基于输水系统和水轮机详细模型的水电系统联合仿真
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着大型水电站和抽水蓄能电站的不断兴建和投入运行,水电在我国电力系统中的比重逐年增大,水电系统的稳定性问题日益突出,同时也对水电系统仿真提出了更高的要求。电力系统仿真往往采用粗略的输水系统—水轮机模型,而水力系统仿真则往往采用粗略的同步电机—电力系统模型。采用这种水或电的单方面简化模型不能准确反映水力系统与电力系统的耦合作用,对于诸如电力系统中长期稳定、水轮发电机组再同步、调压井系统大波动稳定等这些与水电耦合和自动调节作用密切相关的问题的研究,可能导致不合理的结论。因此,开展学科交叉研究,建立合理的水电系统详细模型,研究水电系统大扰动过程的仿真算法,对于弥补我国电力系统仿真计算中存在的输水系统—水轮机模型过于粗略的不足,提高水电系统仿真水平,是非常必要的。
     鉴于电力系统研究中输水系统和水轮机模型过于简单的情况,本文首先归纳引入了复杂输水系统和水轮机的详细模型,建立了适合大扰动动态过程计算的水电系统详细数学模型,包括基于特征线法的复杂输水系统自动建模模型、混流式水轮机的线性模型和非线性模型、调压井通用模型、同步发电机模型、调速器模型、励磁系统模型和电网模型等。复杂输水系统的自动建模对于电力系统研究者而言是非常重要的,本文建立的输水系统自动建模模型包括输水系统各种典型单元的数学描述,计及了弹性水击的影响和复杂管道之间的耦合作用,可以适应输水系统结构的复杂多样性,具有较高的精度和建模效率。归纳介绍了混流式水轮机的模型,包括基于模型综合特性曲线的线性化模型、基于内特性描述的线性化模型、基于全特性曲线的非线性模型和简单解析非线性模型等,对这些水轮机模型进行分析比较,认为它们的特点各有不同,应根据研究目的和已知条件来选择合适的模型。
     计及弹性水击后,水力系统模型和电力系统模型的形式有很大的差异,水力系统模型含有偏微分方程组,而电力系统模型为常微分方程组。直接将与这两种模型对应的差分方程联立求解有一定难度,即如果直接联立求解,要求差分方程的数目固定,这将不利于复杂输水系统的自动建模。为解决这一问题,本文提出了一种将水力系统和电力系统方程交替求解的水电系统联合仿真算法,即将包括输水系统、水轮机以及机组转子等部分的水力系统差分方程作为一部分,将包括同步发电机、励磁系统以及电网等部分的电力系统微分方程或差分方程作为另一
    
    郑州大学工学硕士论文
    部分,对前一部分采用特征线法求解,对后一部分根据模型形式采用龙格一库塔
    法或隐式积分法等算法求解,这两部分的求解过程交替进行,最终即可得到水电
    系统大扰动过程的仿真结果。这种水电系统联合仿真算法,既可满足各种复杂输
    水系统自动建模的要求,又能提高计算速度,保证计算精度,计算程序也简单明
    了,易为水电两个专业的研究者接受。
     采用C++ Bullder可视化语言,编制了独立的复杂输水系统一简单电力系统大
    扰动过程仿真软件。采用Visua1C十十可视化语言编制了采用复杂输水系统弹性水击
    模型和水轮机详细模型的水力系统动态仿真用户程序,通过中国电力科学研究院
    PSASP程序提供的用户程序接口,与PASASP程序联合实现了复杂水电系统大扰
    动过程的仿真计算。采用两个程序对上述两种不同的水电系统分别进行大扰动过
    程仿真计算,取得了合理可信的结果,表明了水电系统详细模型和联合仿真算法
    的正确性。
With the building and operating of large-scale hydro power stations and pumped storage plants, the proportion of water power to power system is increasing year by year in china and the stabilization problem of hydro-electrical system is standing out, which bring forward higher requirement to the united simulation of hydro-electrical system. The transient simulation of power system uses usually simplified models of conduit system and hydro turbine. Similarly the simplified models of synchronous generator and power system are used in transient simulation of hydraulic system. The oversimplified models can not reflect the mutual effect of hydraulic system and power system, and they may cause irrational conclusions when they are used in the studies on middle or long term stability, resynchronization of hydro turbine and generator and large-disturbance surge tank system that relate closely to the mutual effect of hydraulic system and power system or the auto governing. Consequently in order to make up the faults that hydro turbine models are single and simply and models of complex conduit system are scarce, it is necessary that the detail models of hydro-electrical system be established to make crossed study of different subjects and the simulation arithmetic of the large-disturbance transient be studied.
    On account that models of conduit system and hydro turbine are oversimplified, first of all the detail models of complex conduit system and hydro turbine are summed up, and then the detail models of hydraulic system and power system which are fit for the large disturbance transient calculation are established, including auto modeling models of complex conduit system based on the characteristic equations, linear and nonlinear models of Francies' hydro turbine, surge tank's current model and generator's model, governor's model, excitation system's model and grids' model in the thesis. The auto modeling of complex conduit system is very important for the researchers of power system. In the thesis the conduit auto modeling models consist of the mathematic descriptions of a variety of typical units and take account of the effect of elastic hammer and mutual action of complex conduits, which can adapt to the complexity of the construction of conduit system and have high precision and efficiency. The Francies' hydro turbine models are induced, comprising of the linear model based on the model characteristic curves, the linear model based on the internal characteristics description, the nonlinear model based on four-quadrant characteristics and simply analytic nonlinear model. As a result of comparison of these models, it is believed that these models have different traits and the proper model should be selected according to the study purpose and known conditions.
    The equation's forms of the hydraulic system models with elastic hammer have
    
    
    
    great difference from power system models that hydraulic system models have partial-differential equations while the power system models all are constant-coefficient differential equations. Because directly resolving equations requires constant equation number, it is difficult that the equations corresponding to two models are directly combined together to resolve, which isn't to the good for the auto modeling of complex conduit system. In order to resolve the question, in the thesis a simulation arithmetic of hydro-electrical system is put up. The equations of hydro-electrical system are divided to two parts, one of which consists of the differential equations of conduit system, hydro turbine and generator's rotator and is solved by characteristic equation arithmetic, the other of which consists of the differential equations of generator, magnetic system and grid and is solved by longge-kuta arithmetic or covert integrated arithmetic. Through the alternative solving of the two parts, the simulation results of the large-disturbance transient could be abstained eventually. The simulation arithmetic of hydro-electrical system can meet the requirement of auto modeling of complex cond
引文
[1] 刘玉梅,王金华.水轮机被控系统的特征及其数学模型的建立.大电机技术。1999,(5):44-50
    [2] 陈舟,陈寿孙,张中华,等.水力系统模型对电力系统暂态稳定分析的影响.清华大学学报.1 996,6(7):13-18
    [3] 陈舟,刁勤华,陈寿孙,等.水力系统模型对电力系统低频振荡分析的影响.清华大学学报.1996,36(7):67-72
    [4] Kundur R Power System Stability and Control.McGraw-Hill,1994:727-780 782-792 388-393 379-387 387-394 405-418
    [5] 常近时,白朝华,寿梅华,等.天生桥二级水电站水轮机装置甩负荷过渡过程的动态特性.水力发电.1995,7(35-38)
    [6] 寿梅华,张秀彬.水轮机线性控制系统动态模型研究.中国电机工程学报.1984,4(2):48-57
    [7] 常近时.水力机械过渡过程。机械工业出版社
    [8] 沈祖诒.水轮机调节.水利电力出版社.
    [9] 卫志农,陈剑光,潘学萍,等.水机电系统相互作用研究.电力系统自动化.2000,24(24):27-29
    [10] 潘学萍,鞠平,卫志农.调度员培训仿真器中计及水力系统的动态全过程仿真.电力系统及其自动化学报.2001,13(4):36-42
    [11] 张承慧,刘玉庆.水轮机建模与参数识别.电力系统自动化.1997,21(5):53-56
    [12] E.D. Jaeger, N.Janssens,B.Malfliet,etal. Hydro Turbine Model for System Dynamic Studies. IEEE Trans on PWRS. 1994, 9(4):1709-1715
    [13] 张霄元,郑玉森,刘长胜,等.水轮机参数在线辨识及调节器参数自整定.电力系统及其自动化学报.2000,12(2):16-18
    [14] 陆佑楣,潘家铮.抽水蓄能电站.水利电力出版社.
    [15] 陈乃祥,钱涵欣等.抽水蓄能电站过渡过程仿真自动建模及通用程序.水利学报.1994,10(10):47-52
    [16] 程远楚.水电站水击通用计算程序设计.水电站设计.1997,13(2),59-66
    
    
    [17] Working Group on Prime Mover and Energy Supply Models for System Dynamic Performance Studies: Hydraulic Turbine and Turbine Control Models for System Dynamic Studies. IEEE Trans on PWRS. 1992, 7(1):167-179
    [18] 孙郁松,孙元章,卢强.水轮机发电机水门非线性控制规律的研究.电力系统自动化.1999,23(23):33-36
    [19] 张洪楚.用微机进行水轮发电机组过渡过程计算.河海大学学报.1989,17(2)
    [20] 陈嘉谋,李郁侠.具有复杂引水管道地水轮机调节系统数学模型.大电机技术.1992,5:55-59
    [21] 王晋平.水轮机动态特性传递系数的内特性描述.水电设备.1987,1:41-47
    [22] 西安交通大学等编.电力系统计算.水利电力出版社.1978.
    [23] 张昌期,唐明晰.水电厂水机电联合系统软件包.华中工学院学报.1984,12(2):57-62
    [24] Mansoor.Reproducing Oscillatory Behaviour of a Hydroelectric Power Station by Computer Simulation. Control Engineering Practice. 2000, 8(11): 1261-1272
    [25] D.J. Trudnonski, J.C.Agee. Identifying a Hydraulic-Turbine Model From Measured Field Data.IEEE Trans on EC. 1995, 10(4):768-773
    [26] J.S.Czuba,L.N.Hannett,J.R.Willis. Implementation of Power System Stabilizer at the Ludington Pumped Storage Plant.IEEE Trans on PWRS. 1986,1(1):121-128
    [27] 戴敏,刘炳文,蔡维由.具有不同引水管道的水轮机调节系统数学模型.武汉水利电力大学学报.1997,30(2):23-27
    [28] Ni Fusheng.Numerical Simulation of Hydraulic Transients in Hydropower Plant Using Safety Membranes. Journal of Hydraulic .Research 1996,122(6):298-300
    [29] Souza. Study of Hydraulic Transients in Hydropower Plants through Simulation of Nonlinear Model of Penstock and Hydraulic Turbine Model. IEEE Trans on PWRS. 1999,14(4):1269-1272
    [30] H.W.Weber, D.Zimmermann. Investigation of the Dynamic Behaviour of a High Pressure Hydro Power Plant in the Swiss Apls During the Transition from Interconnected to Isolated Operation. 12th Power Systems Computation Conference. Dresden. 1996, 1049-1054
    [31] 容伟洪.装有轴流式机组的水电站调节系统过渡过程研究.大电机技术,1993,1.
    [32] 杨开林.水轮机瞬变过程的特征线微增量计算方法.水利学报.1987,1
    
    
    [33] J.B.Codrington.Computer Representation of electrical System Interaction with a Hydraulic Turbine and Penstock.IEEE PAS, 1982,8,101
    [34] D.J. Trudnonski, J.C.Agee. Identifying a Hydraulic-Turbine Model From Measured Field Data.IEEE Trans on EC. 1995, 10(4):768-773
    [35] 孔昭年.带有调压井的水轮机调节系统稳定性的研究。水力发电.1983.1
    [36] 王辑祥.水轮机调节系统稳定性的改善.中国电机工程学报.1987,7(6):60-66
    [37] Shen Z.S.,Cheng G,Fu W.Y.. Waterhammer Pressure Compensation in Turbine Regulating Systems. Water Power & Dam Construction.t 1986:25-28
    [38] M.S.R.Murty. Analysis and Improvement of the Stability of a Hydro-Turbine Generation Unit with Long Penstock. IEEE Trans on PAS. 1984, 193(2): 360-367
    [39] Louis N.Hannett, etal. Field Tests to Validate Hydro Turbine-Governor Model Structure and Paramerters. IEEE Trans on PWRS. 1994, 9(4): 1744-1751
    [40] J.B.codrington,etal. Computer Representation of Electrical System Interaction with a Hydraulic Turbing and Penstock. IEEE Trans on PAS 1982,101(8):2611-1617
    [41] C.K.Sanathanan. Accurate Low Order Model for Hydraulic Turbine-Penstock. IEEE Trans on EC. 1987,2(2): 196-200
    [42] IEEE COMMITTEE REPORT. Dynamic Models for Steam and Hydro Turbine in Power System Studies. IEEE Trans on PAS. 1973, 92:1904-1915
    [43] J.R.Smith, etal. Assessment of Hydraulic Models for Power-System Studies. IEE Proc-C. January 1983, 130(1): 1-7
    [44] D.G. Ramey. Detailed Hydrogovernor Representation for System Stability Studies. IEEE Trans on PAS. 1970, 89(1): 106-112
    [45] J.Jiang. Reliable Hydraulic Turbine Governor Based on Identification and Adaptive Filtering. IEEE Trans on EC. 1987, 2(2):189-195
    [46] P.H.Thorne, E.F.Hill. Extensions of Stability Boundaries of a Hydraulic Turbine Generating Unit. IEEE Trans on PAS, 1975, 94(4): 1401-1409
    [47] L.Wozniak,G.H.Fett.Conduit Representation in Closed Loop Simulation of Hydroelectric Systems. Journal of Basic Engineering, 1972,9:599-605
    [48] P.Blair, L.Wozniak. Non-Liner Simulation of Hydraulic Turbine Governor Systems.Water Power & Dam Construction. 1976,9:23-26
    [49] M.Popescu. Computation of Hydraulic Transients in Complex Hydro Schemes.Water Power & Dam Construction. 1986,9:35-40

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700