南方花岗岩地区红壤侵蚀与径流输沙规律研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
土壤侵蚀是自然界中普遍存在的山地灾害现象之一,已成为当今资源和环境问题研究重点。本论文以长江以南花岗岩地区典型流域---湖南武水流域为研究对象,从坡面小区、小流域和中流域三种空间尺度,研究红壤侵蚀与径流输沙规律;基于流域30年土地利用变化,研究其与径流和输沙的耦合关系;基于ArcGIS建立基本属性数据库,构建研究流域分布式水文模型---PRMS_Storm模型,并在中流域尺度对径流与输沙进行模拟与预报。以期在建立土壤侵蚀—土地利用—径流输沙三者有机联系的基础上,为定量监测和科学评价区域水土流失与生态环境状况,研究揭示典型流域侵蚀与径流输沙规律,指导区域水土保持生态建设提供理论依据与技术支持。
     通过调查取样,运用统计分析和分形理论,研究表明,不同土地利用类型间土壤理化性质、土壤结构及其分形特征分异规律明显。分形维数能客观反映土壤结构特征及其稳定性,林地土壤结构改善,稳定性好,人为扰动不利于土壤良好结构形成。同时,弹性分析与边际分析表明,土壤结构分形维与土壤基本理化性质指标相关程度不一。采用土壤理化性质综合指标法,选用16项指标进行主成分分析,可得到无机及胶粒因子、团聚类因子、水稳性团聚体因子和有机及微团聚类因子等4个主成分因子。等级聚类分析表明,不同土地利用类型间土壤抗蚀性分异规律显著,仅就土壤抗蚀性能而言,典型林分林地抗蚀性最强,依次为疏林地、旱地、荒地,最差为坡耕地,说明坡耕地、荒地、旱地、疏林地是研究区主要的流失地类,尤其是坡耕地。
     研究流域土壤侵蚀以水蚀为主,局部伴有崩岗重力侵蚀发生,30年(1978~2007年)来,土壤侵蚀面积减少,侵蚀强度也有所降低。本文以自然坡面小区为基本侵蚀单元,基于19场有效降雨实测资料,研究表明不同土地利用类型间地表径流与侵蚀产沙分异规律明显,裸露荒地、坡耕地、旱地和疏林地的实测地表径流分别是典型林分林地的1354.9%、1099.9%、712.3%和285.4%,土壤侵蚀模数排序为裸露荒地7744.2 t/km2>坡耕地3826 t/km2>旱地942.2 t/km2>疏林地336.5 t/km2>典型林分林地10.2 t/km2,裸露荒地、坡耕地、旱地、疏林地为研究区主要的流失地类,植被能有效地调蓄地表径流和保土减蚀。运用SPSS进行统计分析,建立了各土地利用类型坡面小区尺度次降雨条件下的径流与侵蚀产沙多元回归模型。
     以小流域、中流域两种空间尺度流域为研究对象,分别研究了降雨、径流及输沙规律;运用分形理论,研究表明,相同尺度间(小流域尺度)、以及两种空间尺度流域日降雨、日径流均具有明显的分形特征,即存在自相似性。这可为实现相同尺度间或不同尺度间资料、参数的引用,以及解决尺度转换问题提供一种思路与实现途径,同时也可为相同尺度间或不同尺度间资料、参数等的获取提供一种可行的研究手段。运用SPSS进行统计分析,分别建立了小流域、中流域两种空间尺度流域次降雨条件下的径流与输沙的多元回归模型。
     运用分形理论,研究了坡面小区尺度不同土地利用类型侵蚀泥沙和武水流域悬移质、推移质泥沙的组成及其分形特征。研究表明,在坡面小区尺度,不同土地利用类型侵蚀泥沙组成差异显著,悬移质(入池泥沙)中值粒径排序为裸露荒地<坡耕地<旱地<疏林地<典型林分林地;<0.005 mm中粉(砂)粒以下含量排序为裸露荒地>坡耕地>旱地>典型林分林地>疏林地;最大粒径排序为坡耕地>旱地>裸露荒地>疏林地>典型林分林地。由于人为耕作扰动,坡耕地、旱地土壤抗蚀性能减弱,大量泥沙被地表径流侵蚀、搬运,其坡面地表组成物质呈粗骨化趋势。对于推移质(留槽泥沙),裸露荒地坡面小区推悬比为9.42,粗颗粒含量较高,坡耕地、旱地坡面小区推悬比分别为3.61、2.9。而在中流域尺度---武水流域,悬移质泥沙颗粒组成为粘粒11%、粉(砂)粒51%、细砂粒32%和粗砂粒6%,以粉(砂)粒和细砂粒为主。1981年以后,悬移质泥沙颗粒中粘粒和粉(砂)粒含量相对减少,颗粒组成呈变粗趋势;推移质泥沙以砂、石砾为主,平均中值粒径为0.874mm。分析表明,两种空间尺度流域悬移质、推移质泥沙颗粒组成均具有显著的分形特征。
     运用ArcGIS和景观分析软件FRAGSTATS,研究了武水流域30年来(1978~2007年)土地利用景观格局动态变化规律及其驱动力因素;基于流域不同时期土地利用变化及其对应的径流与输沙实测资料,探讨了流域径流、输沙与土地利用变化的耦合关系,并建立了相应的多元回归耦合模型。
     基于ArcGIS建立基本属性数据库,构建武水流域分布式水文模型--- PRMS _Storm,通过模型拟合、验证和参数优选,典型降雨条件下,流域径流模拟平均预报精度为0.719,洪峰预报合格率为75%;流域输沙模拟平均预报精度为0.664,输沙总量预报(<20%)合格率为62.5%,输沙量峰值预报合格率为75%。按雨型分,长历时降雨预报精度普遍高于短历时降雨,大暴雨、暴雨预报精度高于大雨、中雨。基于2007年两次典型降雨过程,进行径流模拟和输沙量预报,其结果均可达到精度要求。
As a typical and ubiquitous mountain disaster in the nature, soil erosion was regarded as a keystone in the research fieldes of resource and environment now. Based on the Wushui watershed of Hunan province which was taken as a typical example in granite region in the south of Yangtse rive, the law of red soil erosion and runoff & sediment transport were researched on natural sloping plot scale and small watershed scale and middling watershed scale. The coupling relationship among landuse change and runoff and sediment transport were studied based on the landuse change of 30 years from 1978 to 2007. Basic property database were constructed by using ArcGIS, and the storm event distributed hydrological model (PRMS_Storm) with physical mechanism were also built up based on MMS ( Modular Modeling System) . And the model was used to simulate runoff and forecast sediment on Wushui watershed. The purpose of this paper was to provide theory and technique to build monitoring and quantitative evaluation system on the fieldes of soil erosion and sediment and environment, and to guide the ecological construction of soil and water conservation.
     Based on typical investigation and sampling, five typical landuse types were selected for search, and the differentiation law of physical and chemic property of soil and soil structure and their fractal dimensions were analyzed by the methods of statistical method, elasticity analysis, marginal yield analysis and the fractal theory. The results showed that the differentiation were distinct and influenced by land-use effectively. The fractal dimensions could be used to indicate the characters of soil structure and their stability. The soil structure and stability of woodland were improved, and man-made had made against of them. The results also showed the correlation between the fractal dimensions and indexes of physical and chemic property of soil were different.Sixteen indexes were chosen to analyze the anti-erodibility of different landuse types by the means of index synthesis, PCA and Hierarchical Cluster analysis. And the indexes could be divided into 4 categories, i.e. inorganic colloid, aggregate, water-stable aggregate, organic and micro-aggregate. As a result, the soil anti-erodibility of typical forestland was the best one, the second one was sparse woodland, the third one was dry land, the fouth was wilderness land and the worst was sloping farmland. The results showed these 4 landuse types except the forestland were the major landuse types of soil erosion and water loss under similar condition in watershed researched.
     Water erosion was the main erosion type in Wushui watershed researched, and gravity erosion such as collapse of mound erosion was also occurred in granite region partly. But the area of erosion was decreasing and erosion intensity was receded since 1978. The natural sloping plots of different land-use were taken as unit of soil erosion and based on observation of 19 single effective rainfall, the differentiation law of surface runoff and erosion under different land-use types were researched. The results indicated that the surface runoff of wilderness land and slope farmland and dry land and sparse-wood land were respectively 13.55,10.99,7.12 and 2.85 times as those of typical forest land. and for the soil erosion modulus, it were in ordere of bareness and wilderness land (7744.2t/km2) > sloping farmland (3826 t/km2) > dry land (942.2 t/km2) > sparse woodland (336.5 t/km2) > typical forestland (10.2 t/km2). The results showed that surface runoff could be store up and soil erosion could be decreased with the cover of vegetation effectually. It could be concluded that the bareness wilderness land and sloping farmland and dry land and sparse woodland were the major landuse types of water loss and soil erosion. Lastly, the multi-factor regression models of surface runoff and soil erosion sediment were built up under single rainfall on natural sloping plot scale by using software of SPSS.
     The laws of rainfall and runoff and sediment transport were studied on two different spatial scales such as small watershed and middling watershed. By using the fractal theory, the rainfall and runoff daily among same scale watershed and different spatial scale watershed were proved to have similar fraction characters, and the rainfall and runoff daily on watershed scale were also proved to have multi-fraction characters. The results showed that the fractal theory would be used as an available method to quote information and parameter under same scales and different scales, and it also could be used to scaling. Lastly, the multi-factor regression models of runoff and sediment on two spatial scales watershed were built up under single rainfall by using software of SPSS.
     The size distribution of suspended and bed load sediment and their fraction characters were analyzed on the sloping plot scale and middling watershed scale by using the fractal theory. On the sloping plot scale, the results showed that the differentiation of sediment by erosion under different land-use were distinct, the average d50 of suspended sediment were in order of bareness and wilderness land < sloping farmland < dry land < sparse woodland < typical forestland, and the content of exiguous grain (<0.005mm) were in order of bareness and wilderness land > sloping farmland > dry land > typical forestland > sparse woodland. The maximum of grain size were in order of sloping farmland > dry land > bareness and wilderness land > sparse woodland > typical forestland. The reason could be concluded that the soil anti-erodibility of sloping farmland and dry land were decreased and the component of surface soil grain would be increased gradually because of soil erosion. To the bed load sediment, the content of gruff grain of bareness and wilderness land was dominated, and the proportion of content of bed load sediment and suspended sediment of bareness and wilderness land was 9.42, sloping farmland was 3.61 and dry land was 2.9 correspondingly.
     On the middling watershed scale such as Wushui watershed, the proportion of size distribution of suspended sediment yearly of clay and silt soil and fine sand and coarse sand were 11%、51%、32% and 6%, the content of silt and small sand were dominated. Since 1981, the content of clay and silt of suspended sediment were decreased and the component of bigger grain was increased gradually. To the bed load sediment, the content of sand and gravel were dominated, the average d50 was 0.847mm. And the results showed that the size distribution of sediment on two different spatial scales was proved to have fraction characters.
     Then, the dynamic change of landuse and landscape pattern in Wushui watershed from 1978 to 2007 were researched by using ArcGIS and software of FRAGSTATS, and its driving factors including natural resource factors and eco-society factors were analyzed. The coupling relationship among landuse change and runoff and sediment transport of different years were studied, and the multi-factor regression coupling models were also constructed.
     Lastly, the basic property database of watershed was established by using ArcGIS, the storm event distributed hydrological model ( PRMS_Storm) of Wushui watershed with physical mechanism were built up based on MMS (Modular Modeling System). Then by validation and selection of parameters, the model was used to simulate runoff and forecast sediment on Wushui watershed under typical single rainfall. The average model-fit efficiency of runoff simulation was 0.719, and their percent of pass on forecast runoff peak was 75%. On the sediment transport simulate, the average model-fit efficiency was 0.664, the percent of pass on forecast quantity of sediment was 62.5%, and the percent of pass on forecast sediment peak was 75%. For different rainfall types, the model-fit efficiency of long-time single rainfall was higher than short-time single rainfall usually, and the model-fit efficiency of big rainstorm and rainstorm were higher than downfall and middle rain usually. And the model were simulated and forecasted runoff and sediment under two typical single rainfall in 2007, the results were attained the request of precision.
引文
[1] 安和平.北盘江中游地区土壤可蚀性及其预测模型研究[J].水土保持学报,2000,14(4):38~42.
    [2] 卜兆宏,杨林章,卜宇行,等.太湖流域苏皖汇流区土壤可蚀性 K 值及其应用的研究[J].土壤报,2002,39(3):296~300.
    [3] 陈浩.黄土丘陵沟壑区流域系统侵蚀与产沙关系[J].地理学报,2000,55(3):354~363.
    [4] 陈浩,蔡强国,周金星,等.黄河中游侵蚀产沙环境要素临界与交互作用研究进展[J].水土保持研究,2004,11(4):54~59.
    [5] 陈利顶,张淑荣,傅伯杰,等.流域尺度土地利用与土壤类型空间分布的相关分析[J].生态学报,2003,23(12):2497~2505.
    [6] 陈奇伯,解明曙,张洪江.长江三峡花岗岩地区坡面产沙及沟道输沙规律[J].水土保持通报,1995,15(4):20~24.
    [7] 陈松林.基于 GIS 的土壤侵蚀与土地利用关系研究[J].福建师范大学学报(自然科学版),2000,16(1):106~109.
    [8] 陈修颖,罗昀,李超群.洞庭湖流域花岗岩地区的水土流失特征及类型划分[J].水土保持通报,2004,24(1):60~62,73.
    [9] 陈 祖 松 . 不 同 治 理 模 式 的 红 壤 物 理 性 质 与 渗 透 性 能 研 究 [J]. 福 建 林 学 院 学报,1997,17(3):197~201.
    [10] 蔡崇法,丁树文,张光远.花岗岩红壤表土特征及对坡面侵蚀影响的研究[J].水土保持研究,1996,3(4):111~115.
    [11] 蔡强国,吴淑安,马绍嘉,等.花岗岩发育红壤坡地侵蚀产沙规律试验研究[J].泥沙研究,1996(1):89~96.
    [12] 蔡强国.坡长对坡耕地侵蚀产沙过程的影响[J].云南地理环境研究,1998,10(1):34~43.
    [13] 蔡强国,刘纪根.关于我国土壤侵蚀模型研究进展[J].地理科学进展,2003,22(3):242~250.
    [14] 段建南,李保国,石元春.应用于土壤变化的坡面土壤侵蚀过程模拟[J].土壤侵蚀与水土保持学报,1998,4(1):47~53.
    [15] 甘红,刘彦随,王静,等.中国北方农牧交错区土地利用类型转换驱动力因子分析[J].水土保持学报,2004,18(4):113~116.
    [16] 高军侠,党宏斌,刘作新,等.黄土高原南部裸露坡耕地产流产沙试验研究[J].生态学杂志,2004,23(3):138~140.
    [17] 高杨,吕宁,薛重生,等.不同流域土地利用与土壤侵蚀空间关系研究[J].中国水土保持,2006,(11):21~23.
    [18] 关君蔚.水土保持原理[M].北京:中国林业出版社,1990.
    [19] 郭志民.山地赤红壤可蚀性特征研究[J].水土保持科技情报,2001(3):8~9.
    [20] 郭志民 , 陈永宝 , 陈志伟 . 土壤可蚀性特征及 K 值图制作研究 [J]. 山西水土保持科技,2002(1):15~17.
    [21] 郝芳华,陈利群,刘昌明,等.土地利用变化对产流和产沙的影响分析[J].水土保持学报,2004,18(3):5~8.
    [22] 郝仕龙,陈南详,柯俊.黄土丘陵小流域土地利用景观空间格局动态分析[J].农业工程学报,2005,21(6):50~53.
    [23] 符素华,刘宝元.土壤侵蚀量预报模型研究进展[J].地球科学进展,2000,17(1):78~84.
    [24] 胡良军,李锐,杨勤科.基于 GIS 的区域水土流失评价研究[J].土壤学报,2001,38(2):167~174
    [25] 胡建忠,张伟华,李文忠,等.北川河流域退耕地植物群落土壤抗蚀性研究[J].土壤学报,2004,41(6):854~863.
    [26] 江晓波,马泽忠,曾文蓉,等.三峡地区土地利用/土地覆被变化及其驱动力分析[J].水土保持学报,2004,18(4):108~112.
    [27] 江忠善, 王志强, 刘志.黄土丘陵区小流域土壤侵蚀空间变化定量研究[J].土壤侵蚀与水土保持学报,1996,1(2),1~9.
    [28] 姜小三,潘剑君,杨林章,等.土壤可蚀性 K 值的计算和 K 值图的制作方法研究---以南京市方便水库小流域为例[J].土壤,2004,36(2):177~180.
    [29] 焦菊英 , 马祥华 , 王飞 , 等 . 渭河流域侵蚀产沙强度的区域分异特征 [J]. 水土保持研究,2004,11(4):60~63.
    [30] 景可.长江上游泥沙输移比初探[J].泥沙研究,2002(1):53~59.
    [31] 晋 华 , 孙 西 欢 , 李 仰 斌 . 岚 河 流 域 产 沙 量 的 影 响 因 素 分 析 [J]. 太 原 理 工 大 学 学报,2004,35(1):84~85,106.
    [32] 金争平,赵焕勋,和泰等.皇甫川区小流域土壤侵蚀量预报方程研究[J].水土保持学报,1991,5 (1):8~18.
    [33] 孔 亚 平 , 张 科 利 , 唐 克 丽 . 坡 长 对 侵 蚀 产 沙 过 程 影 响 的 模 拟 研 究 [J]. 水 土 保 持 学报,2001,15(2):17~20,24.
    [34] 李智广,刘秉正.我国主要江河流域土壤侵蚀量测算[J].中国水土保持科学,2006,4(2):1~6.
    [35] 梁音,史学正,长江以南东部丘陵山区土壤可蚀性 K 值研究[J].水土保持研究,1999,6(2):47~52.
    [36] 林光耀,陈永葆.侵蚀劣地种植不同果树后土壤抗蚀性[J].福建林学院学报,2001,21(3):233~236.
    [37] 柳云龙,胡宏涛.红壤地区地形位置和利用方式对土壤物理性质的影响[J].水土保持学报,2004,18(1):22~26.
    [38] 刘 宝 元 , 张 科 利 , 焦 菊 英 . 土 壤 可 蚀 性 及 其 在 侵 蚀 预 报 中 的 应 用 [J]. 自 然 资 源 学报,1999,14(4):345~350.
    [39] 刘纪根,雷廷武,潘英华,等.陡坡耕地施加PAM侵蚀产沙规律及临界坡长的试验研究[J].土壤学报,2003,40(4):504~510.
    [40] 刘纪根 , 蔡强国 , 樊良新 , 等 . 流域侵蚀产沙模拟研究中的尺度转换方法 [J], 泥沙研究,2004(3):69~74.
    [41] 刘建梅,裴铁璠.水文尺度转换研究进展[J].应用生态学报,2003,14(12):2305~2310.
    [42] 刘家福,刘湘南.GIS 与 SPSS 集成分析区域土地利用变化[J].国土资源遥感,2004(1):32~35.
    [43] 刘金梅 , 王光谦 , 王士强 . 沙质河道冲刷不平衡输沙机理及规律研究 [J]. 水科学进展,2003,14(5):563~568.
    [44] 刘黎明.黄土丘陵沟壑区坡面侵蚀泥沙输移比物理模型研究[J].中国水土保持,1994(3):12~15.
    [45] 刘前进,蔡强国,刘纪根,等.黄土丘陵沟壑区土壤侵蚀模型的尺度转换[J].资源科学,2004,26(增刊):81~90.
    [46] 牛志明,解明曙,孙阁,等.ANSWER2000 在小流域侵蚀过程模拟中的应用研究[J].水土保持学报,2001,15(3):56~60.
    [47] 卢金发.黄河中游流域地貌形态对流域产沙量的影响[J].地理研究,2002,21(2):171~178.
    [48] 卢金发,黄秀华.黄河中游地区流域产沙中的地貌临界现象[J].山地学报,2004,22(2):147~153.
    [49] 卢喜平,史东梅,蒋光毅,等.两种果草模式根系提高土壤抗蚀性的研究[J].水土保持学报,2004,18(5):64~76,124.
    [50] 马力,杨新民,吴照柏,等.不同土地利用模式下土壤侵蚀空间演化模拟[J].水土保持通报,2003,23(1):49~51.
    [51] 门明新,赵同新,彭正萍,等.基于土壤粒径分布模型的河北省土壤可蚀性研究[J].中国农业科学,2004,37(11):1647~1653.
    [52] 蒙吉军,李正国,吴秀芹.县域尺度土地利用/覆被变化研究---以河西走廊肃州绿州为例[J].兰州大学学报(自然科学版),2004,40(3):89~94.
    [53] 倪晋仁,李英奎.基于土地利用结构变化的水土流失动态评估[J].地理学报,2001,56(5):611~621.
    [54]倪九派.魏朝富,谢德体.土壤侵蚀定量评价的空间尺度效应[J].生态学报,2005,25(8):2061~2067.
    [55] 彭荔红,方志山,李祚泳.流域输沙量和输沙率的B-P人工神经网络预测[J].水土保持学报,2001,15(5):22~25.
    [56] 彭文英,张科得.不同土地利用产流产沙与降雨特征的关系.水土保持通报,2001,21(4):25~29.
    [57] 齐实,王云崎,孙阁,等.三峡库区森林小流域森林理水调洪功能模拟研究[J].北京林业大学学报,2006,28(5):42~51.
    [58] 钱宁,万兆惠.泥沙运动力学[M].北京:科学出版社,1983.
    [59] 秦富仓.黄土地区流域森林植被格局对侵蚀产沙过程的调控研究.北京林业大学博士学位论文,2006.
    [60] 丘扬 , 傅伯杰 , 王勇 . 土壤侵蚀时空变异及其与环境因子的时空关系 [J]. 水土保持学报,2002,16(1):108~111.
    [61] 曲格平.保护水土资源,改善生态环境,造福子孙后代[J].中国水土保持,1996,(8):4~5.
    [62] 阮伏水,周伏建.花岗岩不同土地利用类型坡地产流和入渗特征[J].土壤侵蚀与水土保持学报,1996,2(3):1~7.
    [63] 邵景安,刘秀华,魏朝富.县域土地整理与土地利用/覆被变化研究----以重庆市万州区为例[J].水土保持学报,2003,17(6):9~13.
    [64] 拾兵,曹叔尤,刘兴年,等.山地小流域降雨及输沙过程的计算模型及其数值模拟[J].泥沙研究,2000(4):77~80.
    [65] 水建国,叶元林,王建红,等.中国红壤丘陵区水土流失规律与土壤允许侵蚀量的研究[J].中国农业科学,2003,36(2):179~183.
    [66] 孙厚才,李青云.应用分形原理建立小流域泥沙输移比模型[J].人民长江,2004,35(3):12~13,21.
    [67] Stall.J B.黄委会水保处译,坡地侵蚀与泥沙输移[M].郑州:黄河水利委员会出版中心.1988.177.
    [68] 唐莉华 , 张思 聪 . 小 流域 产 汇 流 及 产 输 沙 分 布 式模型 的 初步 研 究 [J]. 水力 发电学报,2002(1):119~127.
    [69] 唐克丽等.中国水土保持[M].北京:科学出版社,2004.
    [70] 唐政洪,蔡强国,许峰,等.不同尺度条件下的土壤侵蚀实验检测及模型研究[J].水科学进展,2002,13(6):781~787.
    [71] 汤立群.流域产沙模型研究[J].水科学进展,1996,7 (1):47~53.
    [72] 田育新,李锡泉,袁正科,等.湘南红壤不同林分类型涵水保土效益研究[J].水土保持研究,2002,9(4):80~82,86.
    [73] 王保忠,湖南丘陵风化花岗岩区水土保持林的保土效果及灰色模型[J].甘肃农业大学学报,1994,29(3):262~267.
    [74] 王德胜.湖南省水土保持生态环境分析及建设对策[J].水土保持研究,2000,7(3):96~98,215.
    [75] 王飞,李锐,杨勤科,张晓萍,水土流失研究中尺度效应用及其机理分析[J].水土保持学报,2003,17(2):167~169.
    [76] 王国庆,陈江南,李皓冰,等.暴雨产流产沙模型及其在黄土高原典型支流的应用[J].水土保持学报,2001,15(6):40~42.
    [77] 王礼先,吴长文.陡坡林地坡面保土作用的机理[J].北京林业大学学报,1994,16 (4):1~7.
    [78] 王浩,杨爱民,周祖昊,等.基于分布式水文模型的水土保持水文水资源效应研究[J].中国水土保持科学,2005,3(4):6~10.
    [79] 王文龙,雷阿林,李占斌,唐克丽.黄土丘陵区坡面薄层水流侵蚀动力机制试验研究[J].水利学报,2003(9):66~70.
    [80] 王协康,方铎.物理基础的坡面雨滴溅蚀模型[J].四川联合大学学报,1997,1(3):90~102.
    [81]王协康,敖汝庄,等.泥沙起动条件及机理的非线性研究[J].长江科学院院报,1999,16(4):39~ 45.
    [82] 王协康,方铎.土壤侵蚀产沙量的人工神经网络模拟[J].成都理工学院学报,2000,27(2):197~201.
    [83] 王晓燕,李立青,杨明义,等.小流域不同土地利用类型土壤侵蚀分异的 137Cs 示踪研究[J].水土保持学报,2003,17(2):74~76,113.
    [84] 王云崎.三峡库区森林理水调洪机理及空间配置研究.北京林业大学博士学位论文,2006.
    [85] 王占礼,邵明安,张晓萍.治理小流域侵蚀产沙特征研究.水土保持通报,1998,18(5):51~54.
    [86] 王忠林,李会科.花椒地埂林土壤抗蚀性研究[J],西北林学院学报,1998,13(2):30~33.
    [87] 温仲明,焦峰,张晓萍,等.黄土丘陵区纸坊沟流域 60 年来土地利用格局变化研究[J].水土保持学报,2004,18(5):125~128,133.
    [88] 吴淑安,蔡强国.土壤表土中植物根系影响其抗蚀性的模拟降雨试验研究---以张家口试验区为例[J].干旱区资源与环境,1999,13(3):35~43.
    [89] 吴 志 峰 , 王 继 增 . 华 南 花 岗 岩 风 化 壳 岩 土 特 性 与 崩 岗 侵 蚀 关 系 [J]. 水 土 保 持 学报,2000,14(2):31~35.
    [90] 夏艳华,张平仓.基于侵蚀动力学机制的流域土壤侵蚀模型研究—以长江三峡库区三家桥流域为例[J].水土保持学报,2003,17(1):152~154,172.
    [91] 肖培青,郑粉莉,贾媛媛.基于双土槽试验研究的黄土坡面侵蚀产沙过程[J].中国水土保持科学,2003,1(4):10~15.
    [92] 肖玉保.基于 MMS 的分布式暴雨水文模型的构建和验证.北京林业大学硕士学位论文,2005.
    [93] 谢小立,王凯荣.红壤坡地雨水地表径流及其侵蚀[J].农业环境科学学报,2004,23(5):839~845.
    [94] 谢树楠,张仁,王孟楼.黄河中游黄土丘陵沟壑区暴雨产沙模型研究[J].黄河水沙变化研究论文集,第五卷,黄河水沙变化基金会, 1993, 238~274.
    [95] 许炯心.中国不同自然带的河流过程[M ].北京:科学出版社, 1997. 95~110.
    [96] 许炯心.流域因素与人类活动对黄河下游河道输沙功能的影响[J].中国科学 D 辑,地球科学,2004,34(8):775~781.
    [97] 许中旗,李文华,郑均宝,等.太行山区不同土地利用类型保水防蚀能力研究[J].水土保持学报,2004,18(4):101~104.
    [98] 杨具瑞,方铎,何文社,等.推移质输沙率的非线性研究[J].水科学进展,2003,14(1):36~40.
    [99] 杨武德,王兆骞,眭国平,等.红壤坡地土壤侵蚀定位土芯Eu示踪法研究[J].土壤侵蚀与水土保持学报,1998,4(1):61~65.
    [100] 杨武德,王兆骞,眭国平,等.红壤坡地不同利用方式土壤侵蚀模型研究[J].土壤侵蚀与水土保持学报,1999,5(1):52~58,68.
    [101] 杨艳生.区域性土壤流失预测方程的初步研究[J].土壤学报,1990,27(1): 73~79.
    [102] 杨一松,王兆骞,陈欣,等.南方红壤坡地不同利用模式的水土保持及生态效益研究[J].水土保持学报,2004,18(5):84~87.
    [103] 杨玉盛,何宗明,陈光水,等.不同生物治理措施对赤红壤抗蚀性影响的研究[J].土壤学报,1999,36(4):528~535.
    [104] 闫 志 忠 , 刘 金 英 . 改 进 的 BP 神 经 网 络 在 流 域 产 沙 量 预 测 中 的 应 用 [J]. 世 界 地质,2002,21(3):266~270.
    [105] 袁东海,王兆骞,郭新波,等.红壤小流域不同利用方式水土流失和有机碳流失特征研究[J].水土保持学报,2002,16(2):24~28.
    [106] 余新晓,陈丽华,周常青,等.三峡花岗岩地区坡面暴雨产流过程的研究[J].北京林业大学学报,1995,17(4):67~73.
    [107] 余新晓 , 秦永胜 .森林植被对坡面不同空间尺度侵蚀产沙影响分析 [J]. 水土保持研究,2001,8(4):66~69,99.
    [108] 于大炮,刘明国,邓红兵,等.辽西地区林地土壤抗蚀性分析[J].生态学杂志,2003,22(5):10~14.
    [109] 于东升 , 史学正 .低丘红壤区旱地土壤渗透性与可蚀性定量关系的研究 [J].土壤学报,2000,37(3):316~322.
    [110] 邹亚荣,张增祥,周全斌,等.基于 GIS 的土壤侵蚀与土地利用关系分析[J].水土保持研究,2002,9(1):67~69,75.
    [111] 左长清,胡根华,张华明.红壤坡地水土流失规律研究[J].水土保持学报,2003,17(6):89~91.
    [112] 张爱国,陕永杰,景小元.中国水蚀区土壤可蚀性指数诺谟图的制作与查用[J].山地学报,2003,21(5):615~619.
    [113] 张平仓,查轩,唐克丽.水蚀风蚀交错带小流域不同地层侵蚀产沙量及其特征[J].土壤侵蚀与水土保持学报,1997,3(1):1~9,79.
    [114] 张洪江 , 解 明曙 , 杨柳 春 , 等 . 长 江 三峡花岗岩坡面糙率系数研究 [J]. 水土保持学报,1994,8(1):33~38.
    [115] 张洪江,王礼先,解明曙.长江三峡花岗岩地区土壤流失时间分布特征[J].长江流域资源与环境,1997,6(4):369~373.
    [116] 张洪江,解明曙,王玉杰.长江三峡花岗岩出露区不同林地的土壤保持作用研究[J].水土保持研究,1998,5(2):99~103,158.
    [117] 张洪江.土壤侵蚀原理[M].北京:中国林业出版社,2000.
    [118] 张科利,蔡永明,刘宝元,等.土壤可蚀性动态变化规律研究[J].地理学报,2001,56(6):673~681.
    [119] 张丽萍,杨达源,朱大奎,母岩的风化剥蚀速率与土壤允许流失量的关系----以长江三峡坝区风化花岗岩土壤为例[J].长江流域资源与环境,2003,12(4):382~387.
    [120] 张丽萍,张登荣,张锐波,等.小流域土壤侵蚀预测预报基本生态单元生成和模型设计[J].水土保持学报,2005,19(1):101~104.
    [121] 张永民,赵士洞,张克斌.科尔沁沙地及其周围地区土地利用变化的时空动态模拟[J].北京林业大学学报,2003,25(3):68~73.
    [122] 张信宝,贺秀斌,文安邦,等.不同同尺度域的侵蚀模数[J].水土保持通报,2006,26(2):69~71.
    [123] 张雪松,郝芳华,杨志峰,等.基于SWAT模型的中尺度流域产流产沙模拟研究.水土保持研究,2003,10(4):38-42.
    [124] 张燕,张洪,彭补拙,等.不同土地利用类型下农地土壤侵蚀与养分流失[J].水土保持通报,2003,23(1):23~26,31.
    [125] 赵杰,赵士洞.利用 PRA 方法研究小尺度区域土地利用变化---以科尔沁沙地尧勒甸子村为例[J].地域研究与开发,2004,23(1):73~76.
    [126] 赵 晓 光 , 石 辉 . 黄 土 塬 区 坡 面 及 小 集 水 区 泥 沙 输 移 比 变 化 特 征 [J]. 山 地 学报,2002,20(6):718~722.
    [127] 周 学 军 , 夏 卫 生 . 衡 山 土 壤 加 速 侵 蚀 与 花 岗 岩 地 貌 发 育 问 题 研 究 [J]. 土 壤 学报,2004,41(4):624~627.
    [128]郑粉莉,康绍忠.黄土坡面不同侵蚀带侵蚀产沙关系及其机理[J].地理学报,1998,53(5):422~428.
    [129] 郑国强,江南,刘兆德.长江下游沿江地区区域环境承载力对土地利用变化的响应[J].生态学报,2004,23(1):16~19.
    [130] 钟继洪,谭军,郭庆荣,等,南亚热带不同植被下丘陵赤红壤结构特征比较研究[J].应用生态学报,1998,9(4):359~364.
    [131] 朱连奇 , 许叔明 , 陈沛云 . 山 区土地利 用 / 覆被变化对土壤 侵蚀的影 响 [J]. 地理研究,2003,22(4):432~438.
    [132] 朱金兆,胡建忠.黄河中游地区侵蚀产沙规律及水土保持措施减洪减沙效益研究综述[J].中国水土保持科学,2004,2(3):41~48.
    [133] Arnold, J G, R Srinivasan, R SMuttiah, et al. Continental scale simulation of the hydrologic balance [J]. Journal of American Water Resources Association, 1999, 35 (5) : 1037~1051.
    [134] Aubertin GM. Nature and extent of macropores in forest soils and their influence on subsurface water movement. USDA: Forest Service Research Paper, NE-192,1971.33.
    [135] Baffaut.C, Nearing, MA, Govers. G.Statistical distributions of soil loss from runoff plots and WEPP model simulations [J]. Soil Science Society of America Journa,1998,62:756~763.
    [136]Beach.T.Estimating soil loss from medium–size drainage basins[J].Phys.Geogr,1992, 13(3):206~224.
    [137] Beasley.D.B. et al. ANSWERS: A Model for Watershed Planning[J],Transactions of the ASAE.1980,23: 938~944.
    [138] Beven K, Germann P. Macropores and water flow in soils[J]. Water Resour Res,1982 ,18 (5):1311~1325.
    [139] Bhuyan S J, Marzen L J.Assessment of runoff and sediment yield using remote sensing, GIS, and AGNPS[J]. Soil and Water Conservation ,2002,57(6):351~364.
    [140] Bl?schl G, Sivapalan M.1995.Scale issues in hydrological modeling: A review. Hydrol Process, 9:251~290.
    [141] Bryan.R.B.The influence of slope angle on soil entrainment by sheetwash and rainsplash[J].Earth Surface Processes ,1979 (4):43~58.
    [142] Bryan R B,et al. Laboratory experiment on the influence of slope length on runoff, percolat ion and rill development[J].Earth Surface Processes and Landform,1989,14:211~231.
    [143] Chaubey I, Edwards D R. Effectiveness of vegetative filter strips in controlling losses of surface applied poultry litter constituents[J]. Transactions of the A SA E,1995,38 (6): 1687~1692.
    [144] C.W.Rose,J.R.Willams,C.C.Sander and D.A.Barry.A mathematical model of soil erosion and deposition processes:(1)Theory for a plane land element, Soil Sci, Soc.Of Amer.J.1983.47.
    [145] C.W.Rose,J.R.Willams,C.C.Sander and D.A.Barry.A mathematical model of soil erosion and deposition processes:(2)Application to data from an arid- zone catchment,Soil Sci,Soc.Of Amer.J.1983.47.
    [146] Daniel Hillel.Environmental Soil Physics[J]. New York:Academic Press,1998.188~190.
    [147] Daniel Yoder and Joel Lown. The future of Resule:Inside the newevised Universal soil loss equation[J], Journal of soil and Water conservation,1995,50 (5):484~489.
    [148] Dearing J A, Alstronm K, Bergman A, et al. Past and present erosion in southern Sweden [M]. In:Boardman, Fo ster, Dearing, (Eds. ), Soil Erosion on AgriculturalL and Wiley, Chichester, 1990. 687.
    [149] Dendy,F. E. and Boilton,G.C.Sediment yield-runoff-drainage area relationships in the United States. J. Soil Wat. Conserv. 1976.32 :264~6.
    [150] De Roo A.,Wesseling,C. G. LISEM-Limburg Soil Erosion Model :A User Guide [M],1995.
    [151] Dietrich W E, Dunne T.Sediment budget for a small catchment in mountainous terrain[J].Zeitschrift fur Geomorphologie,1978,29:191~205.
    [152] Dooge JCI.1997. Scale problems in hydrology. In: Reflections on Hydrology.Washington: American Geophysical Union.
    [153] Ebisemiju, F. S. sediment delivery ratio prediction equations for short catchment slopes in a humid tropical environment. J. Hydrology,1990(114),191~208.
    [154] Foster G R, Flanagan D C, Nearing M A, et al.Hillslope erosion component. In: Flanagan D C, Nearing M A.USDA-Water Erosion Prediction Project Hillslope Profile and Watershed Model Documentation [J].Iowa:Soil and Water Conservation Society,1995.
    [155] G.G. Leuven.Rill erosion on arable land in Central Belgium: rates, controls and predictability [J]. Catena Rem lingen,1990,18:133~155.
    [156] Gilley, J. E.,E.R.Kottwitz,and J.R.Simanton.Hydraulic characteristics of rills[J], 1990,ASAE,33(6):1900~1906.
    [157] G.M.Smart.Sediment Transport Formula for Steep Channel. J. Hydraulic Engineering,1984,110(3),267~277.
    [158] Govers G, Rauws G. Transporting capacity of overland flow on plane and on irregular beds[J]. Earth Surface Processes Landforms, 1986,11:515~524.
    [159] GyrA, Schmid A.Turbulent flows over smooth erodible sand beds in flumes[J].J.of Hydraulic Research, 1997, 35:525~544.
    [160] Halpin C.C, et al. The effect of croptype, croprotation, and tillage practice on runoff and soil loss on a Vertisol in central Queensland[J]. Aust. J. Soil Res.,1997,35: 925~939.
    [161] Hans S, Sandra B.Scaling issues in watersheds assessments[J]. Water Policy, 2001,3:475~489.
    [162] Hecht Nielsen R.Komogrov’s Mapping Neural Network Existence Theorem, Proceedings of the International Conference on Neural Networks [M].New York:IEEE Press,1987.11~13.
    [163]Hirschi M C, Barfield B J.KYERMO,A physical based research model,part:Model development[J].Trans ASAE, 1988,31(1):287~308.
    [164] Hsu K L, Gupta H V, Soroshian S. Artificial neural network modeling of the rainfall&runoff process[J].Water Resources Research,1995,31(10):2517~2530.
    [165] Huang C H, Brandford J M, Laflen J M. Evaluation of the detachment-transport coupling concept in the WEPP rill erosion equation[J]. Soil Science Society of American Journal,1996, 60:734~ 739.
    [166] Hua Lu,Gallant, J.C., Prosser, I. P., et al.Prediction of Sheet and Rill Erosion Over the Australian Continent, Incorporating Monthly Soil Loss Distribution[M].2001.CSIRO Land and Water Technical Report [C].
    [167] Johnson,L. E.Maphyd. A digital map based hydrologic modelling system,Photogram[J]. Eng. Remot.Scense. 1989,55:911~913.
    [168] J.M. Sheridan,C.v. Booram, Jr.L. E. Asmussen. Sediment-Delivery Ratios for a Small Coastal Plain Agriculture Watershed[J].Trans. ASCE,1982,25 (3) ,610~615.
    [169] Julien P Y, Simons D B. Sediment transport capacity of overland flow[J]. Transactions American Society of Agricultural Engineering,1985,28(3):755~762.
    [170] Karen P, et al. Spatial variations in the magnitude of the 1993 floods, Raccoon River basin, Iowa [J]. Geomorphology,1994, 169~182.
    [171] Kirkby, MJ, ACImeson,G. Bergkamp.Scaling up processes and models from the field plot to the watershed and regional areas[J ].Soil and Water Conservation, 1996,51(5):391~396.
    [172] Klaghofer E, Summer W, VIlleneure J P. Some remarks on the determination of the sediment delivery ratio. Erosion, Debris Flows and Environment in Mountain Region[J], JAHS publication UK,1992,113.
    [173] Langbein,W.B. and Schumm , S. A.Yield of sediment in relation to mean annual precipitation. Trans. Amer.Geophys. Union.1958.76~84.
    [174] Lei T W, Nearing M A, Haghighi K, Bralts V F. Rill erosion and morphological evolution:A simulation model[J]. Water Resources Research, 1998, 34(11):3157~3168.
    [175] Lei T W, Zhang Q W, Zhao J, Tang Z J. A laboratory study of sediment transport capacity in the dynamic process of rill erosion[J]. Transactions American Society of Agricultural Engineering, 2001, 44(6):1537~1542.
    [176] Lei T W,Zhang Q W,Zhao J,Xia W S,Pan Y H.Soil detachment rates for sediment loaded flow in rills[J]. Transactions American Society of Agricultural Engineering, 2002, 45(6):1897~1903.
    [177] Lentz R D, Sojka R E. Field results using polyacrylamide to manage furrow erosion and infiltration[J]. Soil Science, 1994 ,158(4):274~282.
    [178] Liu Jinmei,Wang guangqian, Wang Shiqiang, Effect of coarsening of surface bed material on non-equilibrium sediment transport process during river degradation[J].International Journal of Sediment Research , 1999, 14(2) :275~2831.
    [179] L.T.Trana, M.A Ridgleyb,L.Ducksteinc,et al.Application of fuzzy logic-based modeling to improve the performance of the Revised Universal Soil Loss Equation[J]. Catena,2002,47:203~ 226.
    [180] Mallants D, Mohanty P B,Vervoort A, et al.Spatial analysis of saturated hydraulic conductivity in a soil with macropores. Soil Technology,1997, 10:115~131.
    [181] Malinda D K. Factors in conservation farming that reduce erosion [J]. Australian Journal of Experimental Agriculture,1995,35: 969~978.
    [182] Marks D,Dozier J. Automated Basin delineation from digital elevation data[J ]. Geoprocessing, 1994,2:299~311.
    [183] Michnel church et al. Fluvial Clastic Sediment Yield in Canada: Scaled analysis[J]. Canadian Journal of Earth Sciences,1999, 36 (8): 1267~1280.
    [184] Moldenhauar,W.C.,Procedure for studying soil characteristics using disturbed samples and simulated rainfall,Transaction, American Society of Agricultural Engineers.1965, 8(1):74~75.
    [185] Montgomery D R, Georgiou A F.Channel network source representation using digital elevation models [J]. Water Resources Research, 1993, 29 (12): 3925~3934.
    [186] Morgan R P C, Morgan D D V, Finney H J. A predictive model for the assessment of soil erosion risk[J].J Agric Eng Res,1984,30(1):245~253.
    [187] Murray D, et al. Erosion thresholds and suspended sediment yields,Waipaoa River Basin, New Zealand [J]. Water Resources Res., 2000, 4: 1129~1142.
    [188] Nearing M A, Bradford J M. Single water drop splash detachment and mechanical properties of soils [J].Soil Sci. Soc. Am. J. 1985, 49: 547~ 552.
    [189] Nearing M A, Foster G R, Lane L J, Finkner S C. A process based soil erosion model for USDA-Water erosion prediction project technology[J]. Transactions American Society of Agricultural Engineering, 1989, 32(5):1 587~ 1 593.
    [190] O’callaghan J,M ark D M. The extraction of drainage networks from digital elevation data [J]. Comput Vision Graphics Image Process, 1984,28:323~344.
    [191] Pineda F J. Dynamics and architecture for neural computation[J]. J .Complexity,1998, (4): 216~245.
    [192] Pineda F J.Generalization of back-propagation to recurrent neural networks [J].Physical Review Letters,1987,59:2229~2232.
    [193] Pineda F J . Recurrent back-propagation and the dynamical approach to adaptive neural computation [J ] . Neural Computation,1989,1:161~172.
    [194] Raman H, Sunilkumar N. Multivariate modeling of water resources time series using artificial neural networks[J].Hydrological Sciences Journal, 1995, 40 (2):145~163.
    [195] R. E.Braziera J. S. Rowan, S. G. Anthony, et al. “MIRSED”towards an MIR approach to modeling hillslope soil erosion at the national scale[J].Catena, 2001,42 (1):59~79.
    [196] R.B. Bryan, and J. Poesen. Laboratory experiments on the influence of slope length on runoff, percolation and rill development[J]. Earth Surface Processes and Landforms, 1989,14:211~231.
    [197] Rinaldo A , Rodriguez-IturbeI, Rigon R, et al. Marani,Minmum energy and fractal structures of drainage network s[J]. Water Resource. Res, 1992, 28: 2183~2195.
    [198] Roels JM. Estimation of soil loss at a regional scale based on plot measurements-some critical considerations[J]. Earth Surface Processes and Landforms,1985,10(6):587~595.
    [199] Santhi, C, J G Arnold, J R Williams, et al. Validat ion of the SWAT Model on Large River Basin with Point and Nonpoint sources[J]. Journal of the American Water Resources Association, 2001, 37 (5) : 1169~1188.
    [200] Schumm.S A, The Fluvial System. New York: John Wiley & Sons, 1977,1~338.
    [201] Schreiker J D, et al. Sediment, nitrogen, and phosphorus runoff with conventional and conservation tillage cotton in a small watershed[J]. J. Soil and Water Conservation, 1994, 49 (1):82~89.
    [202] S.M. de Jong, M.L.Paracchini, F. Bertolo S. Folving,et al.Regional assessment of soil erosion using the distribution model SEMMED and remotely sensed data[J].Catena,1999,37:291~308.
    [203] Sojka R E, Lentz R D, Westermann D T. Water and erosion with multiple applications of polycrylamide in furrow irrigation.Soil Sci . Soc. Am. J.,1998,62 :1672~1680.
    [204] Sten B,GrahamL. P.On the scale problem in hydrological modeling[J].Journal of Hydrology, 1998, 211:253~265.
    [205] Trimble S W.Changes in sediment storage in Coon Creek Basin, Driftless Area[J ]. Wisonsin , 1853~1975, Science 1981,214 :181~183.
    [206] Truman C C ,Wauchope R D,Sumner H R,et al.Slope length effects on runoff and sediment delivery[J].Journal of Soil and Water Conservation ,2001(3) :249~256.
    [207] Van der Puy, M.E. Rating erosion susceptibility[A].Proceedings of the Fourth Federal Interagency Sedimentation Conference March 24-27[C].LasVegas,Nevada. 1986,(I):2-1,2-7.
    [208] Victor Jetten, Ad de Roo, David Favis-Mortlock.Evaluation of field-scale and catchment-scale soil erosion models[J].Catena,1999,37:521~541.
    [209] Vinther F P, Eiland F, Lind A M,et al. Microbial biomass and numbers of denitrifiers related to macropore channels in agricultural and forest soil.Soil Biology and Biochemistry, 1999,31:603~611.
    [210] V.N. Sharda,Sita Ram Singh,A Finite Element Model for Simulating Rnoff and Soil Erosion from Mechanically Treated Agricultural Lands,1. Governing Equations and Solutions [J] ,Water Resour. Res.,30(7) :2287~2298 ,1994.
    [211] Walling D E,Webb, B W. Erosion and sediment: a global overview, Erosion and sediment yield [C].Global and Regional, Perspectives, Proceeding of the Exeter Symposium, IAHS Publ. no.236, 1996.3~19.
    [212] Williams J R. Sediment Routing for A gricultural Watersheds[J]. Water Resources Bulletin, 1975, 11:965~974.
    [213] Williams, J. M. Nearing, A.Nicks,et al.Using soil erosion models for global change studies[J]. Soil and Water Conservation,1996,51(5):381~385.
    [214] Wischmeier W H, Smith. Predicting rainfall erosion losses: a guide to conservation planning[A]. Agricultural handbook, No.537[M]. United States, Dept. of Agriculture, 1978. 12~72.
    [215] Wischmeier W H,Johoson C B, Cross B V. A soil erodibility geomography for farm land and construction sites[J].J Soil Water Cons,1976,26(1):189~193.
    [216] Wolman M G. Changing needs and opportunities in sediment yield [J]. Water Resources Res, 1977,117: 50~54.
    [217] Wood E F. Effect of soil moisture aggregation on surface evaporative fluxes[J]. Journal of Hydrology,1997,190:397~412.
    [218] Wood E F , Sivapalan M, Bevn KJ, el at. Effects of spatial variability and scale with implication to hydrologic modeling[J]. Journal of Hydrology,1988,102:29~47.
    [219] W. R. Osterkamp.Effects of Scale on Interpretation and Management of Sediment and Water Quality[M].IASH Publication,1995, 226:275~284.
    [220] Young.R.A.et al.AGNPS:A Nonpoint Source Pollution Model for Evaluating Agricultural Watersheds[J],Soil and Water Conservation Society.1989,44(2):168~173.
    [221] Y Zhang, J Yuan,and B Liu. Advance in researches on vegetation cover and management factor in the soil erosion prediction model[J].Chinese Journal of Applied Ecology, 2002,13(8):1033~1036.
    [222] Zheng, Fenli,C. Huang,and L. D. Norton. Vertical hydraulic gradient and run-on water and sediment effects on erosion processes and sediment regimes ,Soil Sci. Soc. Am.J.2000,64(1):4~11.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700