三峡水轮发电机组机电耦联振荡的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着大规模电力系统的发展,电力系统的结构日益复杂.各种电气控制元件
    的应用和大规模电网的连接,使得机电耦联振动问题和电力系统稳定性问题更加
    突出。本文采用机电耦联振动系统的理论和非线性系统分岔的理论,对三峡发电
    机组进行了理论和数值计算,研究了发电机、网机系统由电磁参数引起的稳定与
    分岔问题。本文的研究内容和主要成果有以下几个方面。
    (1) 综述了机电分析动力学研究的发展和研究方法,对电力系统的动态过程
    和非线性系统振动与分岔的基本概念做了简要叙述。
    (2) 从电机学和机电分析动力学两种角度出发,最终建立了相同的发电机耦
    合扭振系统的微分动力方程。证明了发电机系统的机械与电量由能量统一到了一
    起,且相互影响。机电分析动力学为机电耦联系统研究提供了一个有力的工具。
    (3) 系统研究了发电机组三相短路、两相线间短路、一相对中短路三种特殊
    运行状态对于整个系统振动的影响和给发电机电流、功率角带来的暂态冲击。研
    究了特殊运行状态下,不同短路点(发电机端、无穷大电网端)对系统影响程度的
    大小。总结了不同短路状态下,系统固有频率的变化分布规律。最后讨论了非同
    期合闸时,非同期角的不同带来的电流及电磁力矩的冲击,绘制出了非同期角的
    大小与瞬态电磁力矩最大值的关系曲线.
    (4) 研究了在水轮机外激励与发电机、输电线路中电磁参数的共同作用下,
    整个机电耦联系统所特有的几种共振现象。指出功率角δ 和转子角速度ω4为机
    械和电气两个部分相联系的关键变量,另外的变量如:α1、α2、α3、ω1、ω2、ω3
    及各电流项则是通过ω4、δ 来互相影响的。
    (5) 通过数值计算得到了系统在双参数改变情况下系统的稳定区域图,对不
    同区域内的特征点进行了数值验证,研究了参数变化下,系统特征值的变化规律。
    (6) 根据模态不变流形的理论,对系统存在两个正实特征根的情况下的高维
    非线性动力方程进行降维,得到了在一定程度上能反映系统动力学特性的动力学
    方程,为今后的研究打下基础。
With the development of power system, the structure of power system nowadays
    is becoming more and more complex. The application of various electrical controllers
    and the union of large scale power network make the nonlinear vibration of
    mechanical and electrical coupled systems and stability of power system a key factor
    to analyze the system thoroughly. Using the theory of nonlinear dynamics of
    mechanical and electrical coupled systems and bifurcation theory of nonlinear system,
    based on the generator set in Three Gorges, the theoretical and numerical calculation
    are presented to analyze the stability and bifurcation phenomena with electromagnetic
    parameter change. Major work and results obtained are as follows:
     (1) A review is given on the development and methods of analysis. A brief
    depiction is given too on the basic concepts not only about the dynamic process of
    power system but also about the nonlinear vibration and bifurcation.
     (2) According to two different opinions : electromechanics and analytic dynamics
    of mechanical and electrical systems, we obtained the same differential dynamical
    equations of the whole system. It proved that the energy combined the mechanical and
    electrical parts to a coupled system in which the variables affect each other. analytic
    dynamics of mechanical and electrical systems provides a useful tool for analysis of
    nonlinear system.
     (3) We expatiated three kind of symmetry or asymmetry failure, which are three
    phase short-circuit, two phase short-circuit and one phase short-circuit, to find the
    influence on the vibration of system, currents and power angle. We also studied the
    influencing extent on system with different location where short-circuit take place.
    Then, we sought the law of initial frequencies and studied the transient responses of
    currents and electromagnetic torque in out-of-phase synchronization. We got the curve
    between the angle of out-of-phase and maximum of transient torque.
     (4) Considering the co-action of turbine exciting and parameters of generator and
    electric transmission line, we studied several kinds of special resonance phenomena in
    mechanical and electrical coupled system. We noted that power angle δ and angular
    velocity of rotor ω4 are the key variables that linked other mechanical or electrical
    variables and caused them to interact each other.
     (5) Through numerical calculation, we obtained the stability figure for whole
    
    
    system with two parameters changing simultaneously. We have tested the character
    points by numerical calculation and find the law of eigenvalues of system.
     (6) Based on the theory of nonlinear normal modes, we reduced the dimension of
    high dimension nonlinear system when it has two positive real eigenvalues. The
    simplified equations can reflect the dynamic behavior to some extent, which will be
    helpful for the future research.
引文
参考文献
    [1] 邱家俊,机电分析动力学,北京:科学出版社,1992
    [2] 邱家俊,机电耦联动力系统的非线性振动,北京:科学出版社,1996
    [3] 邱家俊,机电耦联动力学的研究进展,力学进展,1998.11,Vol.28 No4
    [4] 汤蕴璆,电机学-机电能量转换,北京:机械工业出版社,1982
    [5] 许实章,电机学,北京:机械工业出版社,1981
    [6] 余耀南,动态电力系统 [加拿大],水利电力出版社出版,1985.3
    [7] 夏道止,电力系统分析,中国电力出版社,1998
    [8] 陆启韶,分叉与奇异性,上海:科技教育出版社,1995
    [9] 倪以信,陈寿孙,张宝霖,动态电力系统的理论和分析,北京:清华大学
    出版社,2002
    [10] 陈予恕,非线性振动系统的分叉和混沌理论,北京:高等教育出版社,1993
    [11] 叶宗泽,常微分方程组及运动稳定性理论,天津:天津大学数学系微分方
    程教研室
    [12] 汤蕴璆,电机内的电磁场,科学出版社,1981
    [13] 刘习军,贾启芬,张文德,工程振动与测试技术,天津:天津大学出版社,
    1999
    [14] 王洪礼,张琪昌,非线性动力学理论及应用,天津:天津科学技术出版社,
    2002
    [15] 高景德,张麟征,电机过渡过程的基本理论及分析方法,北京:科学出版
    社,1982
    [16] 黄家裕,陈礼义,孙德昌,电力系统数字仿真,北京,中国电力出版社,
    1998
    [17] 丁千,陈予恕,非线性转子—密封系统的亚谐共振失稳机理研究,振动工
    程学报,1997,10(4),404~412
    [18] Nayfeh A.H. and Mook D.T., Nonlinear Oscillation, Wiley-interscience, New
    York, 1979
    [19] 邱家俊,蔡赣华,牛西泽,发电机和电动机组横扭耦合振动的理论和实验
    研究,哈尔滨工业大学学报,1998.11
    [20] 刘习军,贾启芬,张文德,张德栋,工程振动与测试技术,天津:天津大
    学出版社,2003
     133
    
    
    参考文献
    [21] 牛西泽,电机和网机系统的机电耦联振动和分岔,天津大学博士后工作报
    告,2002
    [22] 牛西泽,发电机组机电耦联非线性系统的暂态过程与失稳振荡的研究,天
    津大学博士学位论文,1999
    [23] 邱勇,机电耦联非线性动力系统的稳定性和分岔分析,天津大学硕士学位
    论文,2002
    [24] 段昊昱,高维网机系统次同步失稳振荡的动态分岔分析与研究,天津大学
    硕士学位论文,2003
    [25] 邱家俊,杨志安,电磁非线性的拉格朗日-麦克斯维方程的推广,全国第
    五届一般力学会议论文集,北京大学出版社,1994
    [26] Pei Yu, Stability Problems Associated With Interactive Bifurcations, Ph.D
    Dissertation, Waterloo, Ontario, 1986
    [27] 曹国云,王冲,陈陈,中心流形方法降维分析电压崩溃中的 Fold 分岔,中
    国电机工程学报,22(7),2002.7
    [28] 陆启韶,常微分方程的定性方法和分岔,北京:北京航空航天大学出版社,
    1989
    [29] J. Guckenheimer, P. Holmes, Nonlinear Oscillations, Dynamical Systems, and
    Bifurcations of Vector Fields, Springer, New York, 1983
    [30] S. Wiggins, Introduction to Applied Nonlinear Dynamical Systems and Chaos,
    Springer, New York, 1990
    [31] IEEE Committee Report, Reader’s Guide to SSR, IEEE Trans. On PS, Vol.7,
    No.2. , Feb 1992, 150-157
    [32] IEEE Power System Engineering Committee Report, Terms, Definitions,&
    Symbols for Subsynchronous Oscillations, IEEE Trans. On PAS,-104, No.6,
    pp.1326-1334 , June 1985
    [33] Qinsheng Bi, Pei Yu, Symbolic computation of normal forms for semi-simple
    cases, Journal of Computational and Applied Mathematics, 102(1999), 195-220
    [34] P. Yu, Computation of normal forms via a perturbation technique, Journal of
    sound and Vibration, 1997, 211(1), 19-38
    [35] A.Y.T. Leung, Q.C. Zhang, Normal form computation without central manifold
    reduction, 2003, 266, 261-279
    [36] 张琪昌,贾启芬,郝淑英,刘长根,计算中心流形的通用程序方法,天津
    理工学院学报,2002, 18(3), 60-63
    [37] P.Yu, A.Y.T. Leung, A perturbation method for computing the simplest normal
    forms of dynamical systems, Journal of Sound and Vibration, 2003, 261, 123-151
     134
    
    
    参考文献
    [38] Pei Yu, Yuan Yuan, The simplest normal forms for the singularity of a pure
    imaginary pair and a zero eigenvalue, Dynamics of Continuous, Discrete and
    Impulsive systems, 2001 (8), 219-249
    [39] 郑兆昌,机械振动,北京,机械工业出版社,1980
    [40] 季文美,方同,陈松淇,机械振动,北京,科学出版社,1985
    [41] 韩祯祥,电力系统稳定,北京,中国电力出版社,1995
    [42] M. Golubitsky, I. Stewart, D.G. Schaeffer, Singularities and Groups in
    Bifurcation Theory (Vol 2), New York, Springer-Verlag World Publishing Corp, 1985
    [43] 陈珩,同步电机运行基本理论与计算机算法,北京,水利电力出版社,1992
    [44] 段文会,水轮发电机转子系统垂直振动研究,天津大学硕士学位论文,2002
    [45] 傅卫平,徐健学,张新华, 模态流形方法与机电耦合次同步振荡的 Hopf 分
    岔,应用力学学报,Vol.17 No.3 1997
    [46] 傅卫平,徐健学,张新华, 应用非线性模态方法分析机电耦合次同步振荡的
    Hopf 分岔,中国电机工程学报,Vol.17 No.3 1997
    [47] 傅卫平,徐健学,张新华, 非线性模态构造方法与机电耦合系统 Hopf 分岔,
    应用力学学报, Vol 14 No.4 1997
    [48] 刘习军,特种交流电机转子的非线性机电耦联双重共振,天津大学学报,
    28(6),1995,789-795
    [49] 倪以信 汽轮发电机组轴系扭振的激励研究 清华大学学报 1992(1)
    [50] 傅卫平,徐健学,研究一类高维系统Hopf分岔解的模态不变流形方法, Vol.10
    No.1, 1997
    [51] F. P. DeMello, C. Concordia, Concepts of synchronous machine stability as
    affected by excitation control, IEEE Trans. Power Appar. System 316-319, April 1969
    [52] 涂光瑜 汽轮发电机及其设备 中国电力出版社 1998.10
    [53] S.Wiggins , Introduction to Applied Nonlinear Dynamical Systems and Chaos,
    Springer-Verlag, New York, 1990
    [54] 牛西泽 邱家俊 异步电动机电磁参数引起的失稳自激振荡的分析 振动工
    程学报,Vol14No4, 2001
    [55] 宋永华等 电力系统在参数扰动下的混沌行为 中国电机工程学报
    1990(10)
    [56] Yasunori Mitani, Kiichiro Tsuji, Bifurcation Associated with sub-Synchronous
    Resonance,IEEE Transaction on Power,Vol13,No。1,Feb 1998
    [57] 江红 潘奇勇 袁奇 大型发电机组短路时轴系扭振动力响应计算和分析
    应用力学学报 1995
     135
    
    
    参考文献
    [58] 陈珩,同步发电机运行方式的状态空间分析法,南京工学院学报,1982,
    第三期
    [59] 吴大榕,同步电机基本方程式中各种数量间的方向关系,南京工学院学报,
    1963,第二期
    [60] 陆启韶,非线性复杂系统的动力学问题,新疆大学学报,Vol.18 No.2, 2001.5
    [61] 吴志强,多自由度非线性系统的非线性模态和 Normal Form 直接方法,天
    津大学博士学位论文,1996
    [62] 张燕,发电机组轴系在两相稳态短路时的参数扭振的研究,天津大学硕士
    学位论文,1990
    [63] 邱家俊,邱宇,水轮发电机组短路故障时机电耦联的扭振问题研究,全国
    第六届振动理论及应用学术会议论文集,1997.4 武汉
    [64] 高伟,龚乐年等,电力系统扰动与汽轮发电机组轴系扭振,中国电机工程
    学报,1987,7(4)
    [65] 陈珩,关于汽轮发电机组轴系扭振的研究工作,东南大学学报,vol.22, No.4,
    1992.7
    [66] 李兴源,电力系统异步运行和再同步过程的数字仿真研究,电力系统自动
    化第十八卷四期
    [67] Shaw S.W, Pierre C. Normal modes for non-linear vibration systems, Journal of
    Sound and Vibration, 1993,164(1) 85-124
    [68] Iranvani M R, Semlyen A. Hopf Bifurcaiton in Torsional dynamics, IEEE
    Transactions on Power Systems, 1992,7(1), 28-36
    [69] Hamdan A M A, Use of SVD for Power System Stabilizer Signal Selection,
    Electric machines and Power System, 1993,21,229-240
    [70] Hassard B D, Kazarinoff N D, Wan Y H , Theory and application of Hopf
    bifurcation, Cambridge,Cambridge University Press, 1981
    [71] 武际可,周鹍,高维 Hopf 分岔的数值计算,北京大学学报,1993,
    29(5),574-~582
    [72] 库比切可 M,马雷克 M,分岔理论和耗散结构的计算方法,刘式达等,北
    京,科学出版社,1990
    [73] 陈文成,陈国良,Hopf 分岔的代数判据,应用数学学报,1992,15(2),251-259
    [74] Liu Weimin , Criterion of Hopf bifurcations without using eigenvalues, Journal
    of Math Analysis and Application, 1994,182(2)
    [75] 同济大学数学教研室,线性代数,北京,高等教育出版社
    [76] 熊洪允,曾绍标,毛云英,应用数学基础,天津,天津大学出版社
     136
    
    
    参考文献
    [77] 同济大学数学教研室,高等数学,北京,高等教育出版社
    [78] 秦增煌,电工学,北京,高等教育出版社
    [79] 程福秀,林金铭,现代电机设计,北京,机械工业出版社
    [80] 洪维恩,数学魔法师 Maple 6, 北京,人民邮电出版社
    [81] 薛定宇,陈阳泉,基于 MATLAB/Simulink 的系统仿真技术与应用,北京,
    清华大学出版社

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700