石羊河流域景观动态与成因研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
景观动态是区域生态环境变化研究的重要内容。石羊河流域是河西走廊三大内陆河之一,近年来自然和人为干扰导致石羊河流域出现干旱化、盐渍化和植被退化等环境问题,景观变化明显,因此景观动态分析有助于了解自然和人为干扰与流域环境变化的关系。论文基于遥感和GIS技术,根据植被类型划分石羊河流域景观要素类型,形成1974、1995和2006年流域景观图和1959、1974、1987、1995、2001和2006年民勤绿洲景观图。在景观分类与制图基础上,分析了1959年以来石羊河流域的景观动态与成因。主要结论如下:
     (1)随海拔升高,上游山地依次分布着草地、天然乔木林、亚高山灌丛、高寒荒漠;绿洲—荒漠系统的景观要素类型也呈相似的带状依次分布着人工绿洲、非地带天然植被和人工林、砂砾质和石质荒漠和流动沙漠,流动沙漠边缘的低洼处也存在盐漠和盐生草甸。砂砾质和石质荒漠、草地、流动沙漠和人工绿洲是流域主要的景观要素类型。除了天然乔木林,地带性植被组成的景观要素类型连通性好,非地带性植被组成的景观要素类型只有盐生草甸和盐化荒漠连通性好。
     (2)流域景观格局特征、景观动态与格局变化有区域差异。上游山地景观格局比流域整体复杂;中、下游绿洲—荒漠系统景观格局比流域整体简单,但是东部比西部盐碱化和景观破碎化程度高;且越往下游越严重,而沙漠和砂砾质荒漠的连通性却增加。1974-2006年石羊河流域景观格局复杂程度增加,是中游和下游景观破碎化增加的结果,越往下游破碎化趋势越严重;而山地景观格局趋于简单,变化幅度较小,但变化速度加快。
     1974-2006年人工绿洲的面积比例增加了5.96%,且中游远超过下游。砂砾质和石质荒漠减少的最多,为2.32%,中游最明显;其次是人工林,为1.45%,下游最明显;温带落叶灌丛、人工林、盐漠和次生盐碱地损失最严重,分别减少到原来的0.02、0.58、0.64和0.68,盐漠中游损失最明显,其余下游损失最明显。在人工绿洲面积增加和砂砾质和石质荒漠、人工林、盐漠和次生盐碱地面积减少的过程中均产生大量小斑块,格局变复杂;其余景观要素流向的格局趋于简单。
     (3)流域景观动态与格局变化时间上阶段特征明显。1974-1995年,上游草地流向旱地;中游砂砾质荒漠、旱地和人工林流向人工绿洲;下游盐生草甸、温带落叶灌丛和盐漠流向砂砾质和石质荒漠,盐生草甸和砂砾质和石质荒漠流向人工绿洲和人工林,人工林流向人工绿洲,人工绿洲流向次生盐碱地。结果景观要素类型的面积比例,上游草地减少1.76%;中游砂砾质荒漠、旱地和人工林分别减少4.24%、1.99%和1.81%,人工绿洲增加8.02%;下游人工绿洲、次生盐碱地和人工林分别增加了2.23%、0.02%和0.85%,砂砾质和石质荒漠减少了1.74%。
     1995-2006年上游旱地流向草地;中游砂砾质荒漠和盐漠流向人工绿洲;下游人工林、次生盐碱地、砂砾质和石质荒漠流向人工绿洲,人工林流向砂砾质和石质荒漠。结果,景观要素类型的面积比例,上游旱地减少0.99%;中游人工绿洲增加4.25%;下游人工绿洲和砂砾质和石质荒漠分别增加3.07%和1.43%,次生盐碱地和人工林分别减少0.45%和3.31%。
     (4)景观动态变化集中在绿洲,与流域下游总体的变化过程相似,坝区、泉山区和湖区1987年前的水体、温带落叶灌丛、盐生草甸、盐漠和1995年前的砂砾质和石质荒漠大量减少,而人工林和次生盐碱地增加;1987年后人工林和次生盐碱地减少,而人工绿洲和砂砾质和石质荒漠增加。到2007年坝区和泉山区的水体和温带落叶灌丛消失,次生盐碱地、盐生草甸和盐漠也接近消失;坝区的砂砾质和石质荒漠减少3.46%,人工绿洲增加17.87%;泉山区的砂砾质和石质荒漠减少1.26%,人工绿洲增加12.39%;湖区次生盐碱地增加3.20%(约1/2的面积),人工绿洲减少0.11%,砂砾质和石质荒漠增加3.53%,人工林比1974年减少2.62%(约1/2),流动流动沙漠增加1.40%。
     坝区和泉山区的人工绿洲、人工林和砂砾质和石质荒漠格局复杂程度明显增加;坝区盐生草甸只剩余少量小斑块,盐漠破碎化增加;泉山区的盐漠只剩余少量的小面积斑块。湖区人工林和盐漠破碎化增加;砂砾质和石质荒漠的连通性增强;盐生草甸和次生盐碱地减少的是小斑块,格局趋于简单。
     (5)从影响因素的时空变化分析了景观动态与格局变化成因。50年代以来不同区域的气候总体趋于暖干,虽然从70年代开始降水增加,但是气温也升高,使流域来水量持续减少,对植被影响不利,非地带天然植被和天然林减少,但是人工绿洲持续扩展,因此,人为干扰是石羊河流域景观变化的最主要原因。50年代修建红崖山水库,导致1987年前下游的民勤绿洲非地带天然植被迅速减少;70年代中游人工绿洲扩张使下游水资源减少而出现次生盐渍化和人工林退化;但是随着盐碱化减轻、开发地下水和种植价格高且耐旱耐盐碱的经济作物,80年代开始下游人工绿洲也扩展,人工林继续减少;最终导致90年代下游砂砾质和石质荒漠也迅速增加。
Landscape dynamics is the important part of environments changing analysis. As one ofthe three inland river basin in Hexi corridor, Shiyang river basin was experiencing drouth,salination, vegetation degeneration and obvious landscape change caused by natural and humandisturbers. Therefore landscape dynamics research could contribute to reflect the relationshipbetween disturbers and environments change. On the basis of landscape classificationaccording to the vegetation type,3periods landscape map from1974to2006of Shiyang riverbasin and6periods landscape map from1959to2006of Minqin oasis were obtained using RSand GIS technology.On completion of landscape classification and cartography, dynamicss andcauses of landscape pattern of Shiyang river basin since1959were analyzed using landscapeecological method.
     (1)Along with the increasing altitude, grassland, natural forest, sub alpine shrub and colddesert were distributed in the up reaches. Similar to up reaches, artificial oasis, salt vegetationand artificial forest together, gravel and lithoid desert and sandy desert were orderly distributedin Oasis Desert System with large area of saline desert and salt meadow distributed in the lowarea of the edge of sandy desert also. Gravel and lithoid desert,grassland, sandy desert andartificial oasis were the main landscape types of Shiyang river basin. Except natural forest,landscape types composed by local vegetation had well connectivity, whereas landscape typescomposed by alien vegetation only salt meadow and saline desert were well connected.
     (2)Landscape dynamics and pattern changes were different by regions. Compared withthe whole basin, up reaches was more fragmented, whereas middle reaches and lower reach’sstructure were simpler then the hole basin. From the east reaches to west reaches, salinationand landscape fragmentation aggravated, and that enhanced downwards the stream with theconnectivity of sandy desert and gravel and lithoid desert increased. Since1974, the landscapestructure tended to be complicated because of obviously increased fragmentation in the middle and lower reaches, and that enhanced from the middle to lower reaches; while the landscapestructure of the upper reaches tended to be simple, but with changing speed accelerated.
     Artificial oasis’s area percentage increased5.96%, and middle reaches exceed lowerreaches. Gravel and lithoid desert decreased most obvious by2.32%, especially in middlereaches. Artificial forest decreased obviously by1.45%, especially in lower reaches. Temperatedeciduous shrub, artificial forest, salt desert and secondary salt land, the most severely losslandscape types, were reduced to the original0.02,0.58,0.64and0.68, with salt desert mostobvious in middle reaches and others in lower reaches. Due to mass of small patches increasedin expending of artificial oasis and reducing of gravel and lithoid desert, artificial forest, saltdesert and secondary salt land, their landscape pattern complicated while that of otherssimplified.
     (3)Landscape dynamics and pattern changed by stage. During1974-1995, grasslandconversed to dry farmland in up reaches; gravel and lithoid desert, dry farmland and artificialforest conversed to artificial oasis in middle reaches; in lower reaches, salt meadow, temperatedeciduous shrub and salt desert conversed to gravel and lithoid desert, salt meadow and graveland lithoid desert conversed to, artificial oasis and artificial forest, artificial forest conversed toartificial oasis, artificial oasis conversed to secondary salt land. Eventually, the area percentageof grassland decreased1.76%in up reaches; gravel and lithoid desert, dry farmland andartificial forest decreased4.24%、1.99%and81%and artificial oasis increased8.02%inmiddle reaches; in lower reaches, artificial oasis, secondary salt and artificial forest increased2.23%、0.02%and0.85%, and gravel and lithoid desert decreased1.74%.
     During1974-1995, dry farmland conversed to grassland in up reaches; gravel and lithoiddesert and salt desert conversed to artificial oasis in middle reaches; in lower reaches, artificialforest, secondary salt land and gravel and lithoid desert conversed to artificial oasis, artificialforest conversed to gravel and lithoid desert. Eventually, the area percentage of dry farmlanddecreased0.99%in up reaches; artificial oasis increased4.25%in middle reaches; in lower reaches, artificial oasis and artificial forest increased3.07%and1.43%, artificial forest andsecondary salt land decreased0.45%and3.31%.
     (4)Landscape dynamics changes was concentrated in oasis. Same as the lower reaches,water, salt meadow, temperate deciduous shrub, salt desert and gravel and lithoiddesert(before1995) were decreased obviously but artificial forest and secondary salt land wereincreased in Huqu, Quanshanqu and Baqu before1987, while artificial forest and secondarysalt land were decreased but artificial oasis and gravel and lithoid desert were increased after1987. Until2007, water and temperate deciduous shrub were disappeared and Secondary saltland, salt meadow and salt desert remained few in Baqu and Quanshanqu; gravel and lithoiddesert decreased3.46%and artificial oasis increased17.87%in Bqqu; gravel and lithoid desertdecreased1.26and artificial oasis increased12.395in Quanshanqu; secondary salt land, graveland lithoid desert and sandy land increased3.20%(1/2times)3.53%and1.40%but artificialoasis decreased0.11%and artificial forest decreased2.62%(1/2times) compare to1974.
     The landscape structure of artificial oasis, artificial forest and gravel and lithoid deserttended to be complicated in, Baqu and Quanshanqu; salt desert fragmentation aggravated andonly few salt meadow patches were left in Baqu; only few salt desert patches were left inQuanshanqu; in Huqu, artificial forest and salt desert fragmentation aggravated and thelandscape structure of salt meadow and secondary salt land tended to be simple due to lossmass of small patches, but the connectivity of gravel and lithoid desert was increased.
     (5)The causes of landscape dynamics and landscape pattern changes were studied byanalysis Influence factors change. Climate tended to be dry and warm since50`s, although therainfall increased but the temperature was raised simultaneity since70`s led to water resourcesdecreased which had negative affect to vegetation, therefore, salt vegetation and natural forestdecreased, but artificial oasis increased proved that human disturbances were the main reasonof landscape dynamics. On account of building Hongyashan reservoir in50`s, salt vegetation inMinqin oasis decreased quickly before1987. The expansion of artificial oasis in middlereaches led to the shortage of water resources which resulted in secondary salinization and artificial forest’s degradation in lower reaches subsequently. But the artificial oasis increasedsince80`s and gravel and lithoid desert increased in lower reaches since90`s owing tosalinization weakening, groundwater exploitation and planting of high price, salt and droughttolerable economic crops in lower reaches.
引文
[1]师庆东,陈利军,潘晓玲,等.利用20年遥感影像分析西部干旱区植被演变特征[J].资源科学.2003,25(5):84-88.
    [2]施稚风.气候变化对西北华北水资源的影响[M].济南:科学技术出版社,1995.
    [3]杨维西.全球变化中的中国干旱区——响应与趋势[J].林业科学.2008,44(8):124-130.
    [4]许申来,李秀珍,胡远满,等.岷江上游黑水河流域不同景观结构小流域径流系数的比较[J].生态学杂志.2007,26(5):712-717.
    [5]李华蕾,肖笃宁,王秋兵,等.干旱区典型农业绿洲的景观变化与原因分析[J].生态学报.2004,24(9):1878-1883.
    [6]王浩,秦大庸,王研,等.西北内陆干旱区生态环境及其演变趋势[J].水利学报.2004(8):8-14.
    [7]邬建国.景观生态学——格局、过程、尺度与等级[M].北京:高等教育出版社,2002.
    [8]傅伯杰,吕一河,陈利顶,等.国际景观生态学研究新进展[J].生态学报.2008,28(2):798-804.
    [9]范建红,张弢,雷汝林.国外景观地理学发展的回顾与展望[J].世界地理研究.2007,16(1):83-89.
    [10]李秀珍,胡远满,贺红士,等.从第七届国际景观生态学大会看当前景观生态学研究的特点[J].应用生态学报.2007,18(12):2915-2916.
    [11]张秋菊,傅伯杰,陈利顶.关于景观格局演变研究的几个问题[J].地理科学.2003,23(3):264-270.
    [12]曹宇,肖笃宁,欧阳华,等.额济纳天然绿洲景观演化驱动因子分析[J].生态学报.2004,24(9):1895-1902.
    [13]陈利顶,傅伯杰,徐建英,等.基于“源—汇”生态过程的景观格局识别方法——景观空间负荷对比指数[J].生态学报.2003,23(11):2406-2413.
    [14]陈文波,肖笃宁,等.景观指数分类、应用及构建研究[J].应用生态学报.2002,13(1):121-125.
    [15]布仁仓,胡远满,常禹,等.景观指数之间的相关分析[J].生态学报.2005,25(10):2764-2775.
    [16]胡巍巍,王根绪,邓伟.景观格局与生态过程相互关系研究进展[J].地理科学进展.2008,27(1):18-24.
    [17]陈建军,张树文,郑冬梅.景观格局定量分析中的不确定性[J].干旱区研究.2005,22(1):63-67.
    [18]富伟,刘世梁,崔保山,等.景观生态学中生态连接度研究进展[J].生态学报.2009,29(11):6174-6182.
    [19]康相武,马欣,吴绍洪.基于景观格局的区域沙漠化程度评价模型构建[J].地理研究.2007,26(2):297-304.
    [20] Landscape connectivity changes analysis for monitoring desertification of Minqin county, China[J].
    [21]丁圣彦.整合景观生态学的理论基础[J].地理科学.2005,25(1):36-42.
    [22] Zonneveld I. Iand Ecology[M]. The Netherlands: SPB Academic Publishing,1995.
    [23] Li B L. Why is the holistic approach becoming80important in landscape ecology?[J]. Landscape andUrban Planning.2000,50:27-41.
    [24]李翠萍.基于景观生态学的福建沿海防护林安全分析[J].海峡科学.2010:-.
    [25]张娜.生态学中的尺度问题:内涵与分析方法[J].生态学报.2006,26(7):2340-2355.
    [26]王朗,徐延达,傅伯杰,等.半干旱区景观格局与生态水文过程研究进展[J].地球科学进展.2009(11):1238-1246.
    [27]杜泉滢,李智,刘书润,等.干旱、半干旱区湖泊周围盐生植物群落的多样性格局及特点[J].生物多样性.2007,15(3):271-281.
    [28]杨洪晓,张金屯,李振东,等.毛乌素沙地油蒿_Artemisiaordosica_种群空间格局对比[J].生态学报.2008,28(5):1901-1910.
    [29]赵海霞,李波,刘颖慧,等.皇甫川流域不同尺度景观分异下的土壤性状[J].生态学报.2005,25(8):2010-2018.
    [30]岳隽,王仰麟,李贵才,等.不同尺度景观空间分异特征对水体质量的影响——以深圳市西丽水库流域为例[J].生态学报.2007,27(12):5271-5281.
    [31]詹巍,徐福留,赵臻彦,等.区域生态系统景观结构演化定量评价方法[J].生态学报.2004,24(10):2263-2268.
    [32]祝锦霞,许红卫,王珂,等.基于GIS和地统计学的低丘红壤地区三种土壤性质空间变异性研究[J].土壤.2008,40(6):960-965.
    [33]郭旭东,傅伯杰,马克明等.基于GIS和地统计学的土壤养分空间变异特征研究—以河北省遵化市为例[J].应用生态学报.2000,11(4):556-557.
    [34]陈利顶,刘洋,吕一河,等.景观生态学中的格局分析:现状、困境与未来[J].生态学报.2008,28(11):5521-5531.
    [35]张军民,张建龙,马玉香.玛纳斯河流域-绿洲生态耦合的理论、方法及机制研究[J].干旱区资源与环境.2007,21(6):7-11.
    [36]王根绪,程国栋.干旱荒漠绿洲景观空间格局及其受水资源条件的影响分析[J].生态学报.2000,20(3):363-368.
    [37]陈敏建,王浩,王芳.内陆干旱区水分驱动的生态演变机理[J].生态学报.2004,24(10):2108-2114.
    [38]卢玲,李新,等.黑河流域景观结构分析[J].生态学报.2001,21(8):1217-1224.
    [39]马明国,杨国靖,角媛梅,等.河西走廊典型绿洲景观格局比较研究——以张掖、临泽、高台、酒泉为例[J].干旱区研究.2003,20(2):81-85.
    [40]彭茹燕,刘连友,张宏.人类活动对干旱区内陆河流域景观格局的影响分析——以新疆和田河中游地区为例[J].自然资源学报.2003,18(4):492-498.
    [41]彭茹燕,王让会,等.基于NOAA/AVHRR数据的景观格局分析——以塔里木河干流区域为例[J].遥感技术与应用.2001,16(1):28-31.
    [42]李世明,陈国栋,李元红等.河西走廊水资源合理利用与生态环境保护[M].郑州:黄河水利出版社,2002.
    [43]杨国靖,肖笃宁,周立华.祁连山区森林景观格局对水文生态效应的影响[J].水科学进展.2004,15(4):489-494.
    [44]任建民,忤彦卿,贡力.人类活动对内陆河石羊河流域水资源转化的影响[J].干旱区资源与环境.2007,21(8):7-11.
    [45]高前兆,李小雁,仵彦卿,等.河西内陆河流域水资源转化分析[J].冰川冻土.2004,26(1):48-54.
    [46]魏晓妹,康绍忠,马岚,等.石羊河流域绿洲农业发展对水资源转化的影响及其生态环境效应[J].灌溉排水学报.2006,25(4):28-32.
    [47]孟宝,张勃,张华,等.黑河中游张掖市土地利用/覆盖变化的水文水资源效应分析[J].干旱区资源与环境.2006,20(3):94-99.
    [48]程国栋,肖笃宁.论干旱区景观生态特征与景观生态建设[J].地球科学进展.1999,14(1):11-15.
    [49]张新时.天山北部山地—绿洲—过渡带—荒漠系统的生态建设与可持续农业范式[J].植物学报:英文版.2001,43(12):1294-1299.
    [50]马媛,师庆东,潘晓玲.西部干旱区生态景观格局动态分析[J].干旱区地理.2004,27(4):516-519.
    [51]倪健,郭柯,刘海江,等.中国西北干旱区生态区划[J].植物生态学报.2005,29(2):175-184.
    [52]张百平,罗格平.干旱区山地生态格局与可持续发展[J].干旱区研究.2005,22(4):419-423.
    [53]刘虎俊,王继和,马全林,等.干旱区荒漠景观植被自然更新机制初探[J].干旱区研究.2005,22(3):301-305.
    [54]张勃,张凯,等.干旱区绿洲空间分异演化研究—以黑河流域绿洲为例[J].冰川冻土.2002,24(4):414-420.
    [55]王建,李硕.气候变化对中国内陆干旱区山区融雪径流的影响[J].中国科学:D辑.2005,35(7):664-670.
    [56]赖祖铭.祁连山东段山区温度变化与径流的关系初探[A].中国科学院兰州冰川冻土研究所集刊,第5号[C][C].北京:科学出版杜.
    [57]杜巧玲,许学工,刘文政.黑河中下游绿洲生态安全评价[J].生态学报.2004,24(9):1916-1923.
    [58]吴波.人类活动在干旱区绿洲地区环境退化中的作用:以黑河下游为例[J].第四纪研究.1999(3):287.
    [59]王玉朝,赵成义.绿洲开发与绿洲荒漠化研究[J].干旱区资源与环境.2003,17(6):24-30.
    [60]张丽,董增川.黑河流域下游天然植被生态需水及其预测研究[J].水利规划与设计.2005(2):44-47.
    [61]李卫红,郝兴明,覃新闻,等.干旱区内陆河流域荒漠河岸林群落生态过程与水文机制研究[J].中国沙漠.2008,28(6):1113-1117.
    [62]李小明,张希明.塔克拉玛干沙漠南缘自然植被的水分状况及其恢复[J].生态学报.2003,23(7):1449-1453.
    [63]夏训诚.库姆塔格沙漠的基本特征[A].中国科学院新疆分院罗布泊综合科学考察队.罗布泊科学考察与研究[C].北京:科学出版社,1987.78-94.
    [64]祝列克.中国荒漠化和沙化动态研究[M].北京:中国农业出版社,2006.
    [65]龚家栋,李小雁.黑河流域不同下垫面区域的气候变化特征[J].冰川冻土.2001,23(4):423-431.
    [66]潘晓玲,马映军,等.中国西部干旱区生态环境演变与调控研究进展与展望[J].地球科学进展.2003,18(1):50-57.
    [67]季方,樊自立.塔里木盆地盐分循环变化与调控研究[J].干旱区研究.2000,17(4):33-38.
    [68]贾宝全,慈龙骏,等.绿洲荒漠化及其评价指标体系的初步探讨[J].干旱区研究.2001,18(2):19-24.
    [69]林毅,王让会,黄俊芳,等.新疆北屯绿洲弃耕农田的植被变化特征[J].干旱区研究.2007,24(6):747-752.
    [70]甘肃河西地区土地荒漠化的现状、成因及其防治[J].
    [71]王雪梅,柴仲平,塔西甫拉提·特依拜,等.干旱区土壤盐渍化及其影响因子分析——以渭干河-库车河三角洲绿洲为例[J].土壤.2009,41(3):477-482.
    [72]马金珠,朱中华,李吉均.塔克拉玛干沙漠南缘地下水在脆弱生态环境中的作用[J].兰州大学学报:自然科学版.2000(4):88-95.
    [73]陈鹏,初雨,顾峰雪,等.绿洲-荒漠过渡带景观的植被与土壤特征要素的空间异质性分析[J].应用生态学报.2003,14(6):904-908.
    [74]赵雪,张小由,李启森,等.额济纳绿洲沙漠化对柽柳群落影响的研究[J].中国沙漠.2004,24(4):467-472.
    [75]王继和,马全林.民勤绿洲人工梭梭林退化现状、特征与恢复对策[J].西北植物学报.2003,23(12):2107-2112.
    [76]丁建丽,张滢,塔西甫拉提·特依拜.绿洲-荒漠交错带土地利用/覆盖时空变化研究[J].环境科学研究.2006,19(6):100-105.
    [77]唐立松,张佳宝,等.干旱区绿洲荒漠交错带土地退化及生态重建[J].干旱区研究.2002,19(3):43-48.
    [78]丁建丽,塔西甫拉提·特依拜.基于NDVI的绿洲植被生态景观格局变化研究[J].地理学与国土研究.2002,18(1):23-26.
    [79]王金叶,车克钧,等.干旱半干旱区山地森林的水分调节功能[J].林业科学.2001,37(5):120-125.
    [80]杨国靖,丁永建,肖笃宁.干旱区山地典型流域不同景观结构的水文调节能力分析[J].冰川冻土.2005,27(5):701-708.
    [81]许申来,李秀珍,何兴元.岷江上游不同景观结构小流域水量平衡的比较[J].应用生态学报.2006,17(10):1832-1838.
    [82]肖鲁湘,罗格平,曦陈.干旱区冲洪积扇-冲积平原绿洲浅层地下水质时空变化初步分析——以三工河流域绿洲为例[J].2005,28(2):225-228.
    [83]李小玉,武开拓,肖笃宁.石羊河流域及其典型绿洲景观动态变化研究[J].冰川冻土.2004,26(6):747-754.
    [84]刘恒,顾颖,等.西北干旱内陆河区水资源利用与绿洲演变规律研究—以石羊河流域下游民勤盆地为例[J].水科学进展.2001,12(3):378-384.
    [85]张飞,塔西甫拉提·特依拜,丁建丽,等.干旱区绿洲土地利用/覆被及景观格局变化特征——以新疆精河县为例[J].生态学报.2009,29(3):1251-1263.
    [86]李并成.今天的绿洲较古代绿洲大大缩小了吗?——对于历史时期绿洲沙漠化过程的一些新认识[J].资源科学.2001,23(2):17-21.
    [87]张家宝,光史玉.新疆气候变化及短期气候预测研究[M].北京:气象出版社,2002.
    [88]郑丙辉,田自强,李子成.黑河流域土地覆盖变化与生态环境退化过程分析[J].干旱区资源与环境.2005,19(1):62-66.
    [89]李小玉,肖笃宁.石羊河流域中下游绿洲土地利用变化与水资源动态研究[J].水科学进展.2005,16(5):643-648.
    [90]王琪,史基安,等.石羊河流域环境现状及其演化趋势分析[J].中国沙漠.2003,23(1):46-52.
    [91]赵文智,庄艳丽.中国干旱区绿洲稳定性研究[J].干旱区研究.2008,25(2):155-162.
    [92]钱正英,沈国舫,潘家铮.西北地区水资源配置生态环境建设和可持续发展战略研究(综合卷)
    [M].北京:科学出版社,2004.
    [93]曲耀光.旱区水资源的合理利用与环境变化及其控制途径[J].中国沙漠.1982,2(2):9-16.
    [94]张晓东,颉耀文,史建尧,等.石羊河流域土地利用与景观格局变化[J].兰州大学学报:自然科学版.2008,44(5):19-25.
    [95]黄玉霞,王宝鉴,张强,等.气候变化和人类活动对石羊河流域水资影响评价[J].高原气象.2008,27(4):866-872.
    [96]肖笃宁,李小玉,宋冬梅.石羊河尾闾绿洲的景观变化与生态恢复对策[J].生态学报.2005,25(10):2477-2483.
    [97]张勃,石培基.甘肃石羊河流域武威绿洲水资源系统分析[J].西北师范大学学报:自然科学版.1994,30(3):73-79.
    [98]李小玉,肖笃宁,何兴元,等.内陆河流域中、下游绿洲耕地变化及其驱动因素--以石羊河流域中游凉州区和下游民勤绿洲为例[J].生态学报.2006,26(3):671-680.
    [99]杨永春,Jacquieburgess,等.石羊河下游民勤绿洲变化的人文机制研究[J].地理研究.2002,21(4):449-458.
    [100]刘志明,王贵玲,蔺文静.石羊河流域平原地下水位动态特征与监测网观测频率优化[J].中国沙漠.2006,26(1):85-89.
    [101]马金珠,魏红.民勤地下水资源开发引起的生态与环境问题[J].干旱区研究.2003,20(4):261-265.
    [102]蓝永超,康尔泗.河西内陆干旱区主要河流出山径流特征及变化趋势分析[J].冰川冻土.2000,22(2):147-152.
    [103]柳景峰,张勃.河西内流干旱区气候变化与径流的时空耦合分析——以黑河中上游地区为例[J].资源科学.2008,30(7):1105-1114.
    [104]马国军,刘君娣,林栋,等.石羊河流域水资源利用现状及生态环境效应[J].中国沙漠.2008,28(3):592-597.
    [105]常兆丰,韩福贵,仲生年,等.石羊河下游沙漠化的自然因素和人为因素及其位移[J].干旱区地理.2005,28(2):150-155.
    [106]丁文广,卜红梅.产业结构调整对石羊河流域水资源可持续利用的影响——以民勤县为例[J].干旱区资源与环境.2008,22(11):19-23.
    [107]陈荷生.甘肃民勤盆地地下水资源条件变化对环境的影响[J].自然资源.1984,13(1):62-71.
    [108]刘家琼.民勤梭梭死亡原因的研究[J].中国沙漠.1984,2(2):62-71.
    [109]杨永春.干旱区流域下游绿洲环境变化及其成因分析——以甘肃省河西地区石羊河流域下游民勤县为例[J].人文地理.2003,18(4):42-47.
    [110]贾宝全,慈龙骏,蔡体久,等.绿洲-荒漠交错带环境特征初步研究[J].应用生态学报.2002,13(9):1104-1108.
    [111]民勤县志编委会.民勤县志[M].兰州:兰州大学出版社,1994.
    [112]甘肃省地质局第二水文地质队.甘肃省河阿地区地下水资源[M].北京:地质出版社,1983.
    [113]李金标,王刚,李相虎,等.石羊河流域近50a来气候变化与人类活动对水资源的影响[J].干旱区资源与环境.2008,22(2):75-80.
    [114]李骏.从两西移民看西部贫困地区人口迁移[J].甘肃社会科学.2001,5.
    [115]郇建立.国家政策对农村贫困的影响[J].北京科技大学学报(社会科学版).2002,18(2):6-12.
    [116]卜红梅.环境或公共政策演变对石羊河流域水资源利用的影响及对策研究[D].2006.
    [117] Yangyong-Chun, Jacquieburges. Study of the impact of human activity on ecological environment andthe counter-action of environment changes on mankind in Minqin Basin of Gansu--Based on a socialinvestigation in1999-2000[J].兰州大学学报(自然科学版).2002,38(5).
    [118]王忠静,王海峰,雷志栋.干旱内陆河区绿洲稳定性分析[J].水利学报.2002(5):26-30.
    [119]魏伟,赵军,王旭峰. GIS、RS支持下的石羊河流域景观利用优化研究[J].地理科学.2009,29(5):750-754.
    [120]李小玉,张峰,肖笃宁.石羊河流域中、下游绿洲景观动态变化的比较研究[J].水土保持学报.2004,18(5):151-154.
    [121]焉莉.基于3S技术的西部石羊河流域土地利用/土地覆盖变化研究[J].地质与资源.2003,12(3):188-192.
    [122]中国科学院自然区划工作委员会.中国潜水区划[G].北京:科学出版社,1959.
    [123]井学辉.民勤绿洲景观格局与动态及荒漠化成因分析[D].河北农业大学,2005.
    [124]徐丽宏.干旱区绿洲-荒漠系统生态用水研究——以甘肃民勤和新疆阜康为例[R].北京:中国林业科学研究院,2005.
    [125]张素红.荒漠化防治区化与典型区荒漠化动态研究[R].,2010.
    [126]徐丽宏,刘鸿雁,楚新正,等.天山北麓典型地段植被对景观格局和动态的指示意义[J].生态学报.2004,24(9):1966-1972.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700