汾河灌区作物生产力模拟及流域水平衡模型之研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文通过汾河灌区主要农作物水肥试验研究及不同地下水位试验,探讨了水肥管理改进模式和农田水分转化的关系。通过WOFOST作物模型本地化分析了汾河灌区作物生产潜力和水肥限制条件下的作物产量。在基础地理数据、灌溉排水数据、水肥试验和WOFOST模型模拟结果的基础上,建立了汾河灌区水资源平衡数据库模型和流域水资源平衡模型,利用Arcview地理信息系统分析了水资源空间分布特征。主要结果如下:
     1灌区冬小麦全生育期需水量一般为390~400mm,灌水时间和灌水量应按当年降水量确定。总耗水量和水分利用效率的关系可以用负对数曲线,总耗水量与籽粒产量的关系可以用正对数曲线来描述,施肥可提高水分利用效率和籽粒产量;春玉米全生育期需水量一般为400~450mm,一般旱年补一次水基本能满足生长发育需要;油葵旱年应灌两水,最佳灌水定额为105~110mm,丰水年则不应再灌溉,否则产量反而会下降。
     2灌区地下水埋深对春玉米和冬小麦土壤水分季节变化的影响主要在表层和主要根层,地下水位越浅,这种影响显得越大。地下水埋深对农田土壤水分垂直变化的影响主要在0~100cm土层,地下水位越深,同层土壤含水量的差异越大。冬小麦和春玉米农田累计地下水补给量变化规律可分为稳定增长期、缓慢增长期、快速增长期和趋于稳定期;累计土壤排水主要与灌水和降水有关,地下水位越高土壤排水量越多。较大量灌水和降水后,土壤开始排水的日期随地下水埋埋深加深而滞后。玉米地下水埋深以1.0m产量最高,过浅产量和水分利用效率均下降。地下水埋深1.5m时冬小麦产量最高,1.0m时水分利用效率最高,低于此水位水分利用效率下降。地下水埋深超过2m,补给水分甚微或无。
     3通过参数调整后的WOFOST模型能很好的模拟汾河灌区的气候生产潜力和水分生产潜力。WOFOST模型对汾河灌区冬小麦和春玉米籽粒产量和根层土壤含水量模拟结果与试验观测结果拟合良好(R大于0.9)。该灌区冬小麦、春玉米和油葵光温生产潜力(籽粒干重)分别为10.5t·hm-~(-2)、14.1t·hm~(-2)和5.99t·hm~(-2);汾河灌区光温生产潜力与现实可达到的最高产量差异很小,但全灌区平均产量与现实可达到的最高产量差异仍然很大,必须对水肥管理、病虫害管理进行改进。
     4以小网格为单元的Splash!模型不仅是一个水资源平衡模型,而且是数据量很大的空间数据库系统。模型模拟结果可以直接与ArcView地理信息系统连接,模型对地表系统、非饱和系统和地下水系统水分平衡模拟结果较合理。汾河流域模型平原地区灌溉量和表层土壤入渗水量大,蒸发蒸腾量也比山区多。但由于作物耗水等原因导致地下水存储量比山区少。汾河河边灌溉区域入渗量最高,东北部旱地地区入渗量均比汾河灌区小,而比山区大。山区地下水位较浅(或没有地下水资源)。过渡带地下水位在85~120m变动。平原地区地下水位较高,其中汾河河沿线地下水位最高在0~5m变化。在东北部高原地区地下水埋深较低,有些地块地下水位200m(或没有地下水资源)。
     5本研究是作物生长发育模型与水资源平衡模型相结合改进流域水资源分配的一次尝试。
Experimental data related to irrigation, nutrient management and cropping pattern of main crops carried out in Central Experimental Station (CES) of Water Management, Shanxi Province, North China, were analysed according to experiments from 1992 to 2004. Experimental results of Main crops as winter wheat, spring maize and sunflower about irrigation and nutrient management were analysed. Soil water dynamics under shallow water table were discussed. Irrigation management on different water table management (0.5 m, 1.0 m, 1.5 m, 2.0 m, 2.5 m, 3.0 m) was also discussed. After calibration for main crops WOFOST crop simulation model were used for simulation of potential under water-limited condition. A tile-based (1 km*l km) regional water balance model be built, and the results were analyzed directly linked with AricView GIS.The main results and conclusion from the study are:1. Water requirements of winter wheat and spring maize for whole growing season are 390~400 mm and 400-500 mm respectively, the relation between water requirement and WUE could be expressed by a negative logarithm curve, the relation between water requirement and gTain yield could be expressed by a positive logarithm curve, increasing in fertilizer application results higher grain yield and WUE. For the reason of growing in rainy season spring maize need one time of irrigation, sunflower need twice (105-110mm each) in dry years, but no need in rainy years.2. Soil water dynamics are influenced by capillary rise under shallow water table, mainly in the soil layer of 0-100 cm for both winter wheat and spring maize. Soil water content varies more obviously under shallower water table, and it lead to more ground water uptake and more water use. The start day of percolation after irrigation or rainfall lagged under deeper water table. Crop growth and yield were influenced by shallow water table, mainly by effect on individual seedlings, the amount of tillering, spikes, but little on grain weight . It has less influence under deeper groundwater table. The higher crop yield and WUE occurs when water table set at 1.0m and 1.5 m for spring maize and winter wheat, respectively. WUE decrease when water table increase or decreased from 1.0 m for winter wheat.3. After calibration of parameters, WOFOST model could simulate potential and water-limited crop production in Fen River Irrigation District. The results show an average total grain yield production under potential conditions of 10 500 kg·hm~-2 14 500 kg·hm~-2 and 5900 kg·hm~-2 for winter wheat, spring maize, and sunflower, respectively. Crop production under water-limited (rainfed) conditions is extremely low. The situation was still acceptable for spring maize and sunflower that grows in the rainy season. For sunflower, simulated water-limited grain yields are direct correlated with precipitation, and could be expressed by a logarithmic curve. Simulated potential leaf area index and harvest index are somewhat higher than the actual value. The relationships between simulated grain yield and precipitation plus irrigation could be expressed by logarithmic curve for winter wheat, spring maize and sunflower (correlation coefficiency is higher than 0.7). Simulated grain yield was overestimated 8.75%
    and 22.3% for spring maize and winter wheat, respectively, compared to measured yield under irrigated condition.4. Splash! model is not only a water balance model but also a database with enough spatial data. Simulated results could directly link with ArcView GIS and well expressed the water balance between surface system, unsaturated system and groundwater system. Compared to hilly region more irrigation water, infiltration and evapo-transpiration occurred in Fen River Irrigation District (FRID). Groundwater table is high in hilly region (or no ground water) and in FRID. Groundwater table within intermediate zone (between hilly region and FRID) changes between 85-120 m. Groundwater table in some areas of the north east part of the watershed is very deep (or no groundwater).5. Water
引文
[1] 巴比江,郑大玮等.地下水埋深对冬麦田土壤水分及产量的影响.节水灌溉,2004,(5):5~9
    [2] 巴比江,郑大玮,贾云茂等.地下水埋深对春玉米田土壤水分及产量的影响.水土保持学报,2004,18 (3):57-60,65
    [3] 把多择.我国水资源危机及其分析.旱地地区农业研究,1998,16 (3):97~102
    [4] 鲍卫锋,黄介生,陈玲等.地表水地下水联合运用模拟模型.中国农村水利水电,2003,(6):45~47
    [5] 曹宏鑫,刘世军,张立民.小麦群体叶面积的动态模型.沈阳农业大学学报,2000,31(3):246~248
    [6] 陈亚新、康绍忠.非充分灌溉原理,北京:水利电力出版社,1995
    [7] 程先军.有作物生长影响和无作物生长时潜水蒸发关系的研究.水利学报,1993,(6):37~42
    [8] 邓正波,束龙仓.塔里木河下游数字地下水埋深模型的构建.河海大学学报(自然科学版),2005,33 (1):45~48
    [9] 董新光,弥爱娟,吴永光.四水平衡模型在博斯腾湖流域水资源利用与保护中的应用.资源科学,2005,27 (3):130~134
    [10] 董志高,黄勇.地下水动态预测模型综述.西部探矿工程,2002,(4):36~39
    [11] 范庆来,刘国华,王军等.地下水位动态变化预测中的MGM(1,n).模型农机化研究,2004,(3):165~167
    [12] 方子云.关于水资源持续利用的现状与展望.水资源研究,1996,17 (1):2~3
    [13] 封超年,郭文善,严六零等.地下水位对小麦产量影响的研究,江苏农学院学报,1995,16 (1):39~42
    [14] 冯利平,高亮之,金之庆等.小麦发育期动态模拟模型的研究.作物学报,1997,23 (4):418~424
    [15] 高亮之,金之庆,郑国清.小麦栽培模拟优化决策系统(WCSODS).江苏农业学报,2000,16 (2):65~72
    [16] 郭生练,熊立华,王金星等.基于DEM的分布式流域水文物理模型.武汉水利电力大学学报,2000,33 (6):1~51
    [17] 国家气象局.农业气象观测规范 (上卷).北京:气象出版社,1993
    [18] 何武全,陈鸿汉,叶念军等.论大型灌区节水改造对策.西北水资源与水工程,2002,13 (1):50~53
    [19] 胡鞍钢,王亚华.转型时期水资源配置的公共政策:准市场和政治民主协商.中国水利,2000,(11):10~13
    [20] 黄耀,高亮之,金之庆等.水稻群体茎蘖动态的计算机模拟模型.生态学杂志,1994,13 (4):27~32
    [21] 金之庆,葛道阔,石春林.东北平原适应全球气候变化的若干粮食生产对策的模拟研究.作物学报,2002,28 (1):24~31
    [22] 康绍忠,贺正中,张学.陕西省作物需水量及分区灌溉模式.北京:水利电力出版社,1992
    [23] 康绍忠,刘晓明,熊运章.土壤—植物—大气连续体水分传输理论及其应用.北京:水利电力出版社,1994
    [24] 康绍忠.计算与预报农田蒸散量的数学模型研究.西北农业大学学报,1986,14 (1):90~101
    [25] 李采,何庆成.饱和带/非饱和带运移模型(SUTRA)软件介绍.水文地质工程地质,2005,(1):119~120
    [26] 李军,邵明安,樊廷录等.黄土高原作物生长模型DSSAT数据库组建.干旱地区农业研究,2001,19 (1):124~125
    [27] 李龙辉,郑有飞,于强.冬小麦同化物生产与分配对水分胁迫响应的模拟模型研究.中国生态农业学报,2004,12 (3):51~54
    [28] 李卫国,朱艳,戴廷波.水稻籽粒直链淀粉含量的生态模型研究.应用生态学报,2005,16 (3):491~495
    [29] 梁银丽,康绍忠.节水灌溉对冬小麦光合速率和产量的影响.西北农业大学学报,1998,26 (4):16~19
    [30] 林性粹.灌溉农田试验设计及统计分析.陕西杨陵:西北农业大学出版社,1991
    [31] 刘布春,王石立,马玉平.国外作物模型区域应用研究进展.气象科技,2002,30 (4):193~203
    [32] 刘昌明,李道峰,田英等.基于DEM的分布式水文模型在大尺度流域应用研究.地理科学进展,2003,22 (5):437~445
    [33] 刘昌明,李丽娟.华北水资源问题与对策.科技和产业,2002,2 (1):44~50
    [34] 刘高焕,刘俊卫,朱会义.基于GIS的小流域地块单元划分与汇流网络计算.地理科学进展,2002,21 (2):139~145
    [35] 刘建栋,于强,傅抱璞.黄淮海地区冬小麦光温生产潜力数值模拟研究.自然资源学报,1999,14 (2):169~174
    [36] 刘建栋,周秀骥,于强.FAO生产力模型中基本参数的修正.自然资源学报,2001,16(3):240~247
    [37] 刘建栋,周秀骥,于强.温度对夏玉米光合生产力影响的数值模拟研究.应用气象学报,2002,13 (4):398~405
    [38] 刘建栋,周秀骥,于强.中国黄淮海地区冬小麦光合作用特征参数.应用气象学报,2003,14 (3):257~265
    [39] 刘明柱,陈鸿汉,叶念军等.GIS在区域地下水资源评价中的应用.水利学报,2002,(1):52~55,61
    [40] 刘绍民.新疆塔里木河沿岸地区水资源优化分配模型研究.水利学报,1995,(1):69-74
    [41] 刘志良.太原:每天40万吨污水排放到哪?.山西青年报 2005年1月20日,15版
    [42] 刘贤赵,康绍忠,黄明斌.小流域不同土地利用方式对积水入渗的影响.西北农业学报,1999,8 (6):27~31
    [43] 龙爱华,程国栋,樊胜岳等.我国水资源管理中的行政分割问题与对策.中国软科学,2001,(8):17~21
    [44] 骆祖江,姚炳魁,王晓梅.复合含水层系统地下水资源评价三维数值模型.吉林大学学报(地球科学版),2005,35 (2):188~194
    [45] 马斌,解建仓,汪妮等.多水源引水灌区水资源调配模型及应用.水利学报,2001,(9):59~63
    [46] 马新明,李秉柏,金之庆等.棉花蕾铃发育与产量形成的模拟模型.江苏农业学报,1992,15 (2):71~76
    [47] 马振民,武强,付守会.地下水资源可持续利用管理模型研究.水利学报,2004,(9):63~67
    [48] 马智民,俞全宏,姜作勤.应用地理信息系统设计与实现.西安:西安地图出版社,1996
    [49] 毛飞,张佳华,卢志光等.地下水浅埋条件下冬小麦和大豆土壤水分动态预报模型研究.应用气象学报,2003,14 (4):479~486
    [50] 潘学标,韩湘玲,石元春.COTGROW:棉花生长发育模拟模型.棉花学报,1996,8 (4):180~188
    [51] 潘学标,龙腾芳,董占山等.一个棉花高产栽培生育动态模型.中国农业科学,1992,25 (1):91
    [52] 潘学标.荷兰作物模型的发展与应用.世界农业,1998,(9):17~19
    [53] 潘学标.作物模型原理.北京:气象出版社,2003
    [54] 齐学斌,刘景祥.国外水资源管理现状与新趋向.海河水利,2001,5:43~46
    [55] 乔玉辉,宇振荣,Driessen P. M.冬小麦干物质在各器官中的累积和分配规律研究.应用生态学报,2002,13 (5):543~546
    [56] 裘国旺,王馥棠.气候变化对我国江南双季稻生产可能影响的数值模拟研究.应用气象学报,1998,9 (2):151~159
    [57] 水利部农村水利司.灌溉管理手册.北京:水利电力出版社,1994
    [58] 孙明,薛明霞,王立琴.潜水蒸发与埋深关系模型研究.山西水利科技,2003,(3):16~17
    [59] 孙国义,杨中泽,申金道.淮北地区小麦耐渍防旱适宜地下水位.灌溉排水,1991,(2):57~60
    [60] 王道波,张广录,周晓果.华北水资源利用现状及其宏观调控对策研究.干旱区资源与环境,2005,19 (2):46~51
    [61] 王介元,王昌全.土壤肥料学.北京:中国农业出版社,1997:405~409
    [62] 王桂玲,高亮之,王桂玲.冬小麦田间土壤水分平衡动态模拟模型的研究.江苏农业学报,1998,14 (1):36~41
    [63] 王珊琳,李杰,刘德峰.流域水资源配置模拟模型及实例应用研究.人民珠江,2004 (5)11~14,22
    [64] 王水献,刘丰,钟瑞森.GIS支持下的新疆平原区地下水资源评价模型.地下水,2005,27 (1):61~63
    [65] 王元华.小麦适宜地下水位试验,土壤学报,1994,3 (14):339~446
    [66] 王中根,郑红星,刘昌明等.基于GIS/RS的流域水文过程分布式模拟——Ⅱ模型的原理与结构.水科学进展,2004a,15 (4):506~510
    [67] 王中根,郑红星,刘昌明等.基于GIS/RS的流域水文过程分布式模拟——Ⅰ模型的原理与结构.水科学进展,2004b,15 (4):501~505
    [68] 尉宝龙,王敏新.汾河灌区春浇灌水定额探讨.山西水利科技,2001,137 (1):53~55
    [69] 威尚恩,王侠,孙慧合.宿县浅层地下水位变化规律及其对小麦、夏大豆产量的影响.中国农业气象,1994,15 (6):34~35
    [70] 魏加华,陈良程,张远东等.地下水数值模型三维可视化研究.煤田地质与勘探,2003,31 (4):33~36
    [71] 魏加华,李慈君,王光谦等.地下水数值模型与组件GIS集成研究.吉林大学学报(地球科学版),2003,33 (4):534~538
    [72] 吴连海,韩湘玲.冬小麦生产力估算方法研究.自然资源学报,1991,6 (1):80~87
    [73] 吴琼,李宏卿,李绪谦.地下水数值模型建立及其拟合方法研究.吉林地质,2003,22(1):44~47
    [74] 向丽,顾培亮,董新光等.大型灌区水资源优化分配模型研究.西北水资源与水工程,1999,10 (1):1~8
    [75] 谢新民,陈守煜,王本德等.地表—地下水资源系统多目标管理模型与模糊决策研究.大连理工大学学报,1994,34 (2):240~248
    [76] 谢新民,郭洪宇,唐克旺等.华北平原区地表水与地下水统一评价的二元耦合模型研究.水利学报,2002,(12):95~100
    [77] 薛松贵,王益能.网络方法在流域水资源利用模拟模型研究中的应用.水科学进展,1995,6 (1):66~70
    [78] 严定春,朱艳,曹卫星等.水稻群体生长指标动态的知识模型研究.中国农业科学,2005,38 (1):38~44
    [79] 严力蛟,王兆骞,杜建生等.水稻生育期的动态模拟模型研究.浙江农业大学学报1998,24 (3):233~237
    [80] 杨超,赵军,高佩玲.获取室内模型流域DEM数据的实用方法.中国农业大学学报,2005,10 (1):13~15
    [81] 杨建锋,刘士平,刘士平等.地下水对农田腾发过程作用研究进展,农业工程学报,2000,16 (3):45~49
    [82] 杨涛,张鹰,陈界仁.基于数字平台的黄河多沙粗沙区分布式水文模型研究——以黄河岔巴沟流域为例.水利学报,2005,36 (4):456~460
    [83] 杨旭,杨树才,黄家柱.基于GIS的地下水数值模拟模型拟合方法.计算机工程,2004,30 (11):50~51
    [84] 尹红征,吕冰清,郑国清.玉米产量形成模拟模型研究.华北农学报,2004,19 (3):73~76
    [85] 殷新佑,戚昌瀚.水稻生长日历模拟模型及其应用研究.作物学报,1994,20(3):339~346
    [86] 尤祥瑜,谢新民,孙仕军.我国水资源配置模型研究现状与展望.中国水利水电科学研究院学报,2004,12 (2):131~140
    [87] 宇振荣.作物生长模拟模型研究和应用.生态学杂志,1994,13 (1):69~73
    [88] 袁建平,蒋定生.榆林市风沙草滩区地下水开发水位动态模拟.水土保持学报,1998,4(3):62~66
    [89] 曾思育,傅国伟.中国水资源管理问题分析与集成化水管理模式的推行.水科学进展,2001,12 (1):81~86
    [90] 翟家瑞.常用水文预报算法和计算程序.郑州:河南水利出版社,1995:87~91
    [91] 张寿全,黄巍.中国水资源的可持续利用研究.中国人口资源与环境,1999,9 (2):21~25
    [92] 张蔚榛,张瑜芳.有关农田排水标准研究的几个问题.灌溉排水,1994,13 (1):1~6
    [93] 张艳红,马永良,廖树华.CERES-maize模拟模型中品种参数优化方法研究.中国农业大学学报 2004,9 (4):24~29
    [94] 张永波,张礼中,刘光等.基于GIS的地下水水质综合评价模型的设计与开发.煤田地质与勘探,2002,30 (6):41~43
    [95] 章光新,邓伟.我国地下水管理模型应与国际接轨.科技导报,2001,(1):52~54
    [96] 赵寒冰,曾志远,庞崇林.流域模型库管理系统初步研究.计算机应用研究,2004,(9):92~94,97
    [97] 赵全,赵新华,董国凤等.基于GIS的地下水环境安全评价.模型中国给水排水,2005,21 (3):98~101
    [98] 郑大玮,马思延.应用中子仪开展旱地农田土壤水分研究.干旱地区农业研究,1999,17 (3):51~55
    [99] 郑国清,段韶芬,张瑞玲等.基于模拟模型的玉米栽培管理信息系统.中国农业科学,2004,37 (4):619~624
    [100] 郑国清,高亮之.玉米发育期动态模拟模型.江苏农业学报,2000,16 (1):15~21
    [101] 郑国清,张瑞玲,高亮之.我国玉米计算机模拟模型研究进展.玉米科学,2003,11 (2):66~70
    [102] 郑生民,刘平贵.地表水与地下水、水量与水质统一管理势在必行.水文水资源,2000,21 (3):29~30
    [103] 王仰仁,孙小平.山西农业节水理论与作物高效用水模式.北京:中国科学技术出版社,2003
    [104] Adhikari C., Bronson K. F., Panuallah G. M., Regmi A. P., Saha P. K., Dobermann A., Olk D. C., Hobbs P. R. and Pasuquin E. On-farm soil N supply and N nutrition in the rice-wheat system of Nepal and Bangladesh. Field Crops Res. 1999, 64:273~286
    [105] Aggarwal P. K. and Kalra N. Analyzing the limitations set by climatic factors, genotype, and water and nitrogen availability on productivity of wheat II. Climatically potential yields and management strategies. Field Crops Res. 1994, 38: 93-103
    [106] Alocilja E. C. and Richie J. T. Upland rice simulation and its use in multicriteria optimization. University of Hawaii and Michigan State University, IBSNAT. 1988: 95 pp
    [107] Austin R. B. Plant breeding opportunities. In: Bootel K J. , Bennett J. M. , Sinclair T.R. and Paulsen G. M. (eds) . Physiology and determination of crop yield. ASA, CSSA and SSSA, Madison, Wi, USA. 1994: 567-586
    [108] Becker M. , Johnson D. E. , Wopereis M. C. S. and Sow A. Rice yield gaps in irrigated systems along an agro-ecological gradient in West Africa. J. Plant Nutr. Soil Sci. , 2003.166: 61-67
    [109] Boogaard H. L. , van Diepen C. A. , Roetter R. P. , Cabrera J. M. C. A. and van Laar, H. H. , WOFOST 7.1 User's guide for the WOFOST 7.1 crop growth simulation model and WOFOST Control Center 1.5, Alterra, Wageningen, The Netherlands, 1998: 143
    [110] Bouman B. A. M. , Kropff M. J. , Tuong T. P. et all. ORYZA2000: modelling lowland rice. Los Banos (Philippines): International Rice Research Institute and Wageningen: Wageningen University and Research centre. , 2001. 235 pp.
    [111] Bouman B. A. M. , van Keulen H. , van Laar H. H. et all. The 'School of de Wit' crop growth simulation models: A pedigree and historical overview. Agric. Syst. , 1996, 52: 171-198
    [112] Choisnel E., de Villele O. and Lacroze F. , Une approche de uniformisee du calcul de 1' evapotranspiration potentielle l'ensemble des pays de la communaute Europeenne. , Joint Research Centre, Commission of European Communities, EUR 14223 FR, Luxembrourg: 176
    [113] Costa-Cabra M. C. , Burges S. J. Digital elevation model networks (DEMON): A model of flow over hill slopes for computation contributing and dispersal areas. Water Resources Research, 1994, 30 (6) : 1681-1692
    [114] Daene C. M. and Andre G. S. Basic optimization models for water and energy management, USAID International resource group, 2002
    [115] de Wit C T. Photosynthesis of Leaf Canopies. PUDOC, Wangeningen, 1965: 1-12
    [116] Drenth H. , ten Berge H.F. M. and Riethoven J.J. M. ORYZA simulation modules for potential and nitrogen limited rice production. SARP Research Proceedings, Wageningen The Netherlands, IRRI/AB-DLO, 1994: 223 pp
    [117] Driessen P.M. The water balance of the soil. In: van Keulen H. and Wolf J. (eds) . Modelling of agricultural production: weather, soil and crop. Simulation Monographs, Pudoc, Wageningen. 1986: 76-116
    [118] EL-Kadi A. I. , Oloufa A. A., Eltahan A. A. , Malik H. U. Use of a geographic information system in site specific groundwater modeling. Groundwater, 1994, 32 (4) : 617-625
    [119] Enfinger K L. and Kimbrough H. R. Scattergraph Principles and Practice - A Comparison of Various Applications of the Manning Equation. Proceedings of the Pipeline Division Specialty Conference; San Diego, CA; American Society of Civil Engineers: Reston, VA. , 2004
    [120] Fairfield J. , Leymarie P. Drainage Networks from Grid Digital Elevation Models. Water Resources Research, 1991, 30 (6) : 1681-1692
    [121] Farhuhar G. D. , Von Caemmerer S. , Berry J. A. A biochemical model of photosynthetic CO2 assimilation in leaves of C3 plants. Planta, 1980, 149: 78-90
    [122] Fischer R. A. and Maurer R. Crop temperature modification and yield potential in a dwarf spring wheat, Crop Sci. , 1976, 16: 855-859
    [123] Foltescu V. L. Prediction of crop yield in Sweden based on mesoscale meteorological analysis. Meteorol. Appl. , 2000, 7: 313-321
    [124] Freeman T. G. Calculating catchment area with divergent flow based on a regular grid. Computer Geosci. 1991, 17 (3) : 413-422
    [125] Ghulam H. A., Al-Jaloud A. Effect of irrigation and nitrogen on water use efficiency of wheat in Saudi Arabia. Agric. Water. Management, 1995, (27) : 143-153
    [126] Gordon W. B. , Raney R. J. , Stone L. R. Irrigation management practices for corn production in north central Kansas. Journal of Soil and Water Conservation, 1995, 50 (4) : 394-396
    [127] Goudriaan J. , van Keulen H. and van Laar H. H. SUCROS1: Crop growth model for potential production. In: Goudriaan J. , van Keulen H. and van Laar H. H. (eds) . SUCROS97: Simulation of crop growth for potential and water-limited production situations as applied to spring wheat, Quantitative Approaches in Systems Analysis No. 14. DLO-Research Institute for Agrobiology and Soil Fertility and C. T. de Wit Graduate School for Production Ecology, Wageningen, The Netherlands. 1997
    [128] Herman B. , Sustainable Irrigated Agriculture: Water resource Management in the future, Irrig. J. , 1993, 46 (6) : 16-23
    [129] Jame Y. W. and Cutforth H. W. , Crop growth models for decision support systems. Can. J. Plant Sci. , 1996, 76: 9-19
    [130] Jamieson, P.D. , Porter J. R., Goudriaan J., Ritchie, J. T., van Keulen H. and Stol W. A comparison of the models AFRCWHEAT, CERES-Wheat, Sirius, SUCROS and SWHEAT with measurements from wheat grown under drought. Field Crops Res. , 1998, 55: 23-44
    [131] Janssen B. H. , Guilking F. C. T. , van der Eijk D. A system for quantitative evaluation of the fertility of tropical soils (QUEFTS) Geoderma, 1990, 46: 299-318
    [132] Jenson S. K. , Domingue J. O. , Extracting Topographic Structure from Digital Elevation Data for Geographic Information System Analysis. Photogrammetric Engineering and Remote Sensing, 1988, 54 (11) : 1593-1600
    [133] Jones C. A. and Kiniry J. R. CERES-Maize. A Simulation Model of Maize Growth and Development, Texas A&M University Press, College Station, Temple., 1986: 194 pp
    [134] Jones C. A. , Ritchie J. T. , Kiniry J. R. , Godwin D. C. and Otter S. I. The CERES wheat and maize models. In: (ICRISAT) Proceedings International Symposium on Minimum Data Sets for Agrotechnology Transfer. ICRISAT, Patancheru, India., 1984: 95-100
    [135] Kabat P. , Marshall B. and Van den Broek, B. J. Comparison of simulation results and evaluation of parameterization schemes. In: Kabath P. , Marshall B. , van den Broek B. J. , Vos J. & van Keulen H. (eds) . Modelling and parameterization of the Soil-Plant-Atmosphere systems-a comparison of Potato Growth Models, Wageningen Press, Wageningen. , 1995: 439-499
    [136] Kang Sh. Zh. , Hu X. , Du T. Sh. , Zhang J. H. and Peter J. Transpiration coefficient and ratio of transpiration to evapo-transpiration of pear tree (Pyrus communis L) under alternative partial rootzone drying condition. Hydrological Processes, 2003, 17(6) : 1165-1176
    [137] Kangas J. and Pukkala T. Operationalization of biological diversity as a decision objective in tactical forest planning. National Research Council Canada, 1996, 26 (1) : 103-111
    [138] Karthikeyan R. , Hoogenboom G. and McClendon R. W. Regional yield forecasting using crop models and GIS: A conceptual framework. An ASAE meeting presentation, Phoenix, Arizona Paper 1996, No. 96-5010
    [139] Kropff M. J. , van Laar H. H. and ten Berge H. F. M. (eds) . ORYZA1 A basic model for irrigated lowland rice production. IRRI, Los Banos, The Philippines. 1993
    [140] KruseE. G. , Champion D. F. et al. Crop water use from shallow, saline water tables. Trans of the ASAE, 1993, 36 (3) : 697-707
    [141] Leuning R. A critical appraisal of a combined stomatal-photosynthesis model for C3 plants. Plant Cell Environ. , 1995, 18: 339-355
    [142] Liu W. Z. , Hunsaker D. J. Interrelations of yield, evapotranspiration, and water use efficiency from marginal analysis of water production functions , Agric. Water Management, 2002, 56: 143-151
    [143] Maggie M. , Scot E. Planning process for public participation in regional water resources planning. Journal of the American Water Resources Association, 2002, 38 (2) : 531-541
    [144] Mastrorilli M. Keterji N. and Ben Nouma B. Using the CERES-Maize model in a semi-arid Mediterranean environment. Validation of three revised versions. Eur. J. Agron. , 2003, 19: 125-134
    [145] Matthews R. B. Crop management. In: Matthews R. B. and Stephens W. (eds) . Crop-Soil Simulation Models. Applications in Developing Countries, CABI Publishing New York, USA, 2003: 29-54
    [146] Merriam-Webster. Merriam-Webster's Collegiate Dictionary. 10th Edition Merriam-Webster, Springfield, MA. 1998
    [147] Monteith J. L. The quest for balance in crop modeling, Agron. J. , 1996, 88: 695-697
    [133] Jones C. A. and Kiniry J. R. CERES-Maize. A Simulation Model of Maize Growth and Development, Texas A&M University Press, College Station, Temple., 1986: 194 pp
    [134] Jones C. A. , Ritchie J. T. , Kiniry J. R. , Godwin D. C. and Otter S. I. The CERES wheat and maize models. In: (ICRISAT) Proceedings International Symposium on Minimum Data Sets for Agrotechnology Transfer. ICRISAT, Patancheru, India., 1984: 95-100
    [135] Kabat P. , Marshall B. and Van den Broek, B. J. Comparison of simulation results and evaluation of parameterization schemes. In: Kabath P. , Marshall B. , van den Broek B. J. , Vos J. & van Keulen H. (eds) . Modelling and parameterization of the Soil-Plant-Atmosphere systems-a comparison of Potato Growth Models, Wageningen Press, Wageningen. , 1995: 439-499
    [136] Kang Sh. Zh. , Hu X. , Du T. Sh. , Zhang J. H. and Peter J. Transpiration coefficient and ratio of transpiration to evapo-transpiration of pear tree (Pyrus communis L) under alternative partial rootzone drying condition. Hydrological Processes, 2003, 17(6) : 1165-1176
    [137] Kangas J. and Pukkala T. Operationalization of biological diversity as a decision objective in tactical forest planning. National Research Council Canada, 1996, 26 (1) : 103-111
    [138] Karthikeyan R. , Hoogenboom G. and McClendon R. W. Regional yield forecasting using crop models and GIS: A conceptual framework. An ASAE meeting presentation, Phoenix, Arizona Paper 1996, No. 96-5010
    [139] Kropff M. J. , van Laar H. H. and ten Berge H. F. M. (eds) . ORYZA1 A basic model for irrigated lowland rice production. IRRI, Los Banos, The Philippines. 1993
    [140] KruseE. G. , Champion D. F. et al. Crop water use from shallow, saline water tables. Trans of the ASAE, 1993, 36 (3) : 697-707
    [141] Leuning R. A critical appraisal of a combined stomatal-photosynthesis model for C3 plants. Plant Cell Environ. , 1995, 18: 339-355
    [142] Liu W. Z. , Hunsaker D. J. Interrelations of yield, evapotranspiration, and water use efficiency from marginal analysis of water production functions , Agric. Water Management, 2002, 56: 143-151
    [143] Maggie M. , Scot E. Planning process for public participation in regional water resources planning. Journal of the American Water Resources Association, 2002, 38 (2) : 531-541
    [144] Mastrorilli M. Keterji N. and Ben Nouma B. Using the CERES-Maize model in a semi-arid Mediterranean environment. Validation of three revised versions. Eur. J. Agron. , 2003, 19: 125-134
    [145] Matthews R. B. Crop management. In: Matthews R. B. and Stephens W. (eds) . Crop-Soil Simulation Models. Applications in Developing Countries, CABI Publishing New York, USA, 2003: 29-54
    [146] Merriam-Webster. Merriam-Webster's Collegiate Dictionary. 10th Edition Merriam-Webster, Springfield, MA. 1998
    [147] Monteith J. L. The quest for balance in crop modeling, Agron. J. , 1996, 88: 695-697
     Simulation and systems management in crop protection. Simulation Monographs, Pudoc, Wageningen, The Netherlands. 1989: 147-181
    [162] Supit I. , Hooijer A. A. System description of the WOFOST 6.0 crop simulation model implemented in CGMS. JRC, 1994: 3-144
    [163] Ujjayant C. and Chieko U. Basinwide water management: a spatial model. Atlanta GA 30322, 2000
    [164] van KeulenH. and Seligman N. G. Simulation of water use, nitrogen nutrition and growth of a spring wheat crop. Simulation Monographs, Pudoc, Wageningen, The Netherlands. 1987: 310
    [165] van Keulen H. and Wolf, J. (eds). Modelling of agricultural production: weather, soils and crops, Simulation Monographs, Pudoc, Wageningen. 1986: 479
    [166] van Keulen H. Simulation of water use and herbage growth in arid regions. Simulation Monographs, Pudoc, Wageningen. 1975: 175
    [167] van Keulen, H. , Seligman, N. G. and Benjamin R. W. Simulation of water use and herbage growth in arid regions - A re-evaluation and further development of the model 'Arid Crop. Agric. Syst. , 1981, 6: 159-193
    [168] Wang D. Zh. , Hao Zh. Q. and Xiong Z. P. Modified method for extraction of watershed boundary with digital elevation modeling. J. of Forestry Res. , 2004, 15 (4) : 283-286
    [169] Witt C. , Dobermann A. , Abdulrachman S. et al. Internal nutrient efficiencies of irrigated lowland rice in tropical and subtropical Asia. Field Crops Res. , 1999, 63: 113-138
    [170] Wolf J. and Van Diepen C. A. Effect of climate change on grain maize yield potential in the European Community. Climate Change, 1995, 29: 299-331
    [171] Wolf J. Effects of climate change on wheat production potential in the European Community, Eur. J. Agron. , 1993, 2, 281-292
    [172] Woppereis M. C. S. , Bouman B. A. M. , Tuong, T.P. et all. ORYZA_W: Rice growth model for irrigated and rainfed environments. SARP Research Proceedings. Wageningen (Netherlands) : IRRVAB-DLO, 1996: 159
    [173] World Bank. Water Resources Management: A World Bank Policy Paper (Washington) . 1993
    [174] Yun J. I. Predicting regional rice production in South Korea using spatial data and crop-growth modelling. Agric. Syst., 2003, 77: 23-28

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700