可逆式水泵水轮机水力设计及内部流场分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为达到必需的电网调节能力,电力系统中应至少装有总容量5%的抽水蓄能电站,若要达到较好的调节能力,则需要有总容量10%的蓄能装机。“十二五”抽水蓄能规划中有专家认为,抽水蓄能机组设备国产化能力的不足,增加了抽水蓄能电站的投资成本,影响了抽水蓄能电站的发展。
     可逆式水轮机两种工况点并不重合,故无论是转轮的设计或选型都需要一定的折衷,在确定基本参数的基础上从一个工况开始,使用现有的水力设计方法进行计算,再用另一个工况来校核。本文在此设计理念的基础上设计出了满足性能要求的转轮,并尝试性的研究了可逆机不同工况点的水力性能。
     转轮设计借鉴低比转速混流式水轮机的叶片设计原理,对一给定参数的可逆机利用水轮机设计理论进行水力设计、三维造型、ICEM网格划分,考虑到高应变率和大曲率过流面等因素的影响采用RNG k-ε模型来封闭求解N-S方程。采用有限元体积法进行离散,离散方程的压力-速度耦合的处理采用压力耦合方程组的半隐式方法(SIMPLEC)算法。利用Fluent软件模拟并反复修正模型,预测了可逆机设计工况下的转轮效率。分析了不同工况点中蜗壳,转轮,尾水管的压力场和速度场的变化,以及内部漩涡的生成原因对其此处压力场、速度场的影响。
     数值实验结果表明可逆机水轮机工况的最优效率达到91%,水泵工况的最优效率达到82%,反复修正模型还有进一步提升的空间。水泵断电过程中蜗壳内部流动紊乱程度大,二次流,漩涡,流动分离等现象比较严重。这为可逆机水泵工况断电过程中压力突变的定量分析提供了一种新的方法,也为其它工况的计算以及可逆机转轮的水力设计提供了一种新的参考,同时,用CFD技术直观的反映了可逆机不同工况点的水力性能,拟补了经验数据的不足。对于可逆机的转轮设计以及结构优化都有一定的应用价值。
To achieve the necessary adjustment ability of the network, at least5%of the totalcapacity of pumped storage power station should be installed in the power system and10%to achieve better adjustment ability. Experts of pumped-storage plan in"12th Five-Year" believed that the inadequate domestic capacity of pumped-storagefacilities had increased the investment costs and influenced the development ofpumped-storage power station.
     Pump-turbine’s two conditions don’t coincide, so whether the design or selectionof the runner requires some compromise. Based on the determined basic parameters, acondition was calculated using existing hydraulic design methods from the start andchecked by another condition. In this paper, the runner which can meet theperformance requirements was designed on the basis of this concept and attempted tostudy the pump’s hydraulic performance during different operating conditions.
     The runner design uses the design principle of low specific speed Francisturbine's blade, then hydraulic design,3D modeling and ICEM meshing were carriedon a pump-turbine with given parameters. Taking into account the factors of highstrain rate and curvature over the stream surface, RNG k-model was used to solveN-S equations. The finite volume method was used to discrete and SIMPLECalgorithm was used to solve pressure-speed coupling equations. By simulating themodel with the software of Fluent and correcting repeatedly, the efficiency ofpump-turbine under design condition was predicted. Besides, the changes of thepressure field and velocity field in volute, runner and draft tube were analyzed duringdifferent operating conditions, then the paper illustrated the influence of internalwhirlpool’s generation causes to the pressure field and velocity field.
     This design method has provided a new reference for pump-turbine runner'shydraulic design and made up for the lack of empirical data by using CFD technologyto give a direct-viewing reflection of hydraulic performances simultaneously,Numerical experiment results show that the optimal efficiency of turbine’s operatingcondition can reach91%and the optimal efficiency of pump’s can reach82%.Therewill be a further improvement if modify the model repeatedly. There are greatturbulent flow,secondary injection,swirl and flow separation in the volute.This canprovide a new method for the quantitative analysis of sudden change pressure duringthe transition when electricity goes off at Pump working and give some enlightenment for the calculation of other transition process. It’s valuable for pump-turbine runner'sdesign and structural optimization.
引文
[1]梅祖彦.抽水蓄能发电技术[M].机械工业出版社,2000
    [2]林明华.世界抽水蓄能电站建设特点与发展趋向[J].水力发电学报,1996.3
    [3]齐学义.关于提灌——发电可逆机转轮水力设计的初步探讨[J].兰州理工大学学报第二期,1981
    [4]刘伟超.可逆机转轮的CFD设计[J]华中科技大学,2003
    [5]杨琳.陈乃祥.樊红刚,可逆机转轮全三维逆向设计方法[J].清华大学学报(自然科学版),2005
    [6]冉红娟,须洪元,罗先武,刘树红.可逆机的数值模拟与性能分析[J].大电机技术,2009
    [7]王焕茂,吴新润,可逆机转轮叶片速度和压力计算[J].国外大电机第3期,2009
    [8]方彦凯,蒋英.可逆式可逆机内部流场计算与稳定性分析[J].淮海工学院学报,2010
    [9]易承勇,可逆式机组低水头运行特性分析及应对措施[J].水电站机电技术,2010
    [10]曹鵾,姚志民.水轮机原理及水力设计[M].清华大学出版社,1991
    [11]齐学义.流体机械设计理论与方法[M].中国水利水电出版社,2008
    [12]John H. Gummer.Combating Silt Erosion In Hydraulic Turbines[J]. Hydro reviewworldwide,2009,17(1):28-34
    [13]刘大恺.水轮机[M].中国水利水电出版社,1996
    [14]查森,叶片泵原理及水力设计[M].江苏工学院,1987
    [15]喻忻.混流式水轮机模型参数选择[J].水电站机电技术,2007,30(4):13-15
    [16]陈次昌,宋文武.流体机械基础[M].机械工业出版社,2003
    [17]李仁年,苏发章.水轮机活动导叶的耐磨设计及实验研究[J].水动力学研究与发展2003
    [18]李琪飞,李仁年,韩伟,敏政.混流式水轮机引水,导水部件内部固液两相流的数值分析[J].兰州理工学报,2008
    [19]沈仲华.水轮机效率试验原理及方法探讨[J].装备制造技术,2009(5):20-21
    [20]黄剑锋,张立翔,王文全.混流式水轮机全流道三维非定常湍流场的动态大涡模拟[J].中国农村水利水电,2009(1):101-108
    [21]黄剑锋,张立翔,王文全,姚激.混流式水轮机全流道三维非定常流场数值模拟[J].水电能源科学,2009,27(1):155-214
    [22]罗兴锜,姬晋廷,逯鹏,廖伟丽,华晔.混流式水轮机定常流动分析[J].机械工程学报,2009,45(4):208-218
    [23]黄剑锋,姚激.混流式水轮机全流道三维流场数值模拟[J].中国农村水利水电,2008(7):112-115
    [24]张海库,刘小兵,曾永忠,王忠全,张德祥.基于全流道的混流式水轮机内部流动的三维数值模拟[J].水力发电,2009,35(3):51-53
    [25]郑莹,刘小兵,曾永忠.混流式水轮机全流道三维数值模拟[J].山东农业大学学报,2009,40(1):124-128
    [26]杨昌明,许丽丽.混流式转轮与导叶相互干涉的非定常数值模拟[J].农业机械学报,2008,39(2):67-88
    [27]黄剑锋,张立翔,何士华.混流式水轮机全流道三维定常及非定常流数值模拟[J].中国电机工程学报,2009,29(2):87-94
    [28]关醒凡,《泵的理论与设计》,机械工业出版社,1986
    [29]廖伟丽,李建中.混流式水轮机蜗壳内流动的数值研究[J].大机电技术,2002:54-58
    [30]李仁年,袁建平,薛建平,等.含沙水时水轮机活动导叶的设计及实验研究[J].发电设备,1999(6):24-27
    [31]李仁年,苏发章.水轮机活动导叶的耐磨设计及实验研究[J].水动力学研究与进展,2003,18(4):446-449
    [32]郑津生,韦彩新.南桠河电站水轮机导水机构改造的CFD分析[J].东方电气评论,2004,18(1):10-14
    [33]张宇宁,刘树红,吴玉林,等.应用三维导叶的混流式水轮机湍流计算[J].水力发电学报,2008,27(3):137-140
    [34]周凌九.水轮机转轮流场计算及性能预测[D].中国农业大学博士论文,1999
    [35]关仁卿.混流式可逆机蜗壳及尾水管的比较实验.清华大学水力机械实验室报告,1976
    [36]何士华,张立翔,武亮.混流式水轮机转轮叶片的自由曲面构造[J].水力发电,2005,31(3):54-55
    [37]侯祎华,齐学义,常一乐,等.基于PRO/E的水轮机转轮三维造型[J].排灌机械,2006,24(1):14-16
    [38]戴玉姝,王霄,蔡兰.离心泵叶轮扭曲叶片参数化实体造型方法探讨[J].排灌机械,2004,22(1):20-22
    [39]梁武科,罗兴锜,吴广宽.混流式水轮机叶片自由曲面的延展[J].水利学报,2003(5):69-73
    [40]齐学义,江良荣,张新杰,等.基于PRO/E的混流式水轮机叶片的三维造型[J].兰州理工大学学报,2008,34(2):41-44
    [41] Thompson J.F., Warsi Z.V.A.,and Mastin C.W.,Boundary-fitted coordinatessystems for numerical solutions of Partial differential equations-A Review[J].Journal of Computational Physics,1982,47(1):101-108
    [42]王福军.计算流体动力学分析——CFD软件原理与应用[M].清华大学出版社,2005
    [43]王瑞金,张凯,王刚.Fluent技术基础与应用实例[M].清华大学出版社,2007
    [44]Shu-Hong Liu,Yu-Lin Wu,Liang Zhang,Yu Xu,Yoshinobu Tsujimoto. VorticityAnalysis of a Cavitating Two-Phase Flow in Rotating[J]. International Journal ofNonlinear Sciences and Numerical Simulation,2009(5):601-616
    [45]J.G.I.Hellstroem,B.D.Marjavaara,T.S.Lundstroem. Parallel CFD simulations ofan original and redesigned hydraulic turbine draft tube[J].Advances inEngineering Software,2007,38(5):338-344
    [46]Xavier Escaler,Eduard Egusquiza,Mohamed Farhat,Francois Avellan,MiguelCoussirat.Detection of cavitation in hydraulic turbines[J].2006,20(4):983-1007
    [47]Atsushi Izena、Hidemi Kihara,Toshikazu Shimojo,kaiichirou Hirayama,NobuhikoFurukawa,Takahisa Kageyama,Takashi Goto,Chosei Okamura.Practical HydraulicTurbine Model[C].2006Power Engineering Society General Meeting (PES2006),2006,8:3837-3843
    [48]黄剑峰,王灿宇,文俊,等.基于CFD的混流式水轮机内的涡旋研究[J].云南农业大学学报,2010(1):147-151
    [49]辛喆,张兰金,常近时.混流式水轮机导叶绕流的三维湍流数值模拟[J].中国农业大学学报,2005,10(2):53-57
    [50]陶文铨.数值传热学[M].西安交通大学出版社,2001
    [51] J.G Wissink. DNS of seParating low Reynolds umber flow in a turbine cascadewith incoming wakes.International Journal of Heat and Fluid Flow,2003,24(4):626-635
    [52]王林锁.抽水蓄能电站水力过渡过程调节控制研究[J].河海大学,2005

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700