杀菌剂剂综述[J].工业用水与废水,2000(2):7-9
    [53]D. G.Martin , W.A. Ballauf.Organic ammonium sulfiteester compounds andmethod ofpreparation. DEll50095,Patented Feb.2 1965
    [54]马家骥.长链炕基二甲基(2-亚硫酸)季铵盐的合成[P]CN228490u,Patented Sep 4,1996
    [55] B A Soda,EK Schafl Paint specification.Production of sulfitobetaines USl322209,Patented Nov.10,1970
    [56]A Ballauf,B Wemer .Organic ammonium sulfite ester compounds and method of preparation US3168546 Palented Feb.2 1965
    [57]王清廉,沈风嘉.有机化学实验[M].高等教育出版社 1994
    [58]丁世林,李寅蔚波谱分析法[M].第二版.重庆人学出版社.1999
    [59]化学工业标准汇编:水处理剂[M].中国标准出版杜.1997.1
    [60]王奕,杨凤林,张兴.化学品生物降解性的评价与预测[J].化工环保,2002,22(4)209-212
    [61]钟理,吕扬效.废水中有机污染物高级氧化过程的降解[1].化工进展,1998,17(4):51-53
    [62]草振,方庆发.冷却水分析利实验方法[M].安徽:安庆石油化工总厂信息中心,1993
    [63] 冯俊编著.工业用水处理微生物分析[M].广东:广东科技出扳社,1989
    [64]薄玉霞等,季铵盐杀灭微牛物效果观察[J].河南预防医学杂志,2003,14(1):12-13
    [65]周德庆.微生物学教程[M].北京:高等教育出版社.1998
    [66]付翠轻.稀土永磁与环保型聚全物联合水处理技术研究[硕士学忙论文]河北工业大学,2004
    [67]王秀茹.预防医学微生物学及检验技术[M].人民卫生出版社.2002
    [68]消毒技术规范[M].国家卫生部 2002
    [69]范秀容等微生物学实验[M].北京高等教育出版社.1989
    [70]何九龄.高等有机化学[M].化学工业山版社,1987
    [71]王吉龙.含膦酰基聚天冬氨酸的阻垢性能研究[J].工业水处理,2004,24(9):22-25
    [72]戈定夷,田慧新,曾若谷矿物学简明教程[M].北京:地质出版社.1998
    [73]张克从.近代品体学基础[M].北京:科学山版社.2003
    [74]武汉大学.分析化学(第四版)[M].北京:高等教育出版杜
    [75]张德,杨海涛.轻质碳酸钙与重质碳酸钙比较[I].非金属矿,2001,24(增刊)27-29
    [76]请葛兰剑,张士成,韩跃新等.超细碳酸钙的合成及结品过程[J].硅酸盐学报,1999,27(4):159-163
    [77]杜爱莉,王亭杰,林玉兰等.超细碳酸钙的台成与形状控制[J].化工冶金,1998, 19(4):293-297
    [78]钱军民,金志浩.填料碳酸钙的制备及其形状与晶型控制研究进展[J].化工矿物与加工,2002,04(4):1-4
    [79]曹楚南.腐蚀电化学原理[M].高等教育出版社,2001
    [80]马家骧,滕风云,蒋建玲氨基磺酸水溶液中含羟基季铵盐类的缓蚀作用的研究[J].水处理技术,1995.21(2):14-16
    [81]崔荣静.硫酸体系中聚天冬氨酸对碳钢缓蚀作用的研究.[硕士学位论文] 河北师范大学, 2005
    [82]汪的华,卜宪章,甘复兴等.微分极化曲线法及其对缓蚀剂阳极脱附行为的表征[J].腐蚀科学与防护技术,1999,11(1):31-35
    [83]李冬.环保型水质稳定剂的台成及其陛能研究.[硕十学位论文].河北工业大学,2004
    [84]沈伟,孙玉卿,谢星辉等.戊二醛增效剂探索[J].现代预防医学,1997,24(13):262-264 [8j]戊二醛杀菌剂杀菌性能实验室评定和现垢应用报告[J].工业水处理,1997,24(3):262-264 186]姜秀梅,陈焕菊,朱汉泉.测戊二醛含量时中性盐酸羟胺的配制[J].中同消毒学杂志, 2004,21(4):35
    [87]S.C.Kull etall. Applied microbiology [M],1996,9
    [88]朱宜,汗裕苹,陈文雄纠描电镜图象的形成处理和显微分析[M].北京:北京人学出版社 1991
    [89]张冬生磁化水抑垢机理及磁化、聚天冬氨酸协同阻垢作用研究.[硕士学位论文].河北工业大学,2006

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700