水肥耦合对草莓生长、产量品质及水肥利用效率的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究以“全明星”草莓(Fragaria ananassa Duch cv.“All star”)为试材,系统探讨了不同的肥料种类、灌溉方式以及水肥组合对草莓生长、产量品质和水肥利用效率的影响。目的是找到适合温室草莓生长的灌溉方式和肥料种类,及合适的灌水和施肥量,为节水节肥农业的发展提供理论依据和技术支持。试验结果表明:
     1.通过对等量肥效的控释肥和化肥处理的草莓生长、产量品质以及肥料的农学利用效率的研究表明,控释肥处理都要优于化肥处理,控释肥处理的草莓收入比化肥有较大提高。
     2.分根灌溉(PRD)处理在保持产量和植株的水分状态以及节水等方面具有一定的优势。PRD1和PDR2处理的叶水势相应地比DI1和DI2处理叶水势高,产量和水分利用效率均显著提高,而气孔导度较低;PRD2、DI1和DI2等处理下的产量却比FI处理的明显降低,因此,PRD2不适宜在设施草莓生产上应用。然而适当增加PRD灌溉量(如相当于全灌灌水量的70%),在草莓产量不明显下降的前提下,仍能节约大量的灌溉水。
     3.不同水肥处理间草莓的各个生长指标都存在显著性差异,总体看各指标在75%水分处理条件下较好。75%水分与任一肥料处理组合(T6、T7和T8)和施肥条件下完全灌水处理组合(T10和T11)的植株的生长势较强,说明在完全灌水条件下,在一定施肥限度内,肥料越多,植株的生长势就越强,肥料对作物的促进作用越大;在水分亏缺的条件下,施控释肥多少对草莓植株生长势的影响不大。
     4.不同水肥处理对草莓生育期内生理变化的影响为:中水高肥处理(T6)的植株各个时期的光合速率在所有处理中均最大,其次是高水高肥(T10)和高水中肥(T11)处理。干物质含量的最大值出现在(中水中肥)T7处理中,比T6处理仅高2.9%;75%肥料处理比100%肥料处理的还要高,但差异不显著。T6和T7的叶片叶绿素含量相对较高,而且变化较稳定。根系活力在75%水分灌溉下达到最大值,T6和T7处理的根系活力的最大,两者的差异性不显著。不同时期叶片中SOD、POD、CAT活性,都是T6处理各时期的活性最高,MDA含量在各处理中相差不大。土壤水势在T2(低水高肥组合)、T7和T10处理中变化幅度最大。说明从生理指标看,T6和T7处理是草莓生长的最优组合。
     5.水肥耦合能显著改变草莓的品质和产量,但是产量和品质都不是随水分和肥料的增加无限制的提高的。T1(低水空白)、T7和T10处理的草莓的内在品质较好;T7处理的草莓产量在所有处理中最高;T11处理的草莓的单果重最大,其次是T6和T7处理;毛收入是T6处理的最大,纯收入是T7处理的最大,T7和T6组合在增加草莓经济效益上较好,因此处理T6和T7是最优组合。
     6.不同水肥组合对水肥利用效率的影响:T7处理肥料的农学利用效率显著高于其他处理;叶片中的氮含量在T2、T3、T6和T7处理的变化不大;T7处理叶片磷的含量最高,T6处理次之,二者的差异性不显著;钾含量的变化趋势与氮含量的变化趋势相似;T7处理的肥料农学利用效率最高;T6、T7和T11处理组合中叶片中大量元素的含量较高,而且变化也比较平稳,T6和T7处理下差异不大。综上所述,T7处理是低投入高产出的最优水肥组合。
The effect of different fertilizer, irrigation methods and coupling of water and controlled-release fertilizer on the growth potential, fruit yield and quality and use efficiency of water and fertilizer were studied with "All-Star" Strawberry as trial material. The purpose was to find appropriate irrigation methods and types of fertilizer for the growth of strawberry in greenhouse, and amount of water and fertilizer. This study provided theoretical basis and technical support for the development of water-saving and fertilizer-saving agriculture. The results showed that:
     1. The strawberry growth potential, yield and quality, and fertilizer use efficiency in agriculture were studied in equal amount of controlled-release fertilizer treatment and chemical fertilizer treatment.The results showed that controlled-release fertilizer treatment was better than chemical fertilizer treatment. Compared with chemical fertilizer treatment, strawberry revenue of controlled-release fertilizer treatment was increased by 80.3%.
     2. Partial root-zone drying treatment (PRD) had certain advantages in maintaining production and water status of plant and saving water. The midday leaf water potential(ΨL)in PRD1 (one-half of the root-zone was irrigated to field capacity, and the other half maintained drying; irrigation was shifted from one side to the other side of root-zone when valumetric soil water content (θ) at the drying side decreased to about 10%) and PRD2 (irrigation methods was the same as PRD1, irrigated water was 1/2 of FI) were accordingly higher than in DI1(irrigation methods was the same as FI, irrigated water was the same as PRD1) and DI2 (irrigation methods was the same as FI, irrigated water was the same as PRD2), fresh strawberry yield and water use efficiency significantly increased, but their stomatal conductances (gs) were lower; Compared with FI, yield was significantly decreased in PRD2、DI1and DI2 treatments, therefore, PRD2 was an inappropriate application on strawberry production. However, increasing PRD irrigation properly (such as irrigation amount equal to 70% of FI) could still save a lot of irrigation water without significantly decreasing strawberry yield.
     3. Every growth indicator of strawberry in different treatments existed significant differences. Overall the indexes at 75% soil moisture conditions were better. T6, T7, T8, T10 and T11 treatments could enhance growth potential of plants. This explained that the more fertilizer the stronger growth potential under full irrigation conditions within the limits of certain fertilizer and the fertilizer promotion to crop was great; under water deficit conditions, the effect of controlled-release fertilizer applied on the strawberry growth potential was modest.
     4. The effect on physiological changes in strawberry growth periods under different water and fertilizer treatments was that: plant photosynthetic rate in T6 was the largest in all treatments, followed by T10 and T11.The maximum of dry matter content appeared in T7 treatment, higher than T6 only by 2.9%; 75% fertilizer treatments was even higher than 100% fertilizer treatments, but the differences were not significant. Chlorophyll content inT6 and T7 was relatively higher, and the changes were stable. Root activity in 75% of the irrigation treatments reached the maximum, and in T6 and T7 were the largest and their differences were not significant. The highest value of SOD activity, POD activity, CAT activity of leaf in different periods appeared in T6; the difference of MDA content in different treatments wasn’t significant. The soil water potential changes in T2, T7 and T10 were the most. Noting from the physiological view, T6 and T7 treatments were the optimal combination for strawberry growing.
     5. Coupling of water and fertilizer could change quality and yield of strawberry significantly, but not the more the better. The quality of strawberry in T1, T7 and T10 treatments was better. Yield reached maximum in T7 treatment of all the processing; Strawberry fruit weight in T11 was largest, followed by the T6 and T7 treatments; T6 was the best treatment for gross income, net income in T7 was the largest, T7 and T6 treatments were better for increasing strawberry economic returns, therefore, T6 and T7 were the better combination.
     6. Different combinations of water and fertilizer could impact the water and fertilizer use efficiency: The fertilizer use efficiency in T7 treatment was significantly higher than other treatments; The changes of nitrogen content of leaf in T2, T3, T6 and T7 were small; The phosphorus content of leaf in T7 was the highest, followed by T6 treatment, and the difference between two treatments was not significant; The trend of potassium content was similar to nitrogen content; agricultural Fertilizer use efficiency in T7 was higher than others; The large-element content of leaf in T6, T7 and T11 was higher, and changes were relatively stable. The difference between T6 and T7 was similar. In summary, T6 and T7 were the optimal combinations for strawberry growth, but input of T6 was more, so T7 was the best combination of water and fertilizer within low-input and high-output.
引文
1.鲍士旦主编.土壤农化分析(第三版)[M].北京:中国农业出版社,1999,183~200.
    2.曹翠玲,李生秀,苗芳.氮素对植物某些生理生化过程影响的研究进展[J].西北农业大学学报,1999,27(4):96~101.
    3.陈海霞,石雪晖.草莓的营养与施肥[J].西南园艺,2002,10(3):16~17.
    4.程满金,付卫平,程争鸣.滴灌技术在高寒地区蔬菜保护地的推广及应用[J].喷灌技术,1995(4):20~21.
    5.崔荣宗,魏建林等.金正大包膜控释肥对大蒜产量及经济性状的影响[J].中国农技推广,2009,25(3):38~39.
    6.丁果.温室蔬菜滴灌灌溉施肥水肥组合效应研究[D].内蒙古:内蒙古农业大学,2005.
    7.董亮,张玉凤等.不同控释肥对芦笋产量、品质及养分含量的影响[J].中国农业科技导报,2009,11(6):123~128.
    8.杜建军,田霄鸿,王朝辉等.根系吸收水分和养分的作用及以肥促根的效应[M].北京:中国农业科技出版社,1995:106-110.
    9.杜太生,康绍忠.果树根系分区交替灌溉研究进展[J].农业工程学报,2005,21(2):172~178.
    10.杜太生,康绍忠,夏桂敏,杨秀英.滴灌条件下不同根区交替湿润对葡萄生长和水分利用效的影响[J].农业工程学报,2005,21 (11):43~48.
    11. Fanizza G.利用叶片绿度评价受水分胁迫的葡萄基因型[J].国外农学文摘,1992,(1):66.
    12.冯涛,杨京平,施宏鑫等.高肥力稻田不同施氮水平下的氮肥效应和几种氮肥利用率的研究[J].浙江大学学报(农业与生命科学版),2006,32(1):60~64.
    13.高效江,胡雪峰,陈振楼等.减少稻田氮素损失的水肥管理措施研究[J].土壤,2002,(4): 215~218.
    14.郭文忠.设施蔬菜生产节水灌溉制度研究现状及发展趋势[J].农业工程学报,2005,12(21):24~27.
    15.关军锋.干旱条件下施肥效应及其作用机理[J].中国生态农业学报,2003,10(1):59~61.
    16.黄立章,石伟勇,吴建富.控释肥料的研究动态与展望[J].浙江农业大学学报(自然版) ,2002,24 (5):727~ 730.
    17.黄在范,郑成淑等.控释肥对土壤有效养分利用率及菊花生长和观赏品质的影响[J].山东农业科学,2009,10:70~73.
    18.孔东,晏云等.不同水氮处理对冬小麦生长及产量影响的田间试验[J].农业工程学报,2008,24(12):36~40.
    19.康玲玲等.水肥条件对冬小麦生理特性及产量影响的试验研究[J].干旱地区农业研究.1998,16(4):21~28
    20.吕吉庆,王民国.滴灌技术在农业生产中的应用[J].农机化研究,1998,(2):102~103.
    21.鹿洁忠.不同灌溉方法的温室土壤水量平衡[J].灌溉排水,1993,12(4):47~48.
    22.李季,靳乐山,崔玉亭.南方水田农用化学品投入水平及分析—以湖北湖南农户调查为例[J].农业环境保护,2001,20(5):333~336.
    23.李庆逵,朱兆良,于天仁.中国农业持续发展中的肥料题[M] .南昌:江西科学技术出版社,1998:3~4.
    24.李仕飞,刘世同,周建平等.分光光度法测定植物过氧化氢酶活性的研究[J].安徽农学通报,2007,13(2):72~73.
    25.李宪利,高东升,顾曼如.铵态和硝态氮对苹果植株SOD和POD活性的影响[J.植物生理学通讯,1997,33(4):254~255.
    26.李韵珠,陆锦文,罗远培,陶逸寿.土壤水和养分的有效利用[M].北京农业大学出版社,1994.
    27.刘建,魏亚凤,徐少安.蘖穗肥氮素配比对水稻产量、品质及氮肥利用率的影响[J].华中农业大学学报,2006,25(3):223~227·
    28.刘明池,小岛孝之,田中宗浩等.亏缺灌溉对草莓生长和果实品质的影响[J].园艺学报,2002,29(4):307~311.
    29.刘伟,刘永明.果树节水灌溉技术[ J].农机化研究,2003,(1):76~77.
    30.马学良,赵其恒等.国内外设施农业节水灌溉设备技术现状与发展[J].节水灌溉,1999,(2):4~5.
    31.马耀光,张保军,罗志成.旱地农业节水技术[M].北京:化学工业出版社,2004,141 ~143.
    32.牛铁泉,田给林,薛仿正,温鹏飞,李绍华.半根及半根交替水分胁迫对苹果幼苗光合作用的影响[J].中国农业科学,2007,40 (7):1463~1468.
    33.彭少兵,黄家良,钟旭华.提高中国稻田氮肥利用率的研究策略[J].中国农业科学, 2002, 35:1095~1103.
    34.彭永宏,Etienne Rabe.灌溉方法与地面覆盖对柑桔果实品质、产量与冠幕光水平的影响[J].果树科学,1998,15(2):128~132.
    35.曲东,王保莉,山仑.干旱条件下磷对玉米叶片SOD和POD活性的影响[J].西北农业大学学报.1996,24(3):47~51.
    36.阮勇凌等.水分胁迫对温州蜜柑光合特性的影响[J].园艺学报,1988,15(2):93~98.
    37.山仑,徐萌.节水农业及其生理生态基础[J].应用生态学报,1991,2 (1):70~76.
    38.山仑,张岁岐.节水农业及其生物学基础[J].水土保持研究,1999,6(1):2~6.
    39.宋磊,岳玉玲,狄方坤,魏钦平,高照全,张继祥.分根交替灌溉对桃树生长发育及水分利用效率的影响[J].应用生态学报, 2008,19 (7):1631~1636.
    40.孙文涛.滴灌条件下温室番茄栽培水肥组合效应的研究[D].沈阳:沈阳农业大学,2000.
    41.汪德水.旱地农田肥水关系原理与调控技术[M].北京:农业科技出版社,1995,106~110.
    42.王崇福.大棚草莓产生肥害的原因及防治办法[J].安徽农学通报,2001,7(1):59~60.
    43.王聪翔.水肥组合与旱地农业可持续发展[J].杂粮作物,2005,25(3)197~198.
    44.王康.节水条件下SPAC系统氮素迁移与作物增产和境效应的研究[D].武汉:武汉大学,2002.
    45.王磊.有机栽培条件下水肥环境对盆栽番茄生长影响的试验研究[D].北京:中国农业大学,2004.
    46.王利,张卫峰,马文奇等.中国化肥产业现状与近期走势[J]现代化工,2007,27(5):1~6.
    47.王琦,李锋瑞.灌溉与施氮对黑河中游新垦农田土壤硝态氮积累及氮素利用率的影响[J].生态学报,2008(5):2148~2159.
    48.王荣莲,于健等.温室滴灌施肥水肥组合对无土栽培樱桃番茄产量的影响[J].灌溉排水学报,2009,28(4):87~89.
    49.王小彬,高绪科.早地农田水肥相互作用的研究[J].干旱地区农业研究,1993,11(3):6~11
    50.王莹,彭世彰.不同水肥条件下水稻全生育期稻田氮素浓度变化规律[J].节水灌溉,2009,9,12~16.
    51.魏国强,孙治强,常高正.不同施肥量对温室基质栽培番茄产量与品质的影响[J].河南农业大学学报,2000,34(4):82~84.
    52.韦泽秀,梁银丽.水肥处理对黄瓜土壤养分、酶及微生物多样性的影响[J].应用生态学报,2009,20(7)1678~1684.
    53.吴海卿,杨传福,孟兆江等.以肥调水提高水分利用效率的生物学机制研究[J].灌溉排水,1998,17(4):6~10.
    54.吴建富.我国肥料利用现状及发展对策[J].江西农业大学学报,2003,5.
    55.袭江,王海红等.膜下滴灌水氮耦合对棉花生长和产量的影响[J].灌溉排水学报,2008,27(6)51~54.
    56.肖自添.温室基质培水氮耦合效应研究[D].北京:中国农业科学院,2008,6.
    57.徐福利,梁银丽,张成娥.施肥对日光温室黄瓜和土壤硝酸盐含量的影响[J].植物营养与肥料学报,2004,10(1):68~72.
    58.徐璇.水肥组合对小麦生理生态特性的影响[D].郑州:河南大学,2009,5.
    59.徐玉鹏,赵忠祥等.缓/控释肥料的研究进展[J ] .华北农学报,2007,22,191~194.
    60.原保忠,唐跃虎.浅谈滴灌在日光温室中的应用[J].节水灌溉,1999,4:16~17.
    61.杨丽娟,张玉龙.灌水方法对保护地番茄产量及品质的影响[C].辽宁省第三届青年学术年会论文集.大连:大连理工大学出版社,1999.
    62.杨丽娟,张玉龙.棚室蔬菜生产中灌溉技术研究进展[J].农业工程学报,2003,19(6):264~267.
    63.杨丽娟,张玉龙.设施栽培条件下节水灌溉技术[J].沈阳农业大学学报,2000,31(1):130~132.
    64.杨丽娟,张玉龙,杨青海.灌溉方法对番茄生长发育及吸收能力的影响[J].灌溉排水,2000,19(3):59~62.
    65.姚维传.作物节水研究进展[J].安徽技术师范学院学报,2001,15(4):13~16.
    66.尹光华,刘作新.水肥组合条件下春小麦叶片的光合作用[J].兰州大学学报:自然科学版,2006,(1):40~43.
    67.虞娜,张玉龙.温室内膜下滴灌不同水肥处理对番茄产量和品质的影响[J].干旱地区农业研究,2006,24(1):60~64.
    68.于亚军,李军,贾志宽.旱作农田水肥组合研究进展[J].干旱地区农业研究,2005,5(3):221.
    69.袁仲,杨继远等.农药化肥污染与食品安全[J].农产品加工.学刊,2009,7(3)67~69.
    70.翟丙年.供水条件下施氮对作物产量及生理特性的影响[D].博士生毕业论文,2001年4月.
    71.张宝军,蒋纪芸.小偃6号小麦籽粒蛋白质组分含量形成动态规律及其氮素调节效应的研究[J].国外农学麦类作物.1995,5,47 ~49.
    72.张春伦,朱兴明,胡思农.缓释尿素的肥效及氮素利用率研究[J].土壤肥料,1998(6):17~ 20.
    73.张雷明,杨君林,上官周平.旱地小麦群体生理变量对氮素供应量的响应[J].中国生态农业学报,2003,(7):63~65
    74.张树森.日光温室蔬菜渗灌技术研究[J].灌溉排水,1994,13(2):30~33.
    75.张秀刚,刁福山,张秀贵等.草莓基础生理及栽培[M].北京:中国林业出版社,1993,98~99.
    76.张兴义.水肥组合对春小麦有效叶面积及产量的影响[J].生态农业研究.2000,8(4):37~39.
    77.张依章,张秋英,孙菲菲.水肥空间耦合对冬小麦光合特性的影响[J].干旱地区农业研究,2006,(2):57~60.
    78.赵军营,孔媛.果树分根区灌溉技术原理及其发展前景[J].世界农业,2006,3,44~45.
    79.赵春艳.滴灌葡萄水肥组合效应研究[M].新疆农业大学,2005年6月.
    80.赵立新.不同施肥水平对旱地冬小麦水分利用效率的影响[J].植物生态与地植物学学报.1991,15(4):330~343.
    81.赵立新,荆家海,王韶唐.水分胁迫下施肥对盆栽冬小麦根系和苗系生长的影响[C].现代土壤科学研究.中国土壤学会第五届青土会论文集.北京,中国农业科技出版社,1994:504~508.
    82.赵世杰.植物生理学试验指导[M].北京:中国农业科学技术出版社,2002.
    83.翟亚明,邵孝侯等.不同灌溉制度对温室番茄光合特性的影响[J].节水灌溉,2009,11:46~49.
    84.郑磊,张民等.控释肥及硫膜对土壤性质和水稻生长发育的影响[J].水土保持学报,2009,23(2):193~197.
    85.周春林.非充分灌溉水肥组合对水稻产量品质调控效应研究[D].扬州:扬州大学,2007.
    86.仲爽,李严坤等.不同水肥组合对玉米产量与耗水量的影响[J].东北农业大学学报,2009,40(2)44~47.
    87.周江明,姜家彪等.不同肥力稻田晚稻水氮耦合效应研究[J].植物营养与肥料学报,2008,14(1):28~35.
    88.周卫平,宋厂程,绍思编著.微灌工程技术.中国水利水电出版社,2000.
    89.钟总,黄忠良等.包衣型缓!控释肥料研究进展[J].河南化工,2009,26(10):23~27.
    90. Cassel S.F.,Miller S.D..Assessment of drip and flood irrigation on water and fertilizer use efficiencies for sugar beets [J].Agricultural watermanagement,2001,46(3):241~251.
    91. Deidda P,Filigheddu MR,Dettori S.Progress report on the influence of irrigation system on yield and fruit quality in‘Valencia orange[C] .Proc Inter Soc Citri,1992,643~645.
    92. F. Liu,S. Savic. Water relations and yield of lysimeter grown strawberries under limited irrigation[J]. Scientia Horticulturae,2007(111)128~132.
    93. GUPTA J P. Hydrothermal environment of soil and vegetable production with drip and furrow irrigation [J].Indian J Agr Sci,1983,53(2):138.
    94. H. H?gh-Jensen,J.K. Schjoerring. Interactions between white clover and ryegrass under contrasting nitrogen availability: N2 fixation, N fertilizer recovery, N transfer and water useefficiency[J].Plant and Soil,1997: 187~199.
    95. Hoare E R and Barrs H P. Water relations and photosynthesis among horticultural species as affected by simulated soil water stress[J]. Proc.Int.Hort.Congr,1974,3:482~486.
    96. Judie D,Dzieze K. Associate editor microencap sulation and encap sulated ingredients [J]. Food Technology,1989( 4) :136~159.
    97. Kaneta Y,Awasaki H,Murai T.The notillage rice culture by single application of fertilizer in a nursery box with controlled release fertilizer[J] .Jap J Soil Sci Plant Nutr,1994,65:385~391.
    98. Kang S, Zhang J. Controlled alternate partial root-zone irrigation: its physiological consequences and impact on water use efficiency [J]. J. Exp. Bot,2004,55 (4),2437~2446.
    99. Liu F,Jensen CR,Shahnazari A,et al. ABA regulateds to stomatal control and photosynthetic water use efficiency of potato (Solanum tuberosum L.) during progressive soil drying [J]. Plant Sci,2005,168,831~836.
    100.Menconi,M.,Sgherri CLM,Pinzino,C.Activated oxygen Production and detoxification in wheat plants subjected to a water deficit programme[J].J Exp.Bot,1995,46(229):1123~1130.
    101.M. Henry H. Stevens,Rebecca Shirk. Water and fertilizer have oppositeeffects on plant species richness in a mesic early successional habitat[J]. Plant Ecology,2006,183:27~34.
    102.Muchow,R.C.Effect of nitrogen supply on the comparative productivity of maize and sorghum in a semiarid tropical environment.Grain yield and nitrogen accumulation.Field[J]. Crops Res,1988,18:31~43.
    103.Munir Jamil Mohammad. Utilization of applied fertilizer nitrogen and irrigation water by drip-fertigated squash as determined by nuclear and traditional techniques[J]. Nutrient Cycling in Agroecosystems, 2004,68:1~11.
    104.M. Zaman, H. J. Di,K.C. Cameron,C. M. Frampton.Gross nitrogen mineralization and nitrification rates and their relationships to enzyme activities and the soil microbial biomass in soils treated with dairy shed effluent and ammonium fertilizer at different water potentials[J].Biol Fertil Soils,1999,29:178~186.
    105.Noctor G,Foyer C.H.Ascorbate and glutathione:keeping active oxygen under control[J].Annu Rev Plant Phsiol.Plant Mol Biol,1998,49:249~279.
    106.Serrano L,Carbonell X,Save R, et al. Effects of irrigation regimes on the yield and water use of strawberry [J]. Irrigation. Sci,1992,13,45~48.
    107.SHARMA S G·Effect of drip and furrow irrigation and nitrogen levels on yield and net returns of Tinda [J].PKV Research Journal,1996,20 (2):163~164.
    108.Tang hui,Wang ya - ming et. Studies on the urea coated with tung oil as coating materials [J]. Journal of yunnan university,2004,26 (2) :150 ~153.
    109.SUBBARAO K V·Comparison of lettuce diseases and yield under subsurface drip and furrow irrigation [J].Phytopathology,1997,87 (8):877~883.
    110.T. Gaiser,I. de Barros.Water use efficiency of a maize/cowpea intercrop on a highly acidic tropical soil as affected by liming and fertilizerapplication [J]. Plant and Soil,2004,263:165–171.
    111.William PM. reacted layer technology for controlled release [J]. Science,1990(3) :1 ~8.
    112.Yuan BZ,Sun J,Nishiyama S. Effect of drip irrigation on strawberry growth and yield inside a plastic greenhouse [J]. Biosyst. Eng, 2004,87,237~245.
    113.Zushi K, Malsuzoe N. Effect of soil water deficit on vitamin C.suger,organic acid, amino acid and carrolene contents of large-fruit tomato[J]. Japan Soc Hort Sci,1998,67:927-933.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700