水资源综合评价及水资源演变规律研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水资源作为自然资源的重要组成部分,近几十年来,其循环过程逐渐受气候变化以及日益加剧的人类活动等多种扰动因素的影响。流域水资源的动态变化及其对气候以及人类活动的敏感性使得水循环成为极其复杂的过程。因此有必要评价变化环境下水资源量,研究水资源在人类活动和自然因素影响下的规律。本文针对目前水循环特征开展两个层面的研究:一是水资源综合评价的理论和方法,二是水资源演变规律。主要研究内容如下:
     论文首先概述了水资源评价的研究进展,追述了水资源演变规律的研究历程,分析了当前水资源评价和水资源演变规律存在的问题,指出分布式水文模型可为评价流域水资源量、掌握流域水资源演变规律研究提供技术支持。论文概括了作为水科学研究手段的分布式水文模型的发展历程。
     论文在总结前人经验的基础上,提出了水资源综合评价的理论和方法,包括层次化水资源、循环效用以及动态评价。论文探讨了流域水循环的演化特征。在此基础上,建立了分析模型研究流域水循环要素时空演化的基本规律,主要包括:采用R/S方法分析随机性,谱分析法分析周期性,Kendall秩相关法分析趋势性,T方法分析突变性,有序聚类法分析跳跃性。为研究气候、下垫面条件和人工取用水3个主要驱动因子对水循环的影响,本文应用二元水循环模型,采用情景分析法分析。
     在分析天然-人工二元水循环系统的基础上,论文介绍了二元水循环模型,该模型耦合了WEP-L分布式水文模型和集总式水资源调配模型。
     以伊洛河流域为实例研究,构建了二元水循环模型。在分析模型不确定性基础上,对灵敏度较高的地表洼地最大储留深、含水层的导水系数、土壤最大含水率、河床材料导水系数等四个参数进行优选,进行模型率定。模型验证结果表明,模型构造合理,验证结果也比较理想,模型适用于伊洛河流域研究。应用该模型,对伊洛河流域水资源进行了综合评价,使人们对伊洛河的水资源有了一个全面科学的了解。论文进一步研究了伊洛河流域45年的水资源演变规律,得出了该流域的主要特征。论文利用模型分析了该地区气温和降水,下垫面条件,人工取用水对水循环的影响。
     论文的最后给出了研究工作的主要结论和存在问题的讨论。指出了所提出的在高效和低效水量、生态和经济服务量以及进行水资源演变规律分析中存在的不足;水资源演变非常复杂,还有很多问题需要今后深入研究。
     本文系统全面的实例研究,充分证明了理论基础、模型方法、计算过程的科学性,本文提出的水资源评价方法和对水资源演变规律的系统分析,相信能够为今后的水资源
As an important part of natural resources, water resources and its cycle process have been gradually disturbed by many disturbers such as changed climate and increased human activities, etc. The dynamic change of water resources in river basin and its sensitivity to weather and human activity make water cycle become a very complex process. Thus, it is necessary to assess water resources and study the evolution law of water resources under changed climate and human activities. Aimed at the characteristics of water cycle, two aspects are researched in this dissertation: first is to establish the principle and methodology of water resources comprehensive assessment, and the second is to study the evolution law of water resources.
    Research progress of water resources assessment and water resources evolution is summarized and the main problem in them is also analyzed. It is point out that the distributed hydrological model can provide technique support for assessing water resources and understanding water resources evolution in river basin. Furthermore, research progress of distributed hydrological model as a study measure of water science is also summarized. The principle and methodologies of comprehensive water resources assessment is established based on the predecessor experience, which include hiberarchy, avail of cycle and dynamic assessment of water resources. The evolution characters of water resources are discussed and then the analysis models are established to study the basic special and temporal principle of water cycle factors, the models are R/S method for randomicity, chart analysis for periodicity, Kendall method for tendency, T method for abruptly change, and orderly clustering for changing point testing. Scene analysis method is applied based on distributed hydrological model to study the effect of the main driver factors such as climate, underlying surface and water use condition on water cycle.
    The dualistic water cycle model, combining the WEP-L distributed hydrological model and centralized water resources allocation model, is introduced based on the analysis of natural-artificial water cycle system.
    The dualistic water cycle model as a case study with Yiluo river basin is established. The four high sensitive parameters with maximum depression storage of land surface, conductivity of aquifer, maximum soil moisture content, conductivity of river bed are attended the optimize calculation in order to verify the model. The result manifest that the model structure is rational and the validate result is ideal. Thus the model is suitable for the Yiluo river basin. Applying the model, the comprehensive assessment of water resources is studied which will make an fully scientific explain for the water resources. Furthermore, the evolution of water resources of 45 years in Yiluo river basin is studied to gain the main characteristics. The effect
引文
[1] Abbott M B, Bathurst J C, Cunge J A, et al. An Introduction to the European Hydrological System~Eysteme Hydrologique Europeen,"SHE",2 Structure of a physically~based distributed modeling system[J]. J Hydrol, 1986,87:61~77.
    
    [2] Abbott M B, Bathurst J C, Cunge J A, O' Connell P E, Rasmussen J. An introduction to the European Hydrological System~Systeme Hydrologique Europeen,"SHE", 1 :history and philosophy of a phydically~based distributed modeling system[J]. Journal of hydrology, 1986a, 87:45~59.
    [3] Abbott M B, Bathurst J C, Cunge J A, O' Connell P E, Rasmussen J. An introduction to the European Hydrological System~Systeme Hydrologique Europeen,"SHE",2:Structure of a physically~based,distributed modeling system[J]. Journal of hydrology, 1986b, 87:61~77.
    [4] Angela Sieber, Stefan Uhlenbrook. Seneitivity analysis of a distributed catchment model to verify the model structure[J]. Journal of Hydrology. 310(2005)216~235.
    
    [5] Arnell N W, King R. The impact of climate change on water resources. In: DETR/The Met. Office. Climate Change and its Impacts, a Global Perspective. Department of the Environment, Transport and the Regions. 1997. 10~11.
    [6] Arnell N W. A simple water balance model for the simulation of streamflow aver a large geographic domain[J]. Journal of hydrology. 1999. 217: 314~335.
    [7] Becker A, Nemec J. Macroscale hydrologic models in support to climate research[A] IAHS Publication. 1987, No. 168, pp. 431-445.…
    [8] Bergstrom S. Chapter13 The HBV MODEL in V. P. Singh(Ed) Computer Models of Watershed Hydrology[M]. Littleton, Colo: Water Resources Publication, 1995.
    
    [9] Bergstrom S, Carlsson B, Gardelin M , et al. Climate change impacts on runoff in Sweden-assessments by global climate models, dynamical downscaling and hydrological modeling[J]. Climate Research, 2001, 16: 101-112
    [10] Beven K J, Calver A, Morris E M. The Institute of Hydrology Distributed Model[R]. Institute of Hydrology Report 98, Wallingford, UK 1987.
    [11] Beven K J, Lamb R, Romannowicz P, et al. Chapter18 TOPMODEL in V. P. Singh(Ed) Computer Models of Watershed Hydrology[M]. Littleton, Colo: Water Resources Publication, 1995.
    [12] Bicknell B R , Imhoff J L. , Kittle J L. , Donigian A S, Johanson R C. Hydrologic simulation program-Fortran, User's manual for release 10, U. S. EPA Environmental Research Laboratory,Athens, Ga,1993.
    [13] Bosch J. M., and J. D. Hewlett. A Review of Catchment Experiments to Determine the Effects of Vegetation Changes on Water Yield and Evapotranspiration[J]. J. Hydrol. 1982, Vol.55, 3~23
    [14] Bruce J. P., Hydrological sciences~~society's needs[J]. Hydrological Sciences Journal. 1988. 33 (2): 58~69.
    [15] Chen J M, Cihlar J. Retrieving leaf area index of boreal conifer forests using Landsat TM images[J]. Remote Sensing of Environment ,1996,55 :153~162.
    
    [16] Chu S T. Infiltration during an unsteady rain[J]. Water Resour. Res. ,1978, 14(3): 461~466.
    [17] CSIRO, 2000, Website: http://www.dwe.csiro.au/ecoservices/myerintro.htm
    [18] Daily G C. Nature's Services: Societal Dependence on Natural Ecosystems[M]. Washington D C: Island Press, 1997. 120~138.
    [19] David R. Maidment 主编,张建云,李纪生等译.水文学手册[M].北京:科学出版社, 2002. 1047-1060.
    [20] Dickinson R E. Sellera A H, Rosenzweig C, and Sellers P J. Evapotranspiration models with canopy resistance for use in climate models, a review. Agric. For. Meteorol, 1991. (54): 373~388.
    [21] Food and Agriculture Organization of the United Nations[M]. Review of World Water Resources by Country. 2003. 12~16.
    [22] Freeze R A, Harlan R L, Blueprint for a physically-based digitally-simulated hydrological response model[J]. Journal of Hydrology, 1969,9:237~258.
    [23] Frederick K D, Major D C, Stakhiv E Z. Introduction[J]. Climatic Change, 1997, 37: 1~5.
    [24] Frederick K D, Major D C. Climate change and water resources[J]. Climatic Change, 1997, 37:7~23.
    [25] Grayson L. E. , Calawson J. G. Scenario Building. Charlottesville, VA: University of Virginia Darden School Foundation, 1996.
    [26] Herath A S, Jha R, Musiake K. Application of Distributed Hydrological Model to northern Thailand[A]. Processdings of the Third International Study Conference on GEWEX in Asia and GAME[C]. Tokyo Univ, 1997. 125~133.
    [27] Hewlett, J. D. , and A. R. Hibbert. Factors Affecting the Response of Small Watersheds to Precipitation in Humid Areas[A]. in W. E. Sopper, and H. W. Lull, eds., International Symposium on Froest Hydrology[C]. 275~290, Pergamon Press, Oxford, 1967.
    [28] HOUGHTON J T, MEIRA FILHO L G, CACCANDER BA, et al. IPCC Climate change 1995[M], the Science of Climate Change Cambridge. Cambridge University Press, 1996.
    [29] http://www.chinaihp.org/ihpvi/ihp~VI2~1.htm
    [30] http://www.chinaihp.org/main.htm
    [31] Huber W C, Dicknson R E. Storm Water Management Model[M]. User's manual Version 4,1988, USEPA.
    [32] HULME M,WIGLEY T,江涛,等.温室效应引起的气候变化以及对中国的影响[J].CRU/WWF/SMA,1992,31~36.
    [33] Hydrological Sciences for Managing Water Resources in the Asian Developing World(2006).
    [34] IAHS. Abstract volume of a new hydrology for a thirsty planet[C]. Maastricht, Netherlands, 2001, 18~27.
    [35] Igor A. Shiklomanov, John C. Rodda. World Water Resources at the Beginning of the Twenty-First Century[M]. United Kingdom: the Press Syndicate of the University of Cambridge, 2003.358.
    [36] IGPB, WCRD & IHDP. Abstract volume of challenge of a changing earth[C]. Amsterdam, Netherlands, 2001, 10~13.
    [37] IPCC, in J. T. Houhton, L. G. Meira Filho, B. A. Callender, N. Harris, A. Kattenberg and K. Maskell, eds., Climate change 1955[M]. Summary for Policymakers, Cambridge University Press, Cambridge, 1966, 572.
    [38] IPCC.关于评估气候变化影响和适应对策的技术指南[R].WMO,UNEP,1994.
    [39] Jens Andersen, Jens C. Gefsgaard, Karsten H. Jensen, Distributed hydrological modeling of the Senegal River Basin-model construction and validation[J]. J. Hydrol. 2001 (247):200~214.
    [40] Jens Christian Refsgaard and Jesper Knudsen, Operational validation and intercomparison of different types of hydrological models.Danish Hydraulic Institute, Horsholm, Denmark Water Resources Research, 1996,32 (7) :2189~2202.
    [41] Jia Y W, Ni G H, Kawahara Y, et al. Development of WEP Model and Its Application to an Urban Watershed[J]. Hydrologica] Process, 2001,15:2175~2194.
    [42] Jia Y., Ni G., Kawahara Y. and Suetsugi T. Development of WEP model and its application to an urban watershed[J]. Hydrological Processes, 2001, 15(11): 2175~2194.
    
    [43] Jia Yangwen, Guangheng Ni, Junichi Yoshitani, Yoshihisa Kawahara and Tsuyoshi Kinouchi . Coupling Simulation of Water and Energy Budgets and Analysis of Urban Development Impact. Journal of Hydrologic Engineering, ASCE, 2002.7(4): 302~311.
    
    [44] Jia Yangwen, Guangheng Ni, Yoshihisa Kawahara and Tadashi Suetsugi. Development of WEP Model and Its Application to an Urban Watershed[J]. Hydrological Processes, John Wiley & Sons,2001, 15(11):2175~2194.
    [45] Jia Yangwen, Integrated analysis of water and heat balances in Tokyo metropolis with a distributed model[R]. Ph. D. Dissertation, Univ. of Tokyo, 1997.
    
    [46] Jia Yangwen, Ni Guangheng, Kawahara Yoshihisa, and Suetsugi Tadashi. Simulation of Hydrological Cycle in an Urban Catchment and Effect Evaluation of Infiltration Facilities[J].Journal of Hydro~science and Hydraulic Engineering (JHHE) of JSCE, 2001. 19(1):43~52.
    [47] Jia Yangwen, Tamai Nobuyuki. Modeling ingiltration into a multi-layered soil during an unsteasy rain Ann[J]. J. Hydraul. Eng, JSCE, 1997. (41): 31~36.
    [48] Jia Yangwen, Tamai Nobuyuki. Intergrated analysis of water and heat balances in Tokyo metroplolis with a distributed models. J. Japan Soc. Hydrol. & Water Resources., 1998,11(2):150~163.
    [49] Jia Yangwen, Tsuyoshi Kinouchi and Junichi Yoshitani. Distributed hydrologic modeling in a partially urbanized agricultural watershed using WEP model. Journal of Hydrologic Engineering,ASCE, 2005.10(4): 253~263.
    
    [50] Jia Yangwen, Tsuyoshi Kinouchi and Junichi Yoshitani, Distributed hydrological modelling in the Yata watershed using the WEP model and propagation of rainfall estimation error Weather Radar Information and Distributed Hydrological Modelling[C]. Proc. of 7th IAHS Congress, Sapporo, Japan, IAHS Redbook. 2003. (282):121~129.
    
    [51] Karim K. Review of determination of instream flow requirements with special application to Australia[J]. Water Resources Bulletin, 1995,31(6): 1063~1075.
    
    [52] Kavaas M L, Chen Z Q, Tan L, Soong ST, Terakawa A, Yoshitani J, Fukami K. A regional-scale land surface parameterization based on already-averaged hydrological conservation equations[J].Hydrological Sci. J. ,1998. 43(4): 611~631.
    [53] Kite G. W., U. Haberlandt. Atmospheric model data for macroscale hydrology. Journal of hydrology,1999,217:303~313.
    
    [54] Kottegoda N T 著。随机水资源技术[M]。金光炎译。北京:农业出版社,1987.
    [55] Krysanova V, Becker A, MUller~Wohlfeil DI. Development and test of a spatially distributed /water quality model for mesoscale watersheds[J]. Ecological Modelling 1998.106:261~289.
    [56] Landsberg, H. E. City Climate [J] World Survey in Climatology, vol.3(H. E. Landsberg, ed.),Elsevier, Amsterdam, 1981, 299~333.
    
    [57] Lane, S.N., Richards, K.S. The "validation" of hydrodynamic models: some critical perspectives, in:Anderson, M.g., Bates, P.D.(Eds), Model Validation: Perspective in Hydrological Sceience. Wiley,Chichester, 2001.413~438.
    [58] Leavesley G H, Markstrom S L, Restrepo P J et al. A modular approach to addressing model design,scale, and parameter estimation issues in distributed hydrological modeling[J]. Hydrological Processes, 2002. 16: 173~188.
    
    [59] Lorup, J.K., Refsgaard, J.C., Mazvimavi, D. Assessing the effect of land use change on catchment runoff by combined use of statistical tests and hydrological modeling: case studies from Zimbabwe[J]. Journal of Hydrology 1998,198:69~97.
    [60] Madsen H. Automatic calibration of a conceptual rainfall~runoff model using multiple objectives[J].Journal of Hydrology. 2000,235:276~288.
    [61] Mein R G and Larson C L. Modeling infiltration during a steady rain[J]. Water Resour. Res. 1973.9(2): 384~394.
    
    [62] Metoffice. PRECIS2 Update [M], London :Metoffice ,2002.
    [63] Miller K A, Rhodes S L, Macdonnell L J. Water allocation in a change climate: Institutions and adaptation [J] .ClimaticChange,1997,35:157~177.
    
    [64] Monteith J L. Principles of Environmental Physics. Edward Arnold, 1973.
    [65] Moore R J. Global probability-distributed principle and runoff production at point and basin scales[J]. Hydra. Sri. J, 1985 30: 273~297.
    [66] Morre I D, and Digel J D, Infiltration into two~layer soil profiles[C]. Trans. ASAE, 1981. (24):1496~1503.
    [67] Nagaegawa T. A study on hydrological models which consider distribution of physical variables in heterogeneous land surface(日文). Ph. D. Dissertation, Univ. of Tokyo, 1996.
    [68] Nash, J.E., Sutcliffe, J. River flow forecasting through conceptual models[J]. J. Hydrol. 1970. (10):282~290.
    
    [69] Nigel W A. Climate change and water resources in Britain[J]. Climatic Change, 1998, 39: 83~110.
    [70] Noilhan J, Planton S. A. Simple parameterization of land surface processes for meteorological models. Mon. Wea. Res, 1989. (117): 536~549.
    [71] Noss, R.F, and Cooperrider, AY Saving Nature's Legacy-Protecting and Restoring Biodiversity[M].Island Press. Washington DC. USA. 1994.
    
    [72] Noss, R.F. From endangered species to biodiversity. In: Kohm KA. (Ed.).Balancing on the Brink of Extinction: The Endangered Species Act and Lessons for the Future. pp. 227~246. Island Press.Washington DC. USA, 1991.
    [73] Ouyang Z Y, Wang R S, Zhao J Z. Ecosystem system services and their economic valuation[J]. Chinese Journal of Applied Ecology, 1999, 10 (5): 635~640.
    [74] Penman H L. Natural evaporation from open water, bare soil and grass[M]. Proc. Roy. Soc. London.Ser.,1948.(a193): 120~145.
    [75] Qian Yadong, Lu Guonian, Chen Zhongming, Study for networks of runoff and sediment transport form grid digital elevation data[J]. Journal of Sediment Research, 1997, (3):24~31.
    [76] Quick M C. Chapter 8 The UBC watershed Model in V. P. Singh(Ed) Computer Models of Watershed Hydrology[M]. Littleton, Colo: Water Resources Publications, 1995.
    [77] Rabitz, H., System analysis at molecular scale[J]. Science 1989. 246, 221~226.
    [78] Reymrd N S. Andrews A J, Arnell N W. The derivation of a runoff grid for southern Africa for climate change impact analyses. In; FRIEND'97~Regional Hydrology: concepts and models for sustainable mater resource development. International Association of Hydrological Sciences. Publ.1997,246:23~30.
    [79] Robert Costanza,Sven Erik J Φ rgensen 编著,徐中民,张志强,张奇兵等译校。理解和解决21世纪的环境问题[M]。郑州:黄河水利出版社。2004。
    
    [80] Schaake, J. C, Liu, C. Z., Development and application of simple water balance model to understand the relationship between climate and water resources in New directions for surface water modeling. Proc., Balto., Symposium, IAHS publ,. 1989:181.
    
    [81] Ringersma, J., Batjes, N. and Dent, D.. Green Water. Definitions and Data for Assessment. Wageningen, the Netherlands, ISIRC. 2003.2 (Report 2003/02, ISRIC - World Soil Information,Wageningen (download PDF). Batjes NH 2003)
    [82] RockstrOm, J. 1999. On-farm green water estimates as a tool for increased food production in water scarce regions. Phys. Chem. Earth B, 24(4): 375.
    [83] Refsgaard J C. Storm B. Chapter 23 MIKE SHE in V. P. Singh(Ed) Computer Models of Watershed Hydrology[M]. Littleton, Colo: Water Resources Publications, 1995.
    [84] Refsgaard J C. Storm B. Chapter 23 MIKE SHE in V. P. Singh(Ed) Computer Models of Watershed Hydrology[M]. Littleton, Colo: Water Resources Publications, 1995.
    [85] Sahelli A, et al. Sensitivity Analysis[M]. Chichester: Wiley, 2000.
    [86] Saltellli, A., Fortune and future of sensitivity analysis, in: Saltelli, A., Chan, K., Scott, E.M. (Eds.), Sensitivity Analysis. Wiley, Chichester, 2000, 421~426.
    [87] Shiklomanov. Appraisal and assessment of world water resources. Water, international, IWRA 2000,25(1): 11~32.
    
    [88] Sing V P, Compute Models of Watershed Hydrology[C], Water Resources Publication. 1997.
    [89] SpearR C, Grief, T M, Shang N. Parameter uncertainty and interaction in complex environmental model models[J]. Water Resources Research, 1994, 3001(11): 3159~3169.
    [90] Stochton C W, Boggess W R. Geohydrological implication of climate change on water resources development[M]. Fort Belvoir, Va: U S Army coastal Engineering Reserch Center, 1979.
    [91] Sub-Global Assessment Selection Working Group of the Millennium Ecosystem Assessment. Millennium Ecosystem Assessment Sub-Global Component: Purpose, Structure and protocols.http://www.millenniumassessment.org 2001.
    [92] U. S. Army Corps of Engineers, Davis, Calif. Hydrologic Engineering Center(HEC). Hydrologic modeling system HEC~HMS[M], use's manual, version2, 2000.
    
    [93] United National Development Program, United National Environment Program, World Bank and World Resources Institute. World Resources 2000~2001:People and Ecosystems: The Fraying Web of Life(World Resources Institute, Washington, D.C.), 2000, 400.
    [94] United National Education, Scientific and Culture Organization. Guidelines for Conducting Water Resources Assessment[M]. Published 1998.
    
    [95] VOrOsmarty C J, Willmott C J, Choudhury B I. Analyzing the discharge regime of a large tropical river through remote sensing, ground-based climatic data, and modeling[J]. Water resources research, 1996. 32(10): 3137~3150.
    
    [96] VOrOsmarty Charts 1, Federer C A, Schloss A L. Potential evaporation functions compared on US watersheds: possible implications for global~scale water balance and terrestrial ecosystem modeling[J]. Journal hydrology. 1998, 207: 147~169.
    
    [97] Water a shared responsibility, The United Nations World Water Development Report 2,2006.
    [98] WCED. The World Commission on Environment and Development. Our common Future. Oxford University Press. Oxford. UK, 1987.
    [99] Yaqin Qiu, Zuhao Zhou, Yangwen Jia, etc. Study on Evolutionary law of Water Resources in Sanchuan River Basin under changing environment. 2006 International Symposium on Yu Z, et al. Simulating the river~basin response to atmospheric forcing by linking a mesoscale meteorological model and hydrologic model system. Journal of Hydrology, 1999,215 : 72
    [100] Zuhao Zhou, Yaqin Qiu, Yangwen Jia, etc. The Evolution Law of Water Resources in Weihe Basin Based on Distributed Hydrological Model. International Symposium on Hydrological Sciences for Managing Water Resources in the Asian Developing World & 2nd GWSP - Asia Network Workshop. 2006.
    [101] 柴华,冬俊瑞,李永祥.热膜测速技术在挑射水流运动特性及高坝消能机理研究中的应用[J].水利学报,1999,(10):45~51.
    [102] 陈德亮,高歌.气候变化对长江流域汉江和赣江径流的影响[J].湖泊科学.2003,15(9):105~114.
    [103] 陈家琦.王浩,杨小柳.著.水资源学[M].北京:科学出版社,2001.
    [104] 陈志恺主编.西北地区水资源及其供需发展趋势分析,西北地区水资源配置生态环境建设和可持续发展战略研究-水资源卷[M].北京:科学出版社,2004.
    [105] 陈家琦,钱正英.关于水资源评价和人均水资源指标的一些问题.中国水利[J].2003,(11):42~46.
    [106] 陈家琦,王浩.水资源学概论[M].北京:中国水利水电出版社,1996.
    [107] 陈仁升,康尔泗,张济世.小波变换在河西地区水文和气候周期变化分析中的应用[J].地球科学进展,2001,16(3):339~345.
    [108] 陈英.刘新仁.淮河流域气候变化对水资源地影响[J].海河大学学报,1996,24(5):111~114.
    [109] 崔远来,白宪台,刘毓川,等.北京城市雨洪系统产流模型研究[J].北京水利,1996(6):42~49.
    [110] 丁晶,邓育仁编著.随机水文学[M].成都:成都科技大学出版社,1988.
    [111] 傅国斌.刘昌明.全球气候变暖对区域水资源影响的计算分析[J].地理学报,1991,46(3):277~288.
    [112] 高木桌琢马.槯叶充睛,市川温.使用结构模型模拟系统进行径流模拟[A].日本土木学会水工学论文集[C].1995,39:141~146.
    [113] 高庆先,徐影,任阵海.中国干旱地区未来大气降水变化趋势分析[J].中国工程科学,2002,4(6):36~42
    [114] 高人.辽宁东部山区几种主要森林植被类型水溉平衡研究[J].水土保持通报,2002,22(2):5~8.
    [115] 郭生练.刘春蓁.大尺度水文模型及其与气候模型和联结耦合研究[J],水利学报.1997,7(7):37~42.
    [116] 郭生练.熊立华等.分布式流域水文物理模型的应用和检验[J].武汉大学学报(工学版),2001,34(1):1~5.
    [117] 郭生练,熊立华等.基于DEM的分布式物理模型的应用和检验[J].武汉水利电力大学学报.2000,33(6):1~5.
    [118] 郭生练.大尺度分布式水文模型发展概况和展望[J].水资源研究.1997,18(2):32~36.
    [119] 国家环境保护总局南京环境科学研究所.湖荡区生态经济可持续发展试验研究,2003.
    [120] 国际科学院组织编:傅伯杰,刘健,曹京华,等译.走向可持续的21世纪—科学与技术的贡献[M].北京:科学出版社,2005.
    [121] 郝芳华,陈利群,刘昌明,等.土地利用变化对产流和产沙的影响分析[J].水土保持学报,200418(6):5~8.
    [122] 郝芳华、王玲等译.分布式水文模型[M].郑州:黄河水利出版社,2003.
    [123] 郝振纯.地面地下水资源联合评价模型探讨[R].河海大学博士论文,1988.
    [124] 何新林,郭生练.气候变换对新疆玛纳斯河流域水文水资源的影响[J].水科学进展,1998,9(1):77~83.
    [125] 河北省水利厅水文局.河北省平原区水资源评价模型研究[A].全国水资源综合规划技术经验交流文章汇编[C].2002:55~63.
    [126] 贺伟程.论区域水资源的基本概念和定量方法[A].水利水电科学研究院科学研究论文集第14集(水资源)[C],北京,水利电力出版社,1983.13~24.
    [127] 侯宇光,严淑贤.气候变化对长江上游地区水资源的影响[J].水资源研究,1995,16(4):5~13.
    [128] 黄河流域水资源演变规律与二元演化模型,国家重点基础研究(973)发展规划项目,中国水利水电科学研究院,2004.
    [129] 黄嘉佑,李黄编.气象中的谱分析[M].北京:气象出版社,1984.
    [130] 黄嘉佑,张镡.黄河流域旱涝与水资源分析[J].大气科学,1996,20(6):673~678
    [131] 贾仰文,WEP模型的开发和应用[J].水科学进展,2003,14(增刊):50~56.
    [132] 贾仰文,王浩,倪广恒等.分布式流域水文模型原理与实践[M].北京:中国水利水电出版社(水科学前沿学术丛书).2005年.196~236.
    [133] 贾仰文,王浩,王建华等.黄河流域分布式水文模型开发和验证[J].自然资源学报.2005,20(2):300~308.
    [134] 贾仰文,王浩.分布式流域水文模拟研究进展及未来展望[J].水科学进展,2003,14(增刊):118~123.
    [135] 贾仰文,王浩,仇亚琴.流域水循环框架下的水资源评价方法与节水问题思考.节水型社会建设的理论与实践,中国水利学会2005学术年会论文集,中国水利学会水资源专业委员会编中国水利水电出版社,2005:310~315.
    [136] 江涛,陈永勤,陈俊合等.未来气候变化对我国水文水资源影响的研究[J].中山大学学报(自然科学版),2000,39(增刊),151~157.
    [137] 姜大膀,王会军.郎咸梅等.SRES A2情景下中国气候未来变化的多模式集合预测结果[J].地球物理学报,2004,47(5):776~784
    [138] 蓝永超,仵彦卿,康尔泗,等.祁连山北麓出山径流对气候变化的响应,兰州大学学报(自然科学版),2001,Vol(37),No(4),121~128.
    [139] 雷志栋,杨诗秀.谢森传.土壤水动力学[M].北京:清华大学出版社,1988.
    [140] 李兰等.流域水文分布动态参数反问题模型[A].朱尔明.中国水利学会优秀论文集.北京:中国三峡出版社,2000:48~54.
    [141] 李兰等.流域水文数学物理耦合模型[A].朱尔明.中国水利学会优秀论文集.北京:中国三峡出版社,2000:322~329.
    [142] 李丽,郝振纯,王加虎.基于DEM的分布式水文模型在黄河三门峡—小浪底间的应用探讨[J].自然科学进展.2004,14(12):1452~1458.
    [143] 李丽娟,郑红星.海滦河流域河流系统生态环境需水量计算[J].地理学报,55(4):495~500.
    [144] 刘昌明,李道峰,田英等.基于DEM的分布式水文模型在大尺度流域应用研究[J].地理科学进展,2003,22(5):437~445.
    [145] 刘昌明.黄土高原森林对年径流影响的初步分析[J].地理学报,1978(12),112~126.
    [146] 刘春荣.田玉英.用改进的非线性水两平衡模型研究气候变化对径流的影响[J].水科学进展.1991,2(2):120~126.
    [147] 刘春蓁.气候变化对我国水文水资源的可能影响[J].水科学进展,1997,9,220~226.
    [148] 刘绿柳.黄河流域径流模拟与水资源交换传输特征.北京师范大学博士学位论文,2003.
    [149] 刘新仁.淮河流域大尺度水文模型研究—1.流域水文月模型[J]水文科技信息,1993,(3)(4)合刊:36~42.
    [150] 刘毅,陈吉宁,杜鹏飞.环境模型参数识别与不确定性分析[J].环境科学,2002,23(6):6~10.
    [151] 倪红珍.基于绿色核算的水资源价值与价格研究[A].中国水利水电科学研究院博士学位论文,2004.
    [152] 牛文元著.自然资源开发原理[M].郑州:河南大学出版社,1989.
    [153] 欧阳志云,赵同谦,王效科.等.水生态服务功能分析及其间接价值评价[J].生态学报,2004,24(10):2091~2099.
    [154] 秦大河.气候变化的事实与影响及对策[J].中国科学基金.2003(1),1~3.
    [155] 秦大河主编,中国西部环境演变评估,综合卷,中国西部环境演变评估综合报告[M],科学出版社北京,2002.
    [156] 仇亚琴,王浩,贾仰文.浅谈水资源评价方法的发展[A].2004年自然资源学会论文集[C].
    [157] 仇亚琴.王水生,贾仰文,等.汾河流域水土保持措施水文水资源效应初析[J].自然资源学报,2006,21(1):24~30.
    [158] 全国水资源综合规划《地下水资源量及可开采量补充细则(试行)》,2002.
    [159] 全国水资源综合规划《水资源可利用量估算方法(试行)》,2002.
    [160] 全国水资源综合规划技术细则,水利部水利水电规划设计总院,2002.
    [161] 仁立良.张炜,李春红.中国北方地区人类活动对地表水资源的影响研究[J].河海大学学报.2001,29(4):13~18.
    [162] 芮孝芳,论人类活动对水资源的影响,河海科技进展[J].1991,11(9):52~56.
    [163] 施能,陈家其,屠其璞.中国近100年来4个年代际的气候变化特征[J].气象学报,1995,53(4):11.
    [164] 世界气象组织,联合国教科文组织编,李世明,张海敏,朱庆平等译.水资源评价—国家能力评估手册[M].郑州:黄河水利出版社,2001.
    [165] 水利部水利水电规划设计总院,全国水资源综合规划技术细则(试行),2002年8月.
    [166] 孙鹏森.刘世荣.大尺度生态水文模型的构建及其与GIS集成[J].生态学报,2003,23(10):2115~2125.
    [167] 汪岗.范昭主编.黄河水沙变化研究第二卷[M],水利部黄河水沙变化研究基金会项目,郑州:黄河水利出版社,2002.
    [168] 汪岗,范昭主编.黄河水沙变化研究第一卷[M],水利部黄河水沙变化研究基金会项目,郑州:黄河水利出版社,2002.
    [169] 王芳,梁瑞驹,杨小柳,等.中国西北地区生态需水研究(1)—干旱半干旱地区生态需水理论 分析[J].自然资源学报,2002,17(1):1~8.
    [170] 王国庆,王云漳,尚长昆.气候变化对黄河水资源的影响[J].人民黄河,2000,22(9):40—45.
    [171] 王国庆,王云漳,史忠海,等.黄河流域水资源未来变化趋势分析[J].地理科学,2001,21(5):396~400.
    [172] 王国庆,张建云,章四龙.全球气候变化对中国淡水资源及其脆弱性影响研究综述[J].水资源与水工程学报,2005,16(2):6~10.
    [173] 王国庆,王云漳.径流对气候变化敏感性分析[J].山东气象,2000,20(3):17~20.
    [174] 王浩,陈敏建,秦大庸等.西北地区水资源合理配置和承载能力研究[M].郑州:黄河水利出版社,2003,23~26.
    [175] 王浩,秦大庸,陈晓军.水资源评价准则及其计算口径[J].水利水电技术,2004,(2):1~4.
    [176] 王浩,秦大庸,王建华,多尺度区域水循环过程模拟进展与二元水循环模式的研究[C].刘昌明,陈效国.黄河流域水资源演化规律与可在生性维持机理[A].郑州:黄河水利出版社,2001.
    [177] 王浩,王建华,秦大庸等.现代水资源评价及水资源学学科体系研究[J].地球科学进展,2002,17(1):12~17.
    [178] 王浩,陈敏建,唐克旺,等编.水生态系统环境价值和保护对策[M].北京:清华大学出版社,北京交通大学出版社,2004.
    [179] 王浩,贾仰文,王建华,等.人类活动影响下的黄河流域水资源演变规律初探[J].自然资源学报,2005,20(.2):157~162.
    [180] 王建生,张世法,黄国标,等.气候变化对京津唐地区水资源及供需平衡的影响[J].水科学进展,1996,7(1):26~36.
    [181] 王如松,胡聃,王祥荣,等著.城市生态服务[M].北京:气象出版社,2004.
    [182] 王如松.强化城市生态服务功能的系统整合方法见:王如松,王祥荣主编.城市生存与发展的生态服务功能研究[M].北京:气象出版社,2004
    [183] 王邵武,龚道溢.全新世几个特征时期的中国气温.自然科学进展[J],2000,10(4):325~332.
    [184] 文康等编著.地表径流过程的数学模拟[M].北京:水利电力出版社,1991.
    [185] 夏军.水文非线性系统理论与方法[M].武汉:武汉大学出版社,2002
    [186] 夏自强,李琼方.土壤水资源及其评价方法研究,水科学进展[J],2001,12(4):530~545.
    [187] 小尻利治.东海明宏,木内阳一.使用模拟模型进行流域环境评价的次序[R].日本京都大学防灾研究所年报.1998,41(B2):119~134.
    [188] 谢新民,郭洪宇,唐克旺,等.华北平原区地表水与地下水统一评价的二元耦合模型研究[J].水利学报,2002(12):95~100.
    [189] 熊立华、郭生练编著.分布式流域水文模型[M].北京:中国水利水电出版社,2004.
    [190] 徐志侠,王浩,董增川,等.河道与湖泊生态需水理论与实践[M],北京:中国水利水电出版社,2005.
    [191] 许吟隆,薛峰,林一哗.不同温室气体排放情景下中国21世纪地面气温和降水变化的模拟分析[J].气候与环境研究.2003,8(2):209~217
    [192] 杨大文,楠田哲也编著.水资源综合评价模型及其在黄河流域的应用[M].北京:中国水利水电出版社,2005.
    [193] 杨海军,孙立达,余新晓.晋西黄土区森林流城水量平衡研究[J].水土保持通报.1994, 14(2):26~31.
    [194] 杨文治,邵明安编著,黄土高原土壤水分研究[M].北京:科学出版社,2000.
    [195] 叶亚平.复合生态系统水生态服务功能评价与调控方法研究.中国科学院生态环境研究中心博士学位论文[D],2004.
    [196] 英爱文,姜广武.运河流域水资源对气候变化的响应[J].水科学进展,1996,7(增刊):67~72.
    [197] 由樊正,王会肖著.农田土壤水评价[M].北京:气象出版社,1996.
    [198] 俞鑫颖、刘新仁.分布式冰雪融水雨水混合水文模型[J].河海大学学报,2002,30(5):23~27
    [199] 张超,王会肖.土壤水分研究进展及简要评述[J],干旱地区农业研究,2003,12(4):117~121.
    [200] 张玲,王震洪.云南牟定三种人工林森林水文效应的研究.水土保持研究[J].2001,8(2):69~73.
    [201] 张胜利,雷瑞德,吕珍良,等.秦岭火地塘林区森林生态系统水量平衡研究[J].水土保持通报,2000.20(6):218~22.
    [202] 赵景柱,肖寒,吴钢.生态系统服务的物质量与价值量评价方法的比较[J].应用生态学报,2000,11(2):290~292.
    [203] 赵人俊.流域水文模拟[M].北京:水利电力出版社,1984.
    [204] 赵人俊.新安江水文模型在中国的应用[J].水文,1992,135,371~381.
    [205] 郑红星.GIS支持下黄河流域水循环时空演化规律研究.中国科学院博士学位论文[D],2002.
    [206] 中国科学院生态环境研究中心,水生态环境保护标准与效益核算研究,水利与国民经济协调发展研究中期报告.2002.
    [207] 王浩,陈敏建,秦大庸等编著,西北地区水资源合理配置和承载力研究[M].郑州:黄河水利出版社.2003.
    [208] 中国水利水电科学研究院.国家重点基础研究(973)发展规划项目“黄河流域水资源演化模型与可再生性维持机理研究”第二课题“黄河流域水资源演变规律与二元演化模型”(G1999043602)[R].2004.
    [209] 中华人民共和国水利部.中国水资源及其开发利用调查评价简要报告[R],2006.
    [210] 周祖昊.变化环境下黄河流域水资源演变规律研究,中国水利水电科学研究院博士后研究工作报告[D],2005,5~6.
    [211] 中华人们共和国国家统计局编.2005中国统计年鉴[M].北京:中国统计出版社,2005.
    [212] 朱劲伟.小兴安岭红松阔叶林的水文效应[J].东北林学院学报.1982,(4):17~24.
    [213] 朱厚华,秦大庸.周祖吴,等.黄河流域降雨时间演变规律分析[A].中国自然资源学会2004年学术年会论文集[C].2004:516~523.
    [214] 朱厚华,秦大庸,周祖昊,等.黄河流域降水演变规律研究[J].人民黄河,2005,27(11):17~21.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700