大清河山丘区下垫面变化对洪水径流影响问题的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来海河流域下垫面情况发生了显著变化,并对年径流及洪水产生明显影响。通过选取流域内大清河山区作为典型区,利用数理统计和模型分析方法,揭示了下垫面变化对洪水径流的影响。主要成果表述如下:
     (1)典型区暴雨洪水变化趋势分析:
     利用Kendall非参数秩次相关检验法、线性滑动平均法和回归分析法,分析了海河流域紫荆关、阜平、龙门等典型区汛期暴雨变化趋势、洪峰流量及次洪量变化趋势。在降雨变化不明显的情况下,历年次洪量、洪峰均有下降趋势,其中紫荆关站典型洪水的次洪量具有明显的下降趋势。
     (2)山丘区产汇流参数变化趋势分析:
     对流域最大蓄水容量(Im)、流域水面蒸发和流域蒸散发量、流域土壤含水量消退系数(K)等产流参数,洪水滞时、单位线等汇流参数进行了趋势分析和流域代表区降雨径流的相关分析。人类活动影响使得大清河山丘区的土层最大蓄水容量在1980年以后有所增大;水面蒸发总量呈减小的趋势,年蒸散发总量与降水量成正比关系,其年际变化不明显。土壤消退系数呈增大趋势,但幅度一般在2%—5%之间;20世纪80年代后洪水滞时比80年代前长,但随着降雨强度的增大,80年代后洪水滞时与80年代前相差变小。
     (3)河北山区雨洪模型建立及典型站洪水系列下垫面修正
     利用山区雨洪模型分别对1980年前后的降雨径流系列率定产汇流参数,根据两组参数的变化来反映下垫面的变化;利用1980年以后产汇流参数重演1980年前典型洪水,通过模拟值之差反映流域下垫面变化对洪水的影响。模拟结果表明,大清河水系典型区的下垫面变化对大洪水的洪峰和洪量影响的小,对中小洪水的洪峰和洪量影响较大。
     (4)土地利用/覆被变化的集总式流域水文模型的建立和下垫面影响分析
     为了定量评估土地利用/覆被变化对洪水的影响,本文建立了考虑土地利用/覆被变化的集总式流域水文模型。经参数率定和模型验证,模拟流量过程与实测流量过程拟合较好。运用该水文模型,对研究区域的洪水采用历史反演法,以1980年下垫面参数为基础,选取90年代后洪水进行模拟;以2004年下垫面参数为基础,选取80年代前洪水进行模拟,揭示不同土地利用覆被情况下对同场降雨过程的洪水响应。
The conditions of the underlayer in Haihe River Basin has changed dramatically during the past few years, which affected annual runoff and flood peaks and volumes. Due to the complexity of hydrological phenomenon, the paper mainly employed mathematical statistics method, the theory of stochastic hydrology and hydrological model to describe hydrological phenomenon and to analyze storm flood characteristics quantitatively in Daqing river basin. The main results are as follows:
     (1) The Mann-Kendall trend test, moving average method, and regression analysis method are employed to analyze the trends of rainfall amount, flood peaks and flood volumes in Zijingguan, Fuping and Longmen sub-catchment. It is shown that there is no obvious trend for rainfall amount, while flood volumes and peaks are decreased, especially in Zijingguan sub-catchment.
     (2) The trends of maximum soil moisture capacity(Im), water evaporation and basin evapotranspiration, the regression coefficient of soil moisture, the lag time of flood peak, and unit hydrograph are analyzed, and the relationship of rainfall and runoff is studied as well. The results show that the maximum soil moisture content increased after 1980 due to human activities. Water evaporation decreased, and the regression coefficient of soil moisture shows a increasing trend which varies between 2~5%. The lag time of flood peak increased after 1980, however, the variation is limited if rainfall intensity is large enough.
     (3) A hydrological model is established and the parameters in the model are calibrated using the hydrological data before and after 1980 respectively, which can reflect the sublayer changes. The parameters calibrated by hydrological data after 1980 are used for input to simulate the flood before 1980 , thereby, the difference between the simulated flood volume and peak are considered to be the influence of sublayer changes. The modelled results indicate that the sublayer changes have a small effect on large floods and a large effect on small floods.
     (4) A hydrological model considering land use/land cover change is established to assess the effect of land use change on flood quantitatively. The model can simulate flood processes well. So The flood processes after 1980 were simulated based on parameters of 1980; and flood processes before 1980 were simulated based on land surface parameters of 2004. It is used to analyze the impacts of different land use and land cover on flood with the same rainfall process, especially to study the changes of LUCC impacts on peak flow and flood volume.
引文
[1]Horton R E. Surface runoff phenomena. Mchigan: Horton Hydrology Laboratory Publication 101,Ann Arbor, 1935.1- 73.
    [2]芮孝芳,关于降雨产流机制的几个问题的讨论,水利学报,1996,(9):22-6.
    [3]Arnold, J. G., J. R. Williams and D. R. Maidment. Continuous-time water and sediment-routing model for large basins. Journal of Hydraulic Engineering. 1995, 121(2):171-183
    [4]Bicknell B.R., Imhoff J.L., Kittle J.L. etc. Hydrologic simulation program-Fortran, User’s manual for release 10, U. S. EPA environmental Research Laboratory, Athens, Ga, 1993
    [5]Huber W C and Dicknson R E. Storm Water Management Model. User’s Manual Version 4, 1988
    [6]Leavesley G.H., Markstrom S.L., Restrepo P.J., Viger R.J. A modular approach to addressing model design, Scale, and parameter estimation issues in distributed hydrological modeling. Hydrological process, 2002(16):173-188
    [7]Quick M.C. Chapter8, The UBC watershed Model in V. P. Singh (Ed) Computer Models of watershed hydrology, Littleton, Colo: Water Resources Publications, 1995.
    [8]Abbott M B, Bathurst J C, Cunge J A, et al. An Introduction to the European Hydrological System - Systeme Hydrologique Europeen,“SHE”, 1: History and philosophy of a physically-based, distributed modeling system. J. Hydrol. 1986, 87:45-59
    [9]Abbott M B, Bathurst J C, Cunge J A, et al. An Introduction to the European Hydrological System - Systeme Hydrologique Europeen,“SHE”, 2: Structure of a physically-based, distributed modeling system. J. Hydrol. 1986, 87:61-77
    [10]Beven K J, Lamb R, Romannowicz P, et al. Chapter 18 TOPMODEL in V. P. Singh(ED) Computer Models of Watershed Hydrology. Water Resources Publications, 1995
    [11]Beven K.J., Calver A., and Morris E.M. The Institute of Hydrology Distributed Model. Institute of Hydrology Report 98. Wallingford, UK, 1987
    [12]De Roo A P J , Ddijk M, Schmuck G, etal.Assessing the effects of land use changes on floods in the Meuse and Oder catchment.Physics and Chemistry of the Earth(B),2001,26:593-599
    [13]立川康人,流域水循环数值模型的进步与今后的课题,2002年水工夏期研修会讲议集A课程,东京:日本土木学会,2002,A-1, 1-22
    [14]Jia Y W, Ni G H, Kawahara Y, et al. Development of WEP Model and Its application to an Urban Watershed. Hydrological Processes. 2001, 15: 2175-2194
    [15]Yang, D., et al., A geomorphology-based hydrological model and its applications, in Mathematical Models of Small Watershed Hydrology and Applications, V.P. Singh and D.K. Frevert, Editors. 2002, Water Resources Publications: Littleton, Colorado, p. 259-300.
    [16]李兰,钟名军,基于GIS的LL-Ⅱ分布式降雨径流模型的结构,水电能源科学,2003(4):35-38
    [17]郭生练,熊立华,杨井等.基于DEM的分布式流域水文物理模型,武汉水利电力大学学报,2000(12):1-5国家发展和改革委员会.重点行业用水与节水,中国水利水电出版社,2004
    [18]熊立华,郭生练,田向荣.基于DEM的分布式流域水文模型及应用.水科学进展,2004(4):517-520
    [19]刘昌明,李道峰,田英等.基于DEM的分布式水文模型在大尺度流域应用研究.地理科学进展,2003(5):438-445
    [21]任立良.流域数字水文模型研究.河海大学学报(自然科学版),2000(4):1-7
    [22]王浩,雷晓辉,秦大庸等,基于人类活动的流域产流模型构建,资源科学,2003(6):14-18
    [23]刘家宏.黄河流域数字流域模型[博士学位论文].北京:清华大学, 2005
    [24]刘卓颖.黄土高原分布式水文模型的研究与应用[博士学位论文],北京:清华大学, 2005.
    [25]田富强.流域热力学系统水文模拟理论和方法研究[博士学位论文],北京:清华大学, 2006
    [26]王蕾.基于不规则三角形网格的物理性流域水文模型[博士学位论文],北京:清华大学, 2006
    [27]任立良.流域空间离散化及其对径流过程模拟的影响研究.地球信息科学, 2000(2): 11-15
    [28]Ivanov V.Y., Vivoni E.R., Bras R.I. Catchment hydrologic response with a fully distributed triangulated irregular network model. Water Resources Research, 2004, 40: W11102
    [29]Singh V.P., Woolhiser D.A. Mathematical modeling of watershed hydrology, Journal of Hydrologic Engineering, ASCE, 2002, 7(4): 270-292
    [30]Zinke PJ. Forest iinterception studies in the United States. In: Sopper W E, Lull H W(eds). International Symposium on Forest Hydrology. Pergamon Press, New York, 1967, pp. 137-160
    [31]Jackson I J. Relationships between rainfall parameters and interception by tropical forest. Journal of Hydrology, 1975, 24: 215-238
    [32]Bosch J M, Hewlett J D. A review of catchment experiments to determine the effect of vegeration change on water yield and evapotranspiration. Journal of Hydrology, 1982,55:3-22
    [33]Rutter A J, Kershaw K A, et al. A predicitive model of rainfall interception in forests I. Derivation of the model from observations in a plantation of Corsican pine. Agricultural Meteorology, 1971, 9: 367-384
    [34]Rutter A J, Morton A J, et al. A predicitive model of rainfall interception in forestsII. Generalisation of the model and comparison with observations in some coniferous and hardwood stands. Journal of Applied Ecology, 1975, 12: 367-380
    [35]Gash J H C. An analytical model of rainfall interception by forests. Qarterly journal of the Royal Meterological society, 1979, 105: 43-55
    [36]Gash J H C, Wright I R, Lloyd C R. Comparative estimates of interception loss from three coniferous forests in Great Britain. Journal of Hydrology, 1980, 48: 89-105
    [37]Hutjes R W A, Wierda A, Veen A W L. Rainfall interception in the Tai forest, Ivory coast, Application of two simulation models to a humid tropical system. Journal of Hydrology, 1990, 114: 259-275
    [38]Gash J H C, Lloyd C R, Lachoud G. Estimating sparse forest rainfall interception with an analytical model. Journal of Hydrology, 1995, 170: 79-86
    [39]Jackson N A. Measured and modeled rainfall interception loss from an agroforestry system in Kenya. Agricultural and Forest Metorology, 2000, 100:323-336
    [40]Van Dijk A I J K, Bruijnzeel L A. Modelling rainfall interception by vegetation of variable density using an adapted analytical model. Part 1, Model description. 2001, 247: 230-238
    [41]Stednick J D. Monitoring the effects of umber harvest on annual water yield. Journal of Hydrology, 1996,176:79-95
    [42]Richey J E, Nobre C, Deser C. Amazon River discharge and climate variability: 1903-1985. Science, 1989,246: 101-103
    [43]Juan B S and MacDonald L H. Post-fire runoff and erosion from simulated rainfall on small plots, Colorado Front Range. Hydrological Processes, 2001, 15(15): 2931-2952
    [44]Naik P K, Jay D A. Estimation of Columbia River virgin flow: 1879 to 1928. Hydrological Processes, 2005, 19(9):1807-1824
    [45]Bewket W and Sterk G. Dynamics in land cover and its effect on stream flow in the Chemoga watershed, Blue Nile basin, Ethiopia. Hydrological Processes, 2005, 19(2):445-458
    [46]Bari M. A., Smettem K. R. J.,Sivapalan M. Understanding changes in annual runoff following land use changes: a systematic data based approach. Hydrological Processes, 2005, 19(13): 2463~2479.
    [47]王根绪,张钰,刘桂民等.马营河流域1967~2000年土地利用变化对河流径流的影响,中国科学D辑:地球科学,2005,35(7):671~681
    [48]张凯,王润元,张勃等.区域土地利用变化的水资源效应研究——以黑河中游地区为例.土壤,2008,40(1):51-56.
    [49]王纲胜,夏军,万东晖等.气候变化及人类活动影响下的潮白河月水量平衡模拟,自然资源学报,2006,21(1):86-91.
    [50]范世香,裴铁播,牛丽华等.森林对地表径流影响的模拟实验初探.水科学进展,1992,(3): 179~182
    [51]何进知,李舒,陈军锋,李秀彬,森林植被变化对流域水文影响的争论[J],自然资源学报,2001,16(5):474-480
    [52]Rutter A J, Kershaw K A. et al. A predictive model of rainfall interception in forests I. Derivation of the model from observations in a plantation of Corsican pine. Agricultural Meterology, 1971, 9: 367-384
    [53]Rutter A J, Morton A J. A predictive model of rainfall interception in forests II. Generalisation of the model and comparison with observations in some coniferous and hardwood stands. Journal of Applied Ecology, 1975, 12: 367-380
    [54]Gash J H C. An analytical model of rainfall interception by forests. Qarterly Journal of the Royal Meteorological Society, 1979, 105: 43-45
    [55]Gash J H C, Wright I R, Lioyd C R. Comparative estimates of interception loss from three coniferous forests in Great Britain. Journal of Hydrology, 1980, 48: 89-105
    [56]Bronstert A, Bardossy A, Bismuth C et al. Multi-scale modeling of land-use change and river training effects on floods in the Rhine basin. River Research and Applications, 2007,23: 1102-1125
    [57]Brown R G. Effects of precipitation and land use on storm runoff. Water Resources Bulletin, 1988,24: 421-425
    [58]Dos Reis Castro N M, Auzet A V, Chevallier P, et al. Land use change effects on runoff and erosion from plot to catchment scale on the basaltic plateau of southern Brazil. Hydrological Processes,1999,13:1621-1628
    [59]Van der Ploeg R R, Schweigert P. Elbe River flood peaks and postwar agricultural land use in East Germany. Natruwissenschaften, 2001, 88: 522-525
    [60]夏军,乔云峰,宋宪方等.岔巴沟流域不同下垫面对降雨径流关系影响规律分析.资源科学,2007,29(1):70-76
    [61]谢平,朱勇,陈广才等.考虑土地利用/覆被变化的集总式流域水文模型及应用.山地学报,2007,25(3):257-264.
    [62]Naef F, Scherrer S, Weiler M. A process based assessment of the potential to reduce floodrunoff by land use change. Journal of Hydrology, 2002, 267:74-79
    [63]Campans N A, Tucol C E M. predicting floods from urban development scenarios: case study of the Diiuvio Basin, Porto Alegre, Brazil. Urban Water, 2001, 3: 113-124
    [64]Kang S, Park J I, Singh V. Effects of urbanization on runoff characteristics of the on-cheon Stream watershed in Pusan, Korea. Hydrological Processes, 1998,25: 351-363
    [65]Alvarez C and Sanchez J. Effects of urbanization on the hydrology of a suburban basin in Porto Alegre, Brazil. In: Helsinki Symposium, 1980. The influence of man on the hydrological regime with special reference to representative and experimental basins. Dorking: IAHS, 1980, p.23-28
    [66]Espey Jr. W.H., Winslow D.E. and. Morgan C.W, Urban effects on the unit hydrograph. In: W.L. Moore and C.W. Morgan, Editors, Effects of Watershed Changes on Streamflow, University of Texas Press, Austin, TX (1969), pp. 215–228.
    [67]林俊俸,李朝忠.小流域都市化对暴雨洪水影响的实验研究.水文, 1992, 4: 51-54
    [68]吴学鹏,林俊俸,李朝忠.都市化对小流域水文影响的研究.水科学进展,1992,(2):155-160
    [69]王家服.都市化小流域的水文效应分析.水文,1992,(4):51-54
    [70]程琼,方增强.受城市化影响地区的设计洪水计算.水文水资源,2001,(2):26-27
    [71]李蝶娟,刘俊.城市化对雨洪情势变化影响的初步分析.中国水利学会.全国水文进展和展望学术讨论会论文集.南京:河海大学出版社,1998
    [72]刘廷玺,刘小燕,史小红等.通辽地区总水资源动态模拟评价.内蒙古农业大学学报,2002a,23(2):110~114
    [73]刘廷玺,天谷孝夫,贾德彬等.考虑可控非可控因素动态特性的含水层系统有限元模拟模型.内蒙古农业大学学报,2002b,23(2):115~122
    [74]Sivapalan,M. Linking flood frequency to long-term water balance: Incorporating effects of seasonality. Water Resources Research,2005(41):W06012.
    [75]水利部黄河水沙变化研究基金会.黄河水沙变化研究. 1993
    [76]Yang,D., et al. A geomorphology-based hydrological model and its applications, inMathematical Models of Small Watershed Hydrology and Applications, V.P. Singh and D.K. Frevert, Editors. 2002, Water Resources Publications: Littleton, Colorado, p. 259-300.
    [77]Yang, D., F. Sun, Z. Liu, Z. Cong, and Z. Lei, Interpreting the complementary relationship in non-humid environments based on the Budyko and Penman hypotheses, Geophys. Res. Lett., 33, L18402, doi:10.1029/2006GL027657.
    [78]Yang, D., F. Sun, Z. Liu, Z. Cong, G. Ni and Z. Lei, Analyzing spatial and temporal variabilityof annual water-energy balance in non-humid regions of China using the Budyko hypothesis. Water Resources Research, 43, W04426, doi:10.1029/2006WR005224.
    [79]黄河水利委员会水土保持局,黄河流域水土保持研究.郑州:黄河水利出版社,1997,9
    [80]叶青超,黄河流域环境演变与水沙运行规律研究,济南:山东科学技术出版社,1994.10
    [81]黄委会黄河上中游管理局,黄河中游河口镇至龙门区间水土保持措施减水减沙效益研究,1995.12
    [82]张胜利,黄河中游多沙粗沙区水沙变化原因及发展趋势,郑州:黄河水利出版社,1998.4
    [83]康玲玲,姚文艺等,黄莆川.流域水土保持措施对洪水影响的初步分析,黄科院科研报告,1999.11
    [84]徐建华,牛玉国.水利水土保持工程对黄河中游多沙粗沙区径流泥沙影响研究,郑州:黄河水利出版社,2000
    [85]Kelman J, et al. The determination of flood control volumes in a multireservoir system. Water Resources Reasearch, 1989, 25(3): 337-344
    [86]Moglen E G, et al. Economic framwork for flood and sediment control with detention basins. Water Resources Bulletin, 1990(1):145-156
    [87]Unver I O, et al. Model for real-time optimal flood control operation of a reservoir system. Water resources management, 1990(1):21-46
    [88]Hromadka V T, et al. A two-demensional dam-break flood plain model. Advances in water resources, 1985(7):7-14
    [89]Hormadka V T, et al. Two-demensional dam-break flood flow analysis for Orange county reservoir. Water Resources Bulletin, 1986(2):249-255
    [90]长江水利委员会水文局,三峡及干支流建库后三峡入库洪水研究,水文,1993(2)
    [91]SDJ214-83水利水电工程水文计算规范
    [92]SL44-93水利水电工程设计洪水计算规程
    [93]长委水文局,南京水文所主编,水利水电工程设计洪水计算手册,北京:水利电力出版社,1995
    [94] W W-G. Yeh. Reservoir management and operation: A state-of-the-art review. Water resources reaserch, 1985(12):1797-1818
    [95] S P Simonovic. Reservoir systems analysis: Closing gap between theory and practice. Water Resource management plan, 1992(3):262-280
    [96] R A Wurbs. Reservoir-System simulation models[J]. Water resource plan management, 1993(4):455-472
    [97] J S Windsor. A programming model for the design of multi-reservoir flood control system. Water resources research, 1975(1):30-36
    [98] J S Windsor. Optimization model for reservoir flood control. Water resources research, 1973(5):1219-1226
    [99]王厥谋.丹江口水库防洪优化调度模型简介.水利水电技术,1985(8):17-23
    [100]许自达.介绍一种简捷的防洪水库群洪水优化调度方法.人民黄河,1990(1):26-30
    [101]郁金康,周广安.水库群防洪调度的逐次优化方法.水科学进展,1994(2):134-141
    [102]郁金康,李罕,王腊春等.防洪水库(群)洪水优化调度的线性规划方法.南京大学学报(自然科学),1995(2):301-309
    [103]叶守泽.气象与洪水.武汉:武汉水利水电大学出版社,1999.6

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700