罗格列酮和复方丹参滴丸对糖尿病大鼠心肌病变的保护作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
糖尿病心肌病(diabetic cardiomyopathy, DC)是糖尿病(diabetic mellitus, DM)引起心脏微血管病变和心肌代谢紊乱所致的心肌广泛局灶性坏死病变。目前认为糖尿病诱发的炎症因子通过氧化应激反应所诱发的心肌细胞死亡是DC发生发展中的重要始动因子,而炎症因子会影响水通道(aquaporin, AQP)的表达。我们通过前期大鼠实验,已经证实AQP1和AQP3蛋白在大鼠心肌组织的表达,本研究第一部分先讨论糖尿病心肌病状态下,AQP1和AQP3在心肌组织的表达和调控变化。首先,高脂高糖饮食联合小剂量多次腹腔注射链脲佐菌素(streptocin, STZ),建立以胰岛素抵抗(insulinresistance, IR)为特征的2型糖尿病大鼠模型,8周后通过生化检测和组织形态学研究来观察心肌病变的特点,并通过免疫组织化学、Western blotting方法测定心肌组织AQP1、AQP3蛋白的变化,结果模型组血糖、血脂、心肌酶明显升高,AQP1、AQP3蛋白以相同的糖化形式表达,表达定位没有改变,但蛋白量减少,其有可能是机体对心肌病病理改变的保护性反馈调节。本研究第二部分以刚建立2型糖尿病模型的大鼠为研究对象,进行罗格列酮(Rosiglitazone, RSG)、复方丹参滴丸(Danshen dripping pill, DSP)治疗8周,与模型组相比较,8周后给药组胰岛素抵抗指数、血糖、血脂、心肌酶、超敏C-反应蛋白(highsensitivity C-reactive protein, HS-CRP)均有所降低,心肌组织中丙二醛(malondialdehyde,MDA)含量有所降低、超氧化物歧化酶(superoxide dismutase, SOD)活性有所恢复,可稳定胞膜AQP1和AQP3蛋白的表达,以大剂量组和两药小剂量联合组疗效更为显著,有统计学意义。
In recent years, It was reported that the incidence of diabetes mellitus has dramatically increased in China, of which about 95% for type 2 diabetes, and has endanged the human life, so people have paid more attention to the prevention and cure of it. As we have known, the harm of diabetes is determined by various chronic complications, among which heart lesion is the most serious. A large number of studies have confirmed that diabetic cardiomyopathy is an independent state of pathological physiology and the main course of heart failure and mortality.
     The pathogenesis of diabetic cardiomyopathy, is complicated and not fully understood, thought the interaction of various factors such as metabolic disorder, insulin resistance, oxidative stress, vascular lesions. In addition, the theory of inflammation is concerned recently. Inflammatory reaction has been increased by obesity because of excessive intake of nutrient in the early stage of type 2 diabetes. As a result, inflammatory cytokines in conjunction with the diabetes, by causing oxidative stress and cell death, have a bad effect on the cardiovascular system in a systemic and local way. Furthermore, it has been confirmed that the role of oxidative stress, causing a vicious metabolic cycle, leaded to the progression of complications such as diabetic cardiomyopathy, so only the strict control of blood glucose does not prevent progression of diabetic cardiomyopathy and other complications. There is an urgent need to develop an agent with protective effects on cardiovascular system and study its protective mechanisms to cardiovascular complications. Clinical observation and literatures have found that both Rosiglitazone and Danshen dripping pills have good effect on diabetes and complications. Rosiglitazone, a hypoglycemic agent of thiazolidinediones (TZDs), has attracted remarkable scientific interest on novel and potent improving insulin-sensitivity agents, and to lighten insulin resistance, more over, to have a protective effect on energy metabolic cycle and resist inflammation and so on. On the other hand, Danshen dripping pill composed of Salvia, three-seven and borneol, as traditional Chinese medicine, was first licensed by the FDA of U.S. to clinical trials and have been demonstrated, by pharmacological and molecular biological studies, to improve glucose and lipid metabolism, regulate vascular endothelial function and so on. However, the research, observing the effect of combination of tow drugs on diabetic cardiomyopathy, was vacant.
     The studies have shown that inflammatory cytokines such as tumor necrosis factor-αand IFN-γhave increased the expressing of aquaporin(AQP). AQPs are a series of intrinsic homologous membrane proteins related to transporting water, widely existing in plants, animals and microorganisms, and it has been confirmed that a variety of AQPs are expressed in myocardial tissue including AQP1 and so on. Because AQPs in different organs have different biological functions, mamy disease may be related to the dysfunction of regulation and control of AQPs. Up to now, many progresses, on the location and physiological functions of AQPs, have been made in the human respiratory, nervous, digestive, urinary tract and other systems, but systematic research, on the expression and physiological functions AQPs in myocardial tissue, was still untaken. In the first topic, we will investigate the expression and regulation of AQP1 and AQP3 in rat myocardial tissue with diabetic cardiomyopathy.
     We carried out some pre-experimental studies in rats, which have verified the expression of AQP1 and AQP3 in myocardial tissue. First of all, the methods that combined high sugar and high fat diet with STZ to establish type 2 diabetes model in rats with characteristics of insulin resistance. During the experiment, we regularly recorded general condition of all the rats such as weight, food intake, water intake, urine output, and detected fasting blood glucose. At the end of the experiment, the changes between two groups were observed by biochemical testing and histological study, and the expression and regulation of AQP1 and AQP3 in myocardial tissue was observed by the method of immuno-histochemistry and Western blotting. Our study found that:a model of type 2 diabetes in rats was created, which had characteristic of excessive drink, excessive food, excessive urine, fat, and metabolic disorders of sugar and fat, mimic patients in clinical; compared with the normal group, the rats showed typical diabetic cardiomyopathy after models having been established for 8 weeks:such as increasing release of myocardial enzymes and disorder of myofibril. Immunohistochemistry showed that:AQP1 was mainly expressed in the membrane of cardiac vascular endothelial cell and AQP3 was mainly expressed in the membrane of myocardial cell in normal rats; compared with the normal group, the specific staining of AQP1 and AQP3 in myocardial tissue was decreased, but had the same location in the diabetic cardiomyopathy tissues. In order to further determine the regulation of AQP1 and AQP3, Western blotting was used to test the expression of AQP1 and AQP3. Our results showed that:AQPl and AQP3 had the same glycosylated form in myocardial tissue of two groups. Results of quantitative analysis of AQP1 and AQP3 protein in myocardial tissue showed that:the amount of AQP1 and AQP3 protein in the diabetic cardiomyopathy tissues was significantly reduced compared with the normal group. This result confirmed the results mentioned above. The mechanism may be the protective feedback regulation of body to pathological changes of diabetic cardiomyopathy.
     Finally, we observed effect of Rosiglitazone and Danshen dripping pill on the changes of expression and regulation of AQP1 and AQP3 in rat myocardial tissue and improved their protective effect on diabetic cardiomyopathy.The successful diabetes model rats were selected, and randomly divided into six groups:model group of diabetic cardiomyopathy, high and low dose group of Rosiglitazone and Danshen dripping pill, and low dose group of Rosiglitazone combined with Danshen dripping pill. After drug intervention for 8 weeks, changes were observed of sympathy, metabolic disorders, content of malondialdehyde and activity of superoxide dismutase in myocardial tissue, the expression and regulation of AQP1 and AQP3 proteins in myocardial tissue. The results showed that:compared with the model group, for low dose group of Rosiglitazone, there was significance in decreasing the level of HOMA-IR(P<0.05), FBG(P<0.05), serum lipids(P<0.05), serum enzymes(P<0.05, P<0.01), Hs-CRP(P<0.05) and content of MDA(P<0.05), the activity of SOD and expression of AQP1 and AQP3 proteins in the membrane was increased; for high dose group of Rosiglitazone group, statistical significance has been improved(P<0.05, P<0.01); for low dose group of Danshen dripping pill, the level of FBG and serum lipids was decreased in a way of no significance, and there was significance in decreasing the level of HOMA-IR(P<0.05), serum enzymes(P<0.05, P<0.01). Hs-CRP (P<0.05) and content of MDA(P<0.05), the activity of SOD and the expression of AQP1 and AQP3 proteins in the membrane was increased; for high dose group of Danshen dripping pill group, statistical significance has been improved (P<0.05, P<0.01); for low dose group of Rosiglitazone combined with Danshen dripping pill, there was significance in decreasing the level of HOMA-IR (P<0.01), FBG(P<0.01), serum lipids(P<0.05, P<0.01), serum enzymes(P<0.01), Hs-CRP(P<0.01) and content of MDA (P<0.01), the activity of SOD and the expression of AQP1 and AQP3 proteins in the membrane was increased.
     As relation above, we concluded that:①AQP1 was mainly expressed in the membrane of cardiac vascular endothelial cell and AQP3 was mainly expressed in the membrane of myocardial cell in normal rats;②the same location was observed in the diabetic cardiomyopathy tissues, but the amount of AQP1 and AQP3 proteins in myocardial tissue was decreased, the regulatory mechanisms of which remains to be further studied;③The result of blood biochemical testing suggested that Rosiglitazone and Danshen dripping pill relieved the metabolic disorder, protected myocardial cells and vascular endothelium by decreasing insulin resist, improving glucose and lipid metabolism and decreasing release of myocardial enzymes and level of Hs-CRP;④Rosiglitazone and Danshen dripping pill had been demonstrated, by analysising content of MDA and activity of SOD, to resisting oxygen free radicals and Lipid peroxidation in myocardial tissue;⑤Rosiglitazone and Danshen dripping pill showed protective effect on diabetic cardiomyopathy by upregulating expression of AQP1 and AQP3 proteins. There was more significance for high-dose group and combined group. The observation of two drugs regulating the expression of AQP1 and AQP3 proteins for different time and the precise molecular mechanism remains to be further studied.
引文
[1]Hamby R I, Zoneraich S, Sherman L. Diabetic cardiomyopathy[J]. JAMA,1974.23. 229(13):1749-1754.
    [2]Schannwell CM, Schneppenheim M, Perings S, et al. Left ventricular diastolic dysfunction as an early manifestation of diabetic cardiomyopathy[J]. Cardiology,2002,98 (122):33-39.
    [3]宋墨薇.糖代谢异常与糖尿病心肌病[J].心血管病学进展,2005,26(2):147-149.
    [4]陈刚,林丽香,庄维特,等.糖尿病性心肌病大鼠心肌组织中氧化应激相关基因和能量代谢相关基因的表达及其意义[J].中国糖尿病杂志,2003,11(3):196-199.
    [5]Mondon CE, Jones IR, Azhar S, et al. Lactate p roduction and pyruvate dehydro genase activity in fat and skeletal muscle from diabetic rats[J]. Diabetes,1992,41 (12):1547-1554.
    [6]杨永曜,李隆贵.PPARα、PPARy及其配体对心室重构作用的研究进展[J].临床心血管病杂志,2006,22(1)61-63.
    [7]De Windt L J, Cox K, Hofstra L, et al. Molecular and genetic aspects of cardiac fatty acid homeostasis in health and disease[J]. Eur Heart J,2001.23:774-787.
    [8]Gilde AJ, van der Lee KA, Willemsen PH, et al. Peroxisome proliferators activated receptor (PPAR) alpha and PPARbeta/delta, but not PPARgamma, modulate the expression of genes involved in cardiac lipid metabolism[J]. Circ Res,2003,92:518-524.
    [9]Taegtmeyer H, Dietze GJ. Perspective:from increased energy metabolism to cardiac hypertrophy and failure:mediators and molecular mechanisms[J].Am J Cardiol,1999, 83:1H-2H.
    [10]林媛媛.罗格列酮治疗糖尿病作用的研究进展[J].医学研究杂志,2008,37(5):9-11.
    [11]Finck BN, Han X, Courtois M, et al. A critical role for PPARa-mediated lipotoxicity the pathogenesis of diabetic cardiomyopathy:modulation by dietary fat content[J]. Proc Natl Acad Sci USA,2003,100:1226-1231.
    [12]Taegtmeyer H, Dietze GJ. Perspective:from increased energy metabolism to cardiac hypertrophy and failure:mediators and molecular mechanisms[J]. Am J Cardiol,1999, 83:1H-2H.
    [13]白秀平,李宏亮.杨文英.PPAR及其激动剂与脂肪酸代谢及胰岛素抵抗[J].国际药学研究杂志.2008,35,(2):111-115.
    [14]Devereux RB, Roman MJ, Paranecas M, et al. Impact of diabetes on cardiac structure and function:the strong heart study[J]. Circulation,2000,101:2271-2276.
    [15]Young ME, McNulty P, Taegtmeyer H. Adaptation and maladaptation of the heart in diabetes:part Ⅱ potential mechanisms [J]. Circulation,2002,105:1861-1870.
    [16]Bell DS. diabetic cardiomyopathy[J]. Diabetes Care,2003,26:2791-2795.
    [17]Malone J I, Schocken D, Morrisona D, et al. Diabetic cardiomyopathy and carnitine deficiency[J]. Diabetes Complications,1999,13(2):86-90.
    [18]郑辉,于德民.糖尿病心肌病的发病机制和诊断[J].国际内分泌代谢杂志,2006,26(21):116-118.
    [19]Strecker T, Dieterle A, Reeh PW, et al. Stimulated release of calcitonin gene-related peptide from the human right atriumin patients with and without diabetes mellitus[J].Peptides, 2006,27:3255-3260.
    [20]LiZ, Hou WS, Escalante-Torres CR, et al. Collagenase activity of cathepsin K depends on complex formation with chondroit in sulfate. J Biol Chem,2002,277: 28669-28676.
    [21]Schaffer SW, Ballard C, Boerth S, et al. Mechanisms underlying depressed Na+/Ca2+ exchanger activity in the diabetic heart [J]. Cardiovasc Res,1997,34 (1):129-136.
    [22]Hirosumi J, Tuncman G, Changl, et al. A central role for JNK in obesity and insulin resistance[J].Nature,2002,420:333-336.
    [23]Kim J.K, Fillmore J.I, Sunshine M.I, et al. PKC-theta knockout mice are protected from fat-induced insulin resistance[J].ClinInvest,2004,114:823-827.
    [24]惠宗光,周学伟.2型糖尿病人群胰岛素抵抗和β3-AR基因的相关性[J].潍坊医学院学报,2005,27(3):173-1751.
    [25]孔令芳,钱聪.IRS-2-G1057D突变与2型糖尿病[J].中国现代医学杂志,2005,15(15):2305-2307.
    [26]仝珊.胰岛素抵抗与餐后血脂代谢及动脉粥样硬化[J].心血管病学进展,2006,27(6):749-752.
    [27]Kennedy AL, Lyons Td. Glyeatioy oxidatioy and lipoxidation in the development of diabetic complications[J]. Metabolism,1997,4(6):14-21.
    [28]Piatti P, Di Mario C, Monti LD, et al.Association of insulin resistance, hyperleptinemia, and impaired nitric oxide release with instent restenosis in patients undergoing coronary stenting[J].Circulation,2003,108(17):2074-2081.
    [29]Kihara S, Quchi N, Funahashi T, et al. Troglitazone enhances glucose uptake and inhibits mitogen-activated protein kinas in human aortic smooth muscular cells[J].Arteriesclemsis,2000,136(1):163-168.
    [30]韩萍,何冰,崔力,等.C反应蛋白和白细胞介素6以及肿瘤坏死因子α对2型糖尿病和代谢综合征发生的影响[J].中国糖尿病杂志,2003,(7):57-58.
    [31]Kondo K, Matsubara T, Nakamura J, et al. Characteristic patterns of circadian variation in plasma catecholamine levels, blood pressure and heart rate variability in type 2 diabetic patients[J].Diabetic Med,2002,19(5):359-365.
    [32]Brownlee M. The pathobiology of diabetic complications a unifying mechanism[J].Diabetes,2005,54 (6):1615-1625.
    [33]Nishio Y, Kanazawa A, Nagai Y, et al. Regulation and role of the mitochondrian transcription factor in the diabetic rat heart[J]. Ann NY Acad Sci,2004,1011:78-85.
    [34]Droge W. Free radicals in the physiological control of cell function[J]. Physiol Rev. 2002,82:47-95.
    [35]Iribarren C, Karter AJ, Go AS, et al. Glycemic control and heart failure among adult patients with diabetes[J].Circulation,2001,103:2668-2673.
    [36]Owuor ED, Kong AN. Antioxidants and oxidants regulated signal transduction pathways[J]. Biochem Phamacol,2002,64(5-6):765-770.
    [37]谭毅,王越晖,李校望,等.心脏炎症反应在糖尿病心肌病发生发展中的病理作用[J].中国糖尿病杂志,2008,16(4):250-256.
    [38]Hashimoto H, Kitagawa K, Hougaku, et al.C-reactive protein an independent predictor of the rate of increase in early carotid a the athcrosclcrosis[J]. Circulation,2001, 104(1):63.
    [39]蒋兴亮,周京国,等.高敏反应蛋白和白细胞介素-6与2型糖尿病微血管病变的关系[J].华西医学,2005,20(2):255.
    [40]Mann DL, Young JB. Basic Mechanisms in congestive heart failure. Recognasing the role of proin flamoratory cytokines[J]. Chest,1994,105(3):897.
    [41]曹春梅,夏强,傅深,等.白细胞介素-2对人鼠心肌Ca2+-ATPase和Na+-K+-ATPase的影响[J].生理学报,2003,55(1):11.
    [42]Giles TD, Ouyang.J, KemtEK, et al. Changes in protein kinase C in early cardiomyopathy and in gracilis muscle in the BB/wordiabetic rat[J].Am J Physial,1998,273: 295-307.
    [43]Bmvnlee M. The pathobiology of diabetic complications a unifying mechanism Diabetes[J].2005,54(6)1615-1625.
    [44]王渊,傅继华.氧化应激与2型糖尿病之间关系的探讨[J].安徽医药2007,11(5)387-389.
    [45]杜爱民.NADPH氧化酶、氧化应激和糖尿病[J].国外医学老年学分册,2007,28(5)225-227.
    [46]Robertson RP. Oxidative stress and impaired insulin secretion in type 2 diabetes[J]. Curr Opin Phamacol,2006,6(6):615-619.
    [47]Rota M, Le Capitaine N, Hosoda T. Diabetes promotes cardiac stem cell aging and heart failure, which are prevented by deletion of the p66shc gene[J].Circ Res,2006,99 (1): 1-2.
    [48]Diaberi Roodt J.O, Achuijf J.D, Rabelinke T.J, et al. Endothelial dysfunction in diabetic patients with abnormal myocardial perfusion in the absence of epicardial obstructive coronary artery disease[J].Nucl Med,2009,2(12)2-4.
    [49]Chen S, Evans T, Mukherjee K, et al. Diabetes-induced myocardial structural changes: role of endothelin-1 and its receptors[J]. Mol Cell Cardiol,2000,32(9):1621-1629.
    [50]Pu Q, Neves MF, Virdis A, et al. Endothelia antagonism on aldosterone-induced oxidative stress and vascular remodeling[J]. Hypertension,2003,42(1):49-55.
    [51]Scheidegger KJ, Dut J, Delafontaine P. Distinct and common pathways in the regulation of insulin-like growth factor-1 receptor gene expression by angiotensin 11 and basic fibroblast growth factor[J]. Biol Chem,1999,274(6):3522.
    [52]Gurantz D, Cowling RT, Villarreal FJ, et al. Tumor necrosis factor-a unregulates angiotensin Ⅱ type 1 receptors on cardiac fibroblasts [J]. Cir Res,1999,85(3):272.
    [53]徐冬玲,刘伟华,杜贻盟,等.PPARy在糖尿病心肌纤维化大鼠心肌细胞及微血 管内皮中的表达[J].山东大学学报(医学版),2008,46(9):847-850.
    [54]Leiter EH, Reifsnyder PC, Zhang W, et al.Differential endocrine responses to rosiglitazone therapy in new mouse models of type 2 diabetes [J].Endocrinology,2006, 147(2):919-926.
    [55]Majuri A, Santaniemi M, Rautio K, et al.Rosiglitazone treatment increases plasma levels of adiponectin and decreases levels of resistin in overweight women with PCOS:a randomized placebo-controlled study[J].Eur J Endocrinol,2007,156 (2):263-269.
    [56]孔俭.罗格列同对自发性高血压病大鼠降压作用和心血管保护作用的研究[D].长春:白求恩医科大学基础医学院,2003.
    [57]Mackiewicz U, Lewartowski B.Temperature dependent contribution of Ca2+-transporters to relaxation in cardiacmyocytes:important role of sarcolemmal Ca2+-ATPase[J]. Physiol Pharmacol,2006,57:3215.
    [58]Hiranandani N, Bupha-Intr T, Janssen PM, et al. SERCA overexpression reduces hydroxyl radical injury in murine myocardium[J]. Am J Physiol Heart Circ Physiol,2006, 291:H3130-H3135.
    [59]Vasanji Z, Dhalla NS, Netticadan T. Increased inhibition of SERCA2 by phospholamban in the type 1 diabetic heart[J]. Mol Cell Biochem,2004,261:245-249.
    [60]Diaberi Roodt JO, Achuijf JD, Rabelinke TJ, et al. Endothelial Dysfu-nction in diabetic patients with abnormal myocardial perfusion in the absence of epicardial obstructive coronary artery disease[J]. Nucl Med,2009,2(12)2-4.
    [61]Hibuse T, Maeda N, Naqasawa A,et al. Aquaporins and glycerol metabolism[J].Biochim Biophys Acta,2006,1758(8):1004-1011.
    [62]Roudier N, BaillyP, GaneP. et al.Erythroid expression and oligomeric state of the AQP3 protein[J].Biol Chem,2002,277(10):7664-7669.
    [63]Ma T, Jayaraman S, Wang KS. Am J Physiol[J]. Physiol,2001,28(1):C126-C134.
    [64]Silberstein C, Kierbel A, Amodeo G, et al. Functional characterization and localization of AQP3 in the human colon[J].Braz J Med Biol Res,1999,32(10):1303-1313.
    [65]Itoh A, TsujikawaT, FujiyamaY, BambaT.Enhancement of aquaporin-3 by vasoactive intestinal polypeptide in a human colonic epithelial cell line[J].Gastroenterol Hepatol,2003, 18(2):203-210.
    [66]Hara-Chikuma M, Verkman AS.Aquaporin-3 functions as a glycerol transporter in mammalian skin[J].Biol Cell,2005.97(7):479-486.
    [67]Lee SJ, Murphy CT, Kenyon C. Glucose shortens the life span of C.elegans by downregulating DAF-16/FOXO activity and aquaporin gene expre-ssion[J]. Cell Metab,2009, 10(5):338-339.
    [68]Saadoun S, Papadopoulos M.C, Hara Chikuma M, et al. Impairment of angiogenesis and cell migration by targeted aquaporin-1 gene disruption[J]. Nature,2005(7034):786-792.
    [69]Monzani E, Bazzotti R, Pereqo C, et al. AQP1 is not only a water channel:it contributes to cell migration through Lin7/beta-catenin[J].PLoS One,2009,4(7):6167.
    [70]Jennifer E, Kevin S, Carissa M. Decreased expression of aquaporin (AQP)l and AQP5 in mouse lung after acute viral infection[J].Am J Respir Cell Mol Biol,2000, 22(1):34-44.
    [71]魏巍,张刚,谷欣权,等.AQP1、AQP2及AQP3在人腺性膀胱炎组织中的表达[J].吉林大学学报(医学版),2007,33(2):318-320.
    [72]McCoy E, Sontheimer H. MAPK induces AQP1 expression in astrocytes following injury[J]. Glia,2010 Jan 15;58(2):209-217.
    [73]Horie I, Maeda M, Yokoyama S, et al. Tumor necrosis factor-alpha dectesses apuaporin-3 expression in DJM-1 keratinocytes[R].Biochem Biophys Res Commun,2009 Sep 25;387(3):564-568.
    [74]Tancharoen S, Matsuyama T, Abeyama K.The role of water channel aquaporin 3 in the mechanism of TNF-alpha-mediated proinflammatory evens:implication in periodontal inflammation[J].J Cell Physiol,2008,217 (2):338-49.
    [75]King LS,Yasui M, Agre P.Aquaporins in health and disease[J]. Mol Med Today,2000. 6(2):60-65.
    [76]Jablonski EM, Hughes FM Jr. The potential role of caveolin-1 in inhibition aquaporins during the AVD[J].Biology of the Cell,2006,98 (1):33-42.
    [77]Dogra G, Rich L, Stanton K, et al. Endothelium-dependent and independent vasodilation studies at normoglycaemia in type I diabetes mellitus with and without microalbuminuria[J]. Diabetologia.2001,44:593-601
    [78]Vander Meer RV, Rijzewijk LJ, Jong HW. Pioglitazone improves cardiac function and alters myocardial substrate metabolism without affecting cardiac triglyceride accumulation and high-energy phosphate metabolism in patients with well-controlled type 2 diabetes mellitus[J].Circulation,2009,119(15):2020-2022.
    [79]Lopaschuk GD. Optimizing cardiac energy metabolism:how can fatty acid and carbohydrate metabolism be manipulated?[J]. Coronary Artery Disease,2001,12(1):s8-s11.
    [80]王春艳.罗格列酮对正常及2型糖尿病大鼠心肌缺血再灌注损伤的保护作用[D].长春:吉林大学第一临床医院,2009.
    [81]Baker AH, Edwards DR, Murphy G,et al. Metalloproteinase inhibitors:biological actions and the rapeutic opportunities[J]. Cell Sci,2002,115:3719-3727.
    [82]李洁,刘乃丰,魏芹.罗格列酮对糖尿病大鼠心肌纤维化及核因子KB、结缔组织生长因子表达的影响[J].中国新药与临床杂志,2008,27(3):169-172.
    [83]张文礼.罗格列酮的非降糖作用[J].重庆医学.2008,37(6):660-662.
    [84]Bolten CW, Payne MA, Mc Donald WG, et al.Thiazolidinediones inhibit the progression of established hypertension in the Dahl salt-sensitiverat [J]. Diabetes Vasc Dis Res.2007,4(2):117.
    [85]Ahmed W, Ziouzenkova O, Brown J, et al. PPARs and the irmetabolic modulation:new mechanisms for transcriptional regulation[J].J Intern Med,2007,262(2):184.
    [86]Kajstura J, Fioalaliso F, Anareoli AM.IGF-1 overexpression inhibits the development of diabetic cardiomyopathy and angiotensin-mediated oxidative stress[J].Diabetes.2001,50:1414-1417.
    [87]Altan VI, Srioglu E, Guner S, et al. The influence of diabetes on cardiac beta-adrenoceptor subtypes [J]. Heart Fail Rev,2007 Mar,12 (1):58-65.
    [88]Magnusson Y, Wallukat G, Waagstein F, et al. Autoimmunity in idiopathic dilated cardiomyopathy:Characterization of antibodies against the β1-adrenoceptor with positive chronotropic effect[J]. Circulation.1994,89(6):2760-2767.
    [89]赵林双,廖玉华,王敏,等.抗心肌β1与α1受体自身抗体在糖尿病心肌病患者中的检测结果分析[J].中国微循环,2005,9(1):47-50.
    [90]Yasunari K, Maeda K, Minami M, et al.HMG-CoA reductase inhibitors prevent migration of human coronary smooth muscle cells through suppression of increase in oxidative stress[J]. Arterioscler Thromb Vase Biol,2001,21:937-942.
    [91]刘茂东,迟彦菏,李英,等.氟伐他汀对糖尿病大鼠早期心肌病变的作用[J].中国心血管杂志,2004,9(5):319-320.
    [92]UK Prospective Diabetes Study (UKPDS) Group1. Effect of intentive blood-glucose control with metformin on complication in overweight patients with type 2 diabetbs:(UKPDS 34) [R]. Lancet,1998,352:854.
    [93]Hermann LS.Combination thrapy with insulin and metformin [J].Endocr Pract,1998, 4:404.
    [94]王远征,赵晓明,穆长征.二甲双胍对糖尿病大鼠的心肌保护作用[J].解放军医学杂志,2006,31(4):333-335.
    [95]Mahrouf M, Ouslimani N. Peynet J. Metformin reduces angiotensin-mediated intracellular production of reactive oxygen species in endothelial cells through the inhibition if protein kinase C[J]. Circ Res,2006,99(1):1-2.
    [96]李才,刘松若,王丽娟,等.尼群地平对大鼠糖尿病性心肌病的有益作用[J].中国糖尿病杂志,1993,1(1):38-40.
    [97]Lopaschuk GD,Kozak R. Trimetazidine inhibits fatty acid oxidation in the heart[J].Jmol Cell Cardiol,1998,30:122.
    [98]Pu Q, Neves MF, Virdis A, e tal. Endothelin antagonism on aldosterone induced oxidative stress and vascular remodeling[J]. Hypertension,2003,42(1):49-55.
    [99]袁小燕.抗氧化剂治疗糖尿病及其并发症新进展[J].国外医学老年医学分册,2007,28(2):49-54.
    [100]张晓琴,李二军,王新嘉.药物治疗链佐菌素糖尿病大鼠的心肌病变观察[J].山西临床医药杂志.1997,8(5):348.
    [101]安荣,丁延平,王凤.糖心乐对实验性糖尿病性心肌病大鼠心肌超微结构的影响[J].陕西中医学院学报.2007.30(5)68-70.
    [102]许琪,陈慎仁,陈立曙,等.益母草注射液对糖尿病心肌病大鼠心肌细胞凋亡和增殖活性的作用研究[J].中国实用内科杂志,2006,26(12)926-928.
    [103]唐忠志,郑智,唐瑛,等.丹参对自发性高血压大鼠心肌纤维化的逆转作用及其机制研究[J].华中科技大学学报(医学版),2002,313(3):292-294.
    [104]郭治听.复方丹参滴丸的中药现代化研究[J].中国中医药信息杂志,2000, 7(4):14-15.
    [105]陈频,徐向进,史道华.复方丹参滴丸对胰岛素抵抗大鼠的保护作用及其机制研究[J].中西医结合心脑血管病杂志,2008,6(5):554-557.
    [106]Tanya L Butler, Carol G Au, Baoxue Yang, et al.Cardaic aquaporin expression in human, rat and mouse [J].Am J Physiol Heart Circ Physiol,2006,291(2):H705-713.
    [107]杨宝学,赵学俭.水通道研究进展[J].中国病理生理杂志,2005,21(8):1647-1649.
    [108]王祥,李长运等.大鼠2型糖尿病心肌病模型的建立方法[J].中国病理生理杂志,2006,22(9):1868-1870.
    [109]陈国荣,毛孙忠,李剑敏,等.糖尿病大鼠心肌病理变化及脂质过氧化和一氧化氮的改变[J].临床与实验病理学杂志,2001,17(2):146-148.
    [110]张朝云,叶红英,俞茂华,等.黄茂多糖对糖尿病大鼠心肌超微结构的影响[J].复旦学报(医学科学版),2001,28(6):476-479.
    [111]徐海波,郑鸣.水通道蛋白-3的研究进展[J].四川解剖学杂志,2006,14(2):28-31.
    [112]朱大龙.炎症与2型糖尿病[J].中国糖尿病杂志,2006,14:73-75.
    [113]侯辉.胰岛素与口服降糖药物治疗对初诊2型糖尿病患者胰岛B细胞功能的影响[J].临床医学,2005,25(9):26-27.
    [114]俞海燕,郭晓珍,孙军,等.罗格列酮对2型糖尿病患者血脂水平及颈动脉硬化的影响江苏医药[J].2008,34(1),50-52.
    [115]Golfmanls, Wilsoncr, Sharmas, et al.Activation of PPAR-gamma enhances myocardial glucose oxidation and improves contractile function in isolated working hearts of ZDF rats[J].Am J Physiol Endocrinol Metab,2005,289(2):E328-E336.
    [116]Shi omit, Tsutsui H, Hayasidani S, et al. Piglitazone, a peroxisome proliferatoractivated receptor agonist, attenuates left ventricular remodeling and failure after experimental myocardial infarctions[J].Circulatioy 2002,106 3126-3132.
    [117]李焱.炎症、胰岛素抵抗是2型糖尿病和动脉粥样硬化的共同基础[J].国外医学内分泌学分册,2005,25(3):150-152.
    [118]Duansz, Ivashchenkocy, Russell, et al.Cardiomyocyte-specific knock out and gonist of peroxisome roliferator-activated receptor-gamma both inducec ardiac hyper-trophy in mice [J].CircRs,2005,97(4):372-379.
    [119]Cross CE. Oxygen radicals and human disease[.l]. Ame inter Med,1987,107 (4): 526.
    [120]陈频,徐向进,史道华.复方丹参滴丸对胰岛素抵抗大鼠糖脂代谢的影响[J].中成药,2008,30(4):489-493.
    [121]赵娜,刘育英,卫晓红,等.复方丹参滴丸一次性预给药对缺血再灌注后大鼠心脏血流量和心肌损伤的改善作用[J].世界科学技术,2008,10(3):94-112.
    [122]王学莉,顾振纶,王道生,等.复方丹参滴丸干预大鼠心肌再灌注损伤的机制研究[J].中西医结合心脑血管病杂志,2006,4(9):789-790.
    [123]刘志扬.复方丹参滴丸对2型糖尿病合并微血管病变的临床观察[J].中国血液流变学杂志,2004,14(2):197-203.
    [124]周玉珍,王春芝,丁勇民.复方丹参滴丸对脑血流动力学影响的自身对照比较[J].中国临床康复,2006,10(23):167-169.
    [125]Chen WX, Wang F, Liu YY, et al. The improving effects of Notoginsenoside RI on hepatic microcirculation disturbance induced by gut ischemia and reperfusion[J]. World Journal of Gastroerol,2008,14(1):49-57.
    [126]Sun K, Wang CS, Guo J, et al. Effect of Panax notoginseng saponins on lipopolysaccharide-induced adhesion of leukocytes in rat mesenteric venules[J]. Clin Hemorheol Microcirc,2006,34:103-108.
    [127]高艳.丹参的药理作用[J].中国社区医师,2008,10(188)18.
    [128]王东霞,王孝铭,许晶兰.复方丹参滴丸对人血管内皮细胞功能及形态保护作用的研究[J].中国病理生理杂志,2006,22(5):933-937.
    [129]杨卫东,朱鸿良.丹参的氧自由基清除作用[J].中国药理学通报,1990,6(2):118.
    [130]常英姿.丹参素对氧自由基所致大鼠心肌线粒体H+-ATP酶损伤的保护作用[J].中国病理生理杂志,1991,1(5):449.
    [131]李璐.人参二醇皂苷对内毒素性休克及失血-内毒素二次打击大鼠肝脏保护作用及机制[D].长春:吉林大学基础医学院,2005.
    [132]李敏,李锋,胡波.丹参对内毒素致急性肺损伤大鼠肺水通道蛋白-1的调节效应[J].中国中医药信息杂志,2007,14(3):30-32.
    [133]Funabiki K, Onishi K. Dohi K, et al. Combined angiotensin in receptor blocker and ACE inhibitor on myocardial fibrosis and left ventricular stiffiness in dogs with heart failure[J]. Am J Physiol Heart CircPhysiol,2004,287(6):2487-2492.
    [134]Yoshiyama M, Omura T, Yoshikawa d. Additive improvement of left ventricular remodeling by aldosterone receptor blockade with eplerenone and angiotensin type I receptor antagonist in rats with myocardial infarction [J].Nippon Yakurigaku Zasshj,2004,124(2): 83-89.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700