张掖盆地地下水对气候变化响应特征与机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以西北内陆黑河流域的张掖盆地地下水对气候变化响应特征与机制为主题,以流域水循环理论为指导,应用水文地质学、地统计学和灰色数学专业理论方法以及MapGIS空间分析等技术手段,采用定性判断和定量分析相结合方法,首先,对上游补给水来源祁连山区和地下水赋存地平原区的大气降水、气温、出山径流、地下水位和地下水温度等关键要素多年监测资料进行系统分析和有机相关耦合,包括全面深入踏勘和了解研究区气候、水文、地形地貌、区域地质构造、地层岩性、地下水埋藏条件和水资源开发利用状况,梳理和识别影响研究区地下水变化主要因素及其年内、年际和年代变化规律;然后,量化解析了上游祁连山区气候变化对张掖盆地地下水补给源结构和补给水量变化影响特征,以及识别了人类活动对张掖盆地水循环过程影响的年际和年内变化特征;最后,探讨了张掖盆地地下水变化对气候变化响应非均一性特征和机制。据此,提出了不同气候条件下张掖盆地地下水合理利用与涵养对策。
     主要成果与创新性认识如下:
     (1)近30a来研究区气候由冷干向暖湿转变,祁连山区降水量是影响出山径流量和张掖盆地地下水补给量的主要影响因子
     研究区多年平均气温分别为-0.95℃(祁连山区)和7.59℃(张掖盆地),降水量分别为408.67mm/a(祁连山区)和118.12 mm/a(张掖盆地),气温和降水量的年际波动变化幅度较大,与区域气候变化密切相关。研究区气温呈波动上升趋势,自20世纪60年代至今祁连山区气温累计上升1.48℃,张掖盆地气温累计上升1.33℃,其中4月份和10月份气温升高对年均气温升高贡献率最大,90年代之后研究区气温升高速率明显增加。自20世纪90年代开始祁连山区降水量显著增加,由1991年的311.85 mm/a增加至2009年的502.60 mm/a,平均增速为10.60 mm/a,其中7、8月份降水量增加对全年降水量增加的贡献率最大。由于张掖盆地为干旱区,年降水量不足150 mm,所以,近年来祁连山区降水量增大是张掖盆地地下水位有所恢复的主要原因。
     出山径流量与祁连山区年降水量显著相关,其双侧皮尔逊相关系数达0.845,并且达到了0.01置信度的显著性水平。而出山径流量与祁连山区气温关联性不大,其双侧皮尔逊相关系数仅为0.306,置信度显著性水平为0.05。这表明,祁连山区降水量是出山径流量变化的主要影响因子。由于出山地表径流是张掖盆地地下水的主要补给源,且出山地表径流量占总补给量的80%以上,因此,根据祁连山区降水量与出山径流的线性回归模型,若不考虑气温和人类活动影响,当祁连山区降水量大于125 mm/a时,每增加10mm/a,出山径流量增加0.40×108m3/a,地下水补给量增加0.34×108m3/a。
     (2)张掖盆地地下水对祁连山区气候变化的响应具有滞后延续性
     在时间上,张掖盆地潜水温度最大值的出现,分别滞后于祁连山区和张掖盆地气温、降水最大值2个月;承压水温度最大值,分别滞后于祁连山区和张掖盆地的气温、降水最大值3个月。祁连山区气候变化对张掖盆地地下水温度的影响,具有明显的滞后延续性。在极端干旱、或者极端降水条件下,它们对张掖盆地地下水温度的影响可持续2-3a,承压水温度对祁连山区气候变化响应的滞后延续性更为明显。
     (3)张掖盆地地下水对气候变化和人类活动响应在空间分布上具有非均一性
     1984~2009年期间张掖盆地潜水位和承压水头均呈现不同程度下降过程,其中承压水头下降幅度大于潜水位,在空间上地下水位变幅差异较大。距离河道越远,降幅越大:距离河道越近,降幅越小。反之,距离河道越近,上升速度越快;距离河道越远,上升速度越慢。在张掖盆地东南部倾斜平原,由于远离河道带,地下水位降幅最大;在黑河干流带,地下水位降幅较小。
     张掖盆地的地下水埋藏条件、地形地貌和地表径流条件是地下水位对气候变化响具有非均一性特征的基础,气候变化和人类活动是动因。河渠入渗量减少和水库的大量修建,造成了张掖盆地东南部山前倾斜平原地下水位连续下降。黑河调水方案实施和近年来祁连山区降水量增大,使得黑河干流径流量和河道渗漏量增加,是张掖盆地南部沿河道带地下水位上升的源泉。
     (4)遵循祁连山区气候周期性变化规律,有针对性适时调控地下水开发利用强度,有利于地下水环境涵养和水资源可持续利用
     张掖盆地地下水主要依赖祁连山区出山径流水量补给,因此,应遵循祁连山区气候周期性变化规律,针对张掖盆地不同分区地下水埋藏和补给条件,适时调整地下水开发利用强度,合理涵养地下水,开源与节流并举。重视山前戈壁带地下储水空间的调蓄能力,在丰水期强化人工增加地下水补给调蓄,加强浅埋地带地下水开采,袭夺潜水无效蒸发,防降土壤盐渍化。
Based on hydrological cycle theory, this thesis is themed with variation characteristics and mechanism of groundwater response to climate change in Zhangye Basin. Using hydrogeology, geostatistics, and gray theory of mathematics methods and spatial analysis techniques of MapGIS, and combining qualitative judgments and quantitative analysis together, firstly, systematic analyzing and coupling the years of monitoring data of key elements like precipitation, temperature, runoff, groundwater table and temperature which comes from upstream of Qilian Mountains areas and plain areas, including site visit and overall thorough research of climate, hydrology, topography, regional geological structure, formation lithology, groundwater embedment features and water resources development in study area, and identifying the main factors that affect the groundwater change in Zhangye Basin and its intra-annual and inter-annual variation. Then, quantitative analyzed the impact characteristics that how the climate change in upstream of Qilian Mountains impact the groundwater recharge source structure and recharge amount in Zhangye Basin. Also identified the characteristic of intra-annual and inter-annual variation of water cycle process that affected by human activities in Zhangye Basin. Finally, the non-uniformity characteristic and mechanism that the groundwater of Zhangye Basin responded to the climate change were discussed. According to the discussion results, rational utilization and conservation measures of groundwater in Zhangye Basin under different climate conditions were proposed.
     Main achievements and creative cognitions as follows:
     (1)The climate of study area is transforming from cold-dry to warm-wet, and the precipitation of Qilian Mountain area is the main infection factors of mountainous runoff and the groundwater recharge of Zhangye Basin.
     The multi-year average temperature are -0.95℃(Qilian Mountain area) and 7.59℃(Zhangye Basin) respectively. The multi-year average precipitations are 408.67 mm/a (Qilian Mountain area) and 118.12 mm/a (Zhangye Basin) respectively. Annual temperature and precipitation fluctuated greatly, and regional climate change is closely related with it. There is a wavelike rises trend of temperature in study area. Since 1960s, the temperature of Qilian Mountain area has risen 1.48℃and the temperature of Zhangye Basin has risen 1.33℃. Temperature increase on April and October are the largest contribution rate of annual temperature increase in those areas. Since 1990s, the temperature rising rate is significantly increased. Since 1990s, it has a significant increase in precipitation of Qilian Mountain area. The precipitation of Qilian Mountain area has increased from 311.85 mm/a (1991) to 502.60 mm/a (2009), and the average increase rate is 10.60 mm/a. Precipitation increase on July and August are the largest contribution rate of annual precipitation increase. As the annual precipitation is less than 150 mm in arid Zhangye Basin, so the reason of its groundwater table rising is the increase of precipitation in Qilian Mountain area.
     The mountainous runoff is significantly correlated with precipitation of Qilian Mountain area, and its bilateral Pearson correlation coefficient is up to 0.845 with significance of the 0.01 confidence level. The mountainous runoff is not significantly correlated with the temperature of Qilian Mountain area, and its bilateral Pearson correlation coefficient is just about 0.306 with significance of the 0.05 confidence level. It shows that, the precipitation of Qilian Mountain area is the main influencing factors of mountainous runoff. Because the mountainous runoff is the main recharge source of the groundwater of Zhangye Basin and the mountainous runoff accounting for more than 80% of the total recharge, so, according to the linear regression model between precipitation of Qilian Mountain and mountainous runoff, if didn't consider the temperature and human activities impact, when the precipitation of Qilian Mountain is greater than 125 mm/a and increase 10 mm/a, the mountainous runoff increase 0.40×108m3/a, and the groundwater recharge increase 0.34×108m3/a.
     (2) The groundwater of Zhangye Basin response to climate change of Qilian Mountain area has a lag-continuity characteristic.
     The maximum shallow groundwater temperature is lagging behind the temperature and precipitation (both in Qilian Mountain area and Zhangye Basin) for 2 months, and the maximum confined groundwater temperature is lagging behind for 3 months. The climate of Qilian Mountain area has a significant influence on groundwater of Zhangye Basin with a lag-continuity characteristic. Under the condition of extreme drought and extreme wet, its affection on groundwater of Zhangye Basin can last for 2-3 years, and the confined groundwater of Zhangye Basin has a more obvious response to climate change of Qilian Mountain area
     (3) The groundwater of Zhangye Basin response to climate change and human activities has non-uniformity characteristic.
     During the year 1984 to 2009, the shallow groundwater table and confined groundwater head had declined in different degrees. The decrease amplitude of confined groundwater head was more than shallow groundwater table, and there was a great difference of groundwater table change amplitude in space. Farther from the river, greater of the groundwater table decline; closer to the river, smaller of the groundwater table decline. Conversely, closer to the river, greater of the groundwater table rising; farther from the river, smaller of the groundwater table rising. Because far from the river belt, the southeast clinoplain of Zhangye Basin has a maximum groundwater table decline. Near the Heihe mainstream area, the groundwater table decline smaller.
     The groundwater buried condition of Zhangye Basin, topography and geomorphology and surface runoff condition are the basis of non-uniformity characteristic that the groundwater responses to the climate change, and the climate change and human activities are the motivations. The decrease of river water infiltration and the construction of reservoirs lead to the continuously decrease of groundwater table of the southeast clinoplain of Zhangye Basin. The implementation of Heihe water transfer project and the increasing of precipitation of Qilian Mountain area in recent years lead to increase of river water infiltration which was the main reason of groundwater table rising at the southeast clinoplain of Zhangye Basin.
     (4) Following the periodic variation law of climate change in Qilian Mountain area, target and timely regulate the groundwater exploitation intensity are beneficial to groundwater conservation and sustainable use of water resources.
     The mountainous runoff of Qilian Mountain area is the main recharge source of groundwater of Zhangye Basin, so it should follow the laws of climate periodic variation regularity and based on different partitions groundwater buried conditions and recharge conditions, adjust intensity of groundwater exploitation timely and conserve groundwater reasonably. Broaden the sources of income and reduce expenditure simultaneously. Pay attention to the regulation and storage capacity of the Gobi zone of piedmont, increasing groundwater recharge storage in the wet season artificially and strengthening groundwater exploitation in shallow-buried zones in order to capture shallow groundwater invalid evaporation and prevent soil salinization.
引文
[1]Ipcc气候变化2007:综合报告[R].瑞士,日内瓦:政府间气候变化专门委员会,2007.
    [2]曹玲,窦永祥,张德玉.气候变化对黑河流域生态环境的影响[J].干旱气象.2003,21(04):45-49.
    [3]张凯,王润元,韩海涛,等.黑河流域气候变化的水文水资源效应[J].资源科学.2007,29(01):77-83.
    [4]Bates B. C., Kundzewicz Z. W., Wu S.,等.气候变化与水-IPCC技术报告之六[R].日内瓦:政府间气候变化专门委员会,2008.
    [5]丁一汇,任国玉,石广玉,等.气候变化国家评估报告(Ⅰ):中国气候变化的历史和未来趋势[J].气候变化研究进展.2006,2(1):3-8,F4.
    [6]胡立堂,陈崇希.黑河干流中游地区地下水多层含水系统动态仿真[J].系统仿真学报.2006,18(07):1966-1968.
    [7]丁宏伟,姚吉禄,何江海.张掖市地下水位上升区环境同位素特征及补给来源分析[J].干旱区地理.2009,32(01):1-8.
    [8]张徽,安永会,韩双宝,等.张掖盆地水文地质特征与稳定同位素研究[J].地下水.2009,31(6):123-125.
    [9]石迎春,辛民高,郭娇,等.西北地区黑河中游盐渍化地区土壤盐分特征[J].现代地质.2009,23(1):28-37.
    [10]金晓媚,梁继运.黑河中游地区区域蒸散量的时间变化规律及其影响因素[J].干旱区资源与环境.2009,23(03):88-92.
    [11]刘洪兰,张俊国,董安祥,等.张掖市水资源利用现状及未来趋势预测[J].干旱区研究.2008,25(1):35-40.
    [12]王启朝,胡广录,陈海牛.张掖市黑河近期综合治理工程效益初步分析[J].中国沙漠.2008,28(3):498-503.
    [13]苏芳,徐中民.张掖甘州区农村居民不同收入群体家庭虚拟水消费比较[J].冰川冻土.2008,30(5):883-889.
    [14]张龙,何江海.利用(222)Rn、EC及断面测流分析黑河中游地表水与地下水转换关系[J].甘肃地质.2008,17(01):88-91.
    [15]张遇春,张勃.黑河中游近49年降水序列变化规律及干旱预测——以张掖市为例[J].干旱区资源与环境.2008(1):84-88.
    [16]金晓媚,万力,梁继运.甘肃张掖盆地区域蒸散量变化规律及其影响因素分析[J].南京大学学报:自然科学版.2008,44(5):569-574.
    [17]张荷生,尹政,崔振卿.甘肃省张掖市甘州城区和外围地下水位上升的原因及其诱发地质灾害的防治对策[J].地质通报.2008,27(3):404-413.
    [18]刘宗平,王鹏,钱鞠,等.黑河中游盆地甘州区地下水位上升驱动因素及对策研究[J].水文.2008, 28(5):81-85.
    [19]姜晓勇,张勃,张遇春.张掖地区近35年来气温和降水的变化[J].干旱区资源与环境.2008,22(2):81-86.
    [20]冯嘉兴,丁宏伟,陈建生,等.张掖市甘州城区及外围地下水位上升原因分析[J].干旱区研究.2008,25(4):470-477.
    [21]崔振卿,杨丽萍,赵艳娜.张掖盆地东段“三水”转化同位素特征[J].水资源保护.2007,23(04):15-17.
    [22]李鸣骥,石培基.黑河流域张掖市近38a以来气候变化特征分析[J].中国沙漠.2007,27(06):1048-1054.
    [23]十海青,张勃.黑河流域干旱化驱动力机制及其趋势预测[J].干旱区资源与环境.2007,21(09):68-72.
    [24]张应华,仵彦卿.黑河流域不同水体中δ-(18)O的变化[J].水科学进展.2007,18(06):864-870.
    [25]张华,张勃,Verburg Peter,不同水资源情景下干旱区未来土地利用/覆盖变化模拟——以黑河中上游张掖市为例[J].冰川冻土.2007,29(03):397-405.
    [26]韩育林,程旭学,温秋生.黑河山前平原地下水位动态分析[J].人民黄河.2007,29(07):38-39.
    [27]顾薇,唐德善.黑河中游地区生态用水现状及预测分析[J].人民长江.2007,38(08):58-60.
    [28]刘普幸,王志敏.张掖市水环境演化对黑河下游绿洲生态的影响与对策[J].干旱区资源与环境.2006,20(1):68-72.
    [29]孟宝,张勃,张华,等.黑河中游张掖市十地利用/覆盖变化的水文水资源效应分析[J].干旱区资源与环境.2006,20(3):94-99.
    [30]程国栋,肖洪浪,徐中民,等.中国西北内陆河水问题及其应对策略——以黑河流域为例[J].冰川冻土.2006,28(03):406-413.
    [31]杨玲媛,王根绪.近20a来黑河中游张掖盆地地下水动态变化[J].冰川冻土.2005,27(2):290-296.
    [32]王根绪,杨玲媛,陈玲,等.黑河流域土地利用变化对地下水资源的影响[J].地理学报.2005,60(3):456-466.
    [33]张翠云,王昭,程旭学.张掖市地下水硝酸盐污染源的氮同位素研究[J].干旱区资源与环境.2004,18(1):79-85.
    [34]张翠云,王昭.黑河流域人类活动强度的定量评价[J].地球科学进展.2004,19(S1):386-390.
    [35]司建华,龚家栋,张勃.干旱地区生态需水量的初步估算——以张掖地区为例[J].干旱区资源与环境.2004,18(1):49-53.
    [36]刘金荣,谢晓蓉.河西走廊黑河灌区节水思路及对策[J].中国水十保持.2004(11):38-39.
    [37]陈仁升,康尔泗,杨建平,等.黑河干流中游地区季平均地下水位变化分析[J].干旱区资源与环境.2003,17(5):36-43.
    [38]曲耀光,樊胜岳.黑河流域水资源承载力分析计算与对策[J].中国沙漠.2000,20(1):1-8.
    [39]胡晓利,卢玲.黑河中游张掖绿洲地下水时空变异性分析[J].中国沙漠.2009,29(04):777-784.
    [40]周剑,李新,王根绪,等.黑河流域中游地下水时空变异性分析及其对土地利用变化的响应[J].自然资源学报.2009,24(03):498-506.
    [41]李栋梁,刘洪兰.黑河流量对祁连山气候年代际变化的响应[J].中国沙漠.2004,24(04):7-13.
    [42]Alley W M, Healy R W, Labaugh J W, et al. Flow and storage in groundwater systems[J]. Science. 2002,296(5575):1985-1990.
    [43]谢正辉,梁妙玲,袁星,等.黄淮海平原浅层地下水埋深对气候变化响应[J].水文.2009,29(1):30-35.
    [44]王顺久.全球气候变化对水文与水资源的影响[J].气候变化研究进展.2006,2(5):223-227.
    [45]Waggoner P E. Climate change and US water resources[M]. United States:New York, NY (US); Wiley-Interscience,1990:512.
    [46]Tillman F D, Leake S A, Flynn M E, et al. Methods and Indicators for Assessment of Regional Ground-Water Conditions in the Southwestern United States [EB/OL]. http://pubs.er.usgs.gov/usgspubs/sir/sir20085209,2008.
    [47]#12
    [48]Ferguson G, St George S. Historical and estimated ground water levels near Winnipeg, Canada, and their sensitivity to climatic variability[J]. Journal of the American Water Resources Association.2003, 39(5):1249-1259.
    [49]Allen D M, Mackie D C, Wei M. Groundwater and climate change:a sensitivity analysis for the Grand Forks aquifer, southern British Columbia, Canada[J]. Hydrogeology journal.2004,12(3):270-290.
    [50]Jayawickreme D H. Exploring the influence of land-use and climate on regional hydrology and groundwater recharge. [D]. Michigan:Michigan State University,2008.
    [51]Namdar Ghanbari R. Climate signals in groundwater and surface water systems:Spectral analysis of hydrologic processes. [D]. Milwaukee:The University of Wisconsin,2007.
    [52]Scibek J. Modelling the impacts of climate change on groundwater:A comparative study of two unconfined aquifers in southern British Columbia and northern Washington State. [D]. Canada: Simon Fraser University (Canada),2005.
    [53]Smerdon B D. The influence of climate on water cycling and lake-groundwater interaction in an outwash landscape on the Boreal Plains of Canada. [D]. Canada:University of Alberta (Canada), 2007.
    [54]Goderniaux P, Brouyere S, Fowler H J, et al. Large scale surface-subsurface hydrological model to assess climate change impacts on groundwater reserves[J]. Journal of Hydrology.2009,373(1-2): 122-138.
    [55]Candela L, von Igel W, Javier Elorza F, et al. Impact assessment of combined climate and management scenarios on groundwater resources and associated wetland (Majorca, Spain)[J]. Journal of Hydrology.2009,376(3-4):510-527.
    [56]Mendicino G, Senatore A, Versace P. A Groundwater Resource Index (GRI) for drought monitoring and forecasting in a mediterranean climate[J]. Journal of Hydrology.2008,357(3-4):282-302.
    [57]Scibek J, Allen D M, Cannon A J, et al. Groundwater-surface water interaction under scenarios of climate change using a high-resolution transient groundwater model[J]. Journal of Hydrology.2007, 50(1):50-62.
    [58]Jyrkama M I, Sykes J F. The impact of climate change on spatially varying groundwater recharge in the grand river watershed (Ontario)[J]. Journal of Hydrology.2007,338(3-4):237-250.
    [59]York J P, Person M, Gutowski W J, et al. Putting aquifers into atmospheric simulation models:an example from the Mill Creek Watershed, northeastern Kansas[J]. Advances in Water Resources.2002, 143(1):182-194.
    [60]Woldeamlak S, Batelaan O, De Smedt F. Effects of climate change on the groundwater system in the Grote-Nete catchment, Belgium[J]. Hydrogeology Journal.2007,15(5):891-901.
    [61]Brouyere S, Carabin G, Dassargues A. Climate change impacts on groundwater resources:modelled deficits in a chalky aquifer, Geer basin, Belgium[J]. Hydrogeology Journal.2004,12(2):123-134.
    [62]Hiscock K, Tanaka Y. Potential impacts of climate change on groundwater resources:from the high plains of the U.S. to the flatlands of the U.K[J]. National Hydrology Seminar.2006:19-26.
    [63]Scibek J, Allen D M, Cannon A J, et al. Groundwater-surface water interaction under scenarios of climate change using a high-resolution transient groundwater model [J]. Journal of Hydrology.2007, 50(1):50-62.
    [64]Gomez E, Ledoux E, Monget J, et al. Distributed surface-groundwater coupled model applied to climate or long term water managemeng impacts at basin scale[J]. European Water.2003(1/2):3-8.
    [65]Scibek J. Modelling the impacts of climate change on groundwater:a comparative study of two unconfined aquifers in Southern British Columbia and Northern Washing State[D]. Simon Fraser University,2005.
    [66]编译王丽艳,校刘源骏.地下水影响地上的气候[J].资源环境与工程.2008,22(6):647-648.
    [67]江涛,陈永勤,陈俊合,等.未来气候变化对我国水文水资源影响的研究[J].中山大学学报(自然科学版).2000,39(z2):151-157.
    [68]施雅风.气候变化对西北华北水资源的影响[M].济南:山东科学技术出版社,1995:369.
    [69]刘春蓁.气候变化对陆地水循环影响研究的问题[J].地球科学进展.2004,19(1):115-119.
    [70]刘春蓁,刘志雨,谢正辉.地下水对气候变化的敏感性研究进展[J].水文.2007,27(2):1-6.
    [71]鲍艳,李耀辉,陈仁升,等.地下水位下降对区域气候影响的虚拟试验[J].干旱区研究.2007,24(4):434-440.
    [72]方燕娜,林学钰,廖资生,等.吉林中部平原区浅层地下水温度对全球气候变暖的响应[J].冰川冻土.2005,27(6):833-837.
    [73]董婕,周淑艳,卢斌.富平县地下水位与降水量变化动态分析[J].西北师范大学学报:自然科学版.2008,44(6):98-101.
    [74]孙海清.降水量与地下水埋深的小波分析——以广饶县井灌区为例[J].水土保持研究.2007,14(2):55-58.
    [75]张玲,贾在强,欧阳秋明.章丘泉水地下水位与降水关系分析[J].安徽农业科学.2008,36(27):11931-11932,11939.
    [76]陈晖,刘敏,侯立军,等.德州市降水量变化对地下水的影响[J].中国科技信息.2008(17):23,25.
    [77]何忠仁.陇县城区地下水位变化规律和降水影响[J].陕西水利.2008(F05):127-128.
    [78]华杰,吕淑琳,王静.济南降水与地下水关系探讨[J].山东气象.2007,27(3):33-35.
    [79]任焕莲.辛安泉系统岩溶地下水降水补给滞后分析研究[J].地下水.2007,29(5):59-63.
    [80]张光辉,费宇红,中建梅,等.降水补给地下水过程中包气带变化对入渗的影响[J].水利学报.2007,38(5):611-617.
    [81]虎维岳,南生辉.大气降水对地下水补给的影响因素分析[J].地下水.1997,19(4):168-170.
    [82]袁瑞强,刘贯群,宋献方.现代黄河三角洲浅层地下水对降水的响应[J].资源科学.2009,31(09):1514-1521.
    [83]张光辉,费宇红,杨丽芝,等.地下水补给与开采量对降水变化响应特征:以京津以南河北平原为例[J].地球科学(中国地质大学学报).2006,31(06):879-884.
    [84]张光辉,费宇红,刘克岩,等.华北平原农田区地下水开采量对降水变化响应[J].水科学进展.2006,17(1):43-48.
    [85]张文化,魏晓妹,李彦刚.气候变化与人类活动对石羊河流域地下水动态变化的影响[J].水土保持研究.2009,16(01):183-187.
    [86]刘少玉,张光辉,张翠云,等.黑河流域水资源系统演变和人类活动影响[J].吉林大学学报(地球科学版).2008,38(05):806-812.
    [87]张光辉,陈宗宇,聂振龙,等.黑河流域地下水同位素特征及其对古气候变化的响应[J].地球学报.2006,27(04):341-348.
    [88]张光辉,申建梅,张翠云,等.甘肃西北部黑河流域中游地表径流和地下水补给变异特征[J].地质通报.2006,25(Z1):251-255.
    [89]张光辉,聂振龙,刘少玉,等.甘肃西北部黑河流域水资源对下游生态环境变化的影响阈[J].地质通报.2006,25(Z1):244-250.
    [90]张光辉,聂振龙,王金哲,等.黑河流域水循环过程中地下水同位素特征及补给效应[J].地球科学进展.2005,20(05):511-519.
    [91]聂振龙,陈宗宇,申建梅,等.应用环境同位素方法研究黑河源区水文循环特征[J].地理与地理信息科学.2005,21(01):104-108.
    [92]张光辉,聂振龙,张翠云,等.黑河流域走廊平原地下水补给变异特征与机制[J].水利学报.2005,36(6):715-720.
    [93]张光辉,聂振龙,刘少玉,等.黑河流域走廊平原地下水补给源组成及其变化[J].水科学进展.2005,16(5):673-678.
    [94]聂振龙,陈宗宇,程旭学,等.黑河干流浅层地下水与地表水相互转化的水化学特征[J].吉林大学学报(地球科学版).2005,35(01):48-53.
    [95]张光辉,刘少玉,谢悦波,等.西北内陆黑河流域水循环与地下水形成演化模式[M].北京:地质出版社,2005:398.
    [96]张光辉,刘少玉,张翠云,等.黑河流域地下水循环演化规律研究[J].中国地质.2004,31(03):289-293.
    [97]张光辉,刘少玉,张翠云,等.黑河流域水循环演化与可持续利用对策[J].地理与地理信息科学.2004,20(01):63-66.
    [98]张光辉,石迎新,聂振龙.黑河流域生态环境的脆弱性及其对地下水的依赖性[J].安全与环境学报.2002,2(03):31-33.
    [99]陈宗宇,聂振龙,张荷生,等.从黑河流域地下水年龄论其资源属性[J].地质学报.2004,78(4):560-567.
    [100]陈宗宇,万力,聂振龙,等.利用稳定同位素识别黑河流域地下水的补给来源[J].水文地质工程地质.2006(6):9-14.
    [101]聂振龙.黑河干流中游盆地地下水循环及更新性研究[D].中国地质科学院,2005.
    [102]贾艳琨,刘福亮,张琳,等.利用环境同位素识别酒泉—张掖盆地地下水补给和水流系统[J].地球学报.2008,29(06):740-744.
    [103]甘义群,李小倩,周爱国,等.黑河流域地下水氘过量参数特征[J].地质科技情报.2008,27(02):85-90.
    [104]魏智,金会军,蓝永超,等.基于Kriging插值的黑河分水后中游地下水资源变化[J].干旱区地理.2009,32(02):196-203.
    [105]魏智,金会军,蓝永超,等.黑河分水后下游地下水位和可开采储量的变化[J].干旱区研究.2008,25(03):336-341.
    [106]魏智,金会军,蓝永超,等.黑河实施分水后中游灌区地下水资源量的变化分析[J].冰川冻土.2008,30(02):344-350.
    [107]魏智,金会军,蓝永超,等.黑河流域水工程对生态环境的影响[J].中国农村水利水电.2007(07):6-9.
    [108]魏智,金会军,南永超,等.黑河分水对中下游水环境的影响[J].灌溉排水学报.2007,26(05):34-36.
    [109]李爱军,闫成云.黑河流域节水工程实施对地下水补给资源影响变化分析[J].干旱区资源与环境.2007,21(07):101-105.
    [110]周剑,程国栋,王根绪,等.综合遥感和地下水数值模拟分析黑河中游三水转化及其对土地利用的响应[J].自然科学进展.2009,19(12):1343-1354.
    [111]王旭升,周剑.黑河流域地下水流数值模拟的研究进展[J].工程勘察.2009(09):35-38.
    [112]周剑,李新,王根绪,等.一种基于MMS的改进降水径流模型在中国西北地区黑河上游流域的应用[J].自然资源学报.2008,23(04):724-736.
    [113]徐大录,丁宏伟,杨建军,等.河西走廊地下水位的趋势性与持续性分析——以黑河干流中游地区为例[J].干旱区资源与环境.2009,23(07):52-57.
    [114]张应华,仵彦卿.黑河流域中上游地区降水中氢氧同位素与温度关系研究[J].干旱区地理.2007,30(01):16-21.
    [115]张应华,仵彦卿.黑河流域中游盆地地下水补给机理分析[J].中国沙漠.2009,29(02):370-375.
    [116]张应华,仵彦卿.黑河流域中上游地区降水中氢氧同位素研究[J].冰川冻土.2009,31(01):34-39.
    [117]郭良才,王伏村,吴芳蓉,等.河西走廊3大内陆河近51年出山径流分布特征[J].干早地区农业研究.2009,27(05):209-215.
    [118]陈江南,蒋晓辉,杨一松,等.黑河下游额济纳地区林草植被对调水的响应[J].中国水土保持.2007(07):17-19.
    [119]刘进琪,王根绪.内陆河流水量演变与河流健康评价[J].水利水电技术.2006,37(12):8-10,15.
    [120]马正耀.关于黑河流域洪水资源化问题的分析探讨[J].水文.2006,26(04):91-93.
    [121]陈仁升,康尔泗,杨建平,等.黑河流域山前绿洲水量转化模拟研究[J].冰川冻土.2003,25(05):566-573.
    [122郭巧玲,冯起,司建华.黑河中游灌区水价探讨[J].中国沙漠.2006,26(05):855-859.
    [123]张凯,宋连春,韩永翔,等.黑河中游地区水资源供需状况分析及对策探讨[J].中国沙漠.2006,26(05):842-848.
    [124]Middelkoop H, Daamen K, Gellens D, et al. Impact of Climate Change on Hydrological Regimes and Water Resources Management in the Rhine Basin[J]. Climatic Change.2001,49(1):105.
    [125]Mimikou M. Impact of climate change on hydrological regimes and European community, EV5V-CT93-0293 Report[R]. UK:University of Southampton,1996.
    [126]刘毅.2010年气候:本世纪以来最异常[N].人民日报,2011年1月13日(16).
    [127]Peterson T C, Vose A R S. An overview of the Global Historical Climatology Network temperature database[J]. Bulletin of the American Meteorological Society.1997,78(12):2837-2848.
    [128]Huntington T G. Evidence for intensification of the global water cycle:Review and synthesis[J]. Journal of Hydrology.2006,319(1-4):83-95.
    [129]吴季松,郭孟卓.优化配置水资源促进西北地区社会经济可持续发展[J].中国水利.2001(9):22-25.
    [130]肖志国.儿种水文时间序列周期分析方法的比较研究[D].河海大学,2006.
    [131]纪忠萍,谷德军.广州近百年来气候变化的多时间尺度分析[J].热带气象学报.1999,15(1):48-55.
    [132]涂小萍.宁波市年降水量分析及消除小波变换边界影响的比较试验[C].北京市:气象出版社, 2004.
    [133]牛存稳,张利平,夏军.华北地区降水量的小波分析[J].干旱区地理.2004,27(1):66-70.
    [134]徐国昌,董安祥.我国西部降水量的准三年周期[J].高原气象.1982(2):11-17.
    [135]连英立,张光辉,聂振龙.西北内陆张掖盆地地下水温度变化特征及其指示意义[J].地球学报.2011,32(2):195-203.
    [136]林学钰,方燕娜,廖资生,等.全球气候变暖和人类活动对地下水温度的影响[J].北京师范大学学报(自然科学版).2009,45(Z1):452-457.
    [137]方燕娜,廖资生,陈洪艳,等.吉林中部平原区地下水温动态变化影响因素的关联度分析[J].吉林大学学报:地球科学版.2006,36(1):66-72.
    [138]巴建文,陈新民,田辽西,等.甘肃省张掖市北郊湿地环境地质研究报告[R].甘肃张掖:甘肃省地矿局水文地质工程地质勘察院,2009.
    [139]阳勇,陈仁升,吉喜斌.近儿十年来黑河野牛沟流域的冰川变化[J].冰川冻土.2007,29(01):100-106.
    [140]聂振龙,郭占荣,焦鹏程,等.西北内陆盆地水循环特征分析[J].地球学报.2001,22(4):302-306.
    [141]干建,李硕.气候变化对中国内陆干旱区山区融雪径流的影响[J].中国科学(D辑:地球科学).2005,35(07):664-670.
    [142]贺建桥,宋高举,蒋熹,等.2006年黑河水系典型流域冰川融水径流与出山径流的关系[J].中国沙漠.2008,28(6):1186-1189.
    [143]刘思峰.灰色系统理论及其应用[M].北京:科学出版社,2010:101-102.
    [144]程旭学,秦伟.有限单元数值法在高台县骆驼城灌区水资源配置中的利用[J].甘肃农业.2005(10):207-208.
    [145]李文鹏,郝爱兵,康卫东,等.西北典型内流盆地水资源调控与水资源优化利用模式[R].中国地质环境监测院,2004.
    [146]赵荣昌,巴建文,秦晓燕,等.防止张掖城市湿地周边地区土壤盐渍化的地下水临界深度确定[J].地下水.2011,33(1):34-35.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700