反渗透膜法海水淡化过程最优化设计的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水是生命的源泉,是人类宝贵的、不可替代的自然资源。水资源危机已经成为继石油危机、电力危机之外又一制约中国经济发展的瓶颈。长远来看,发展淡化技术,从海洋获取淡水是解决水资源短缺的重要途径。反渗透膜法海水淡化技术由于其能耗低,系统安装维护相对简单,目前已得到了广泛的应用。但其技术经济指标与社会的期盼值之间,还存在一定的距离,淡化水的成本偏高。这说明当前的反渗透工艺、工程设计以及系统操作等方面仍有很多值得改进的地方。根据反渗透技术的特点,以及它在水资源开发和保护中的作用,本文对反渗透淡化过程进行了分析,采用最优化方法对反渗透淡化系统的设计进行了研究。在综合考虑了多种水源合理配置和有效利用的基础上,提出了同时考虑多水质输入、多水质输出的反渗透淡化系统的设计问题。该系统不仅可以将海水转变成淡水,而且也可以同时用来处理苦咸水和工业废水,提高了水的利用率。同时根据不同的用途,输出多种水质,实现了一水多用,重复利用,充分发挥了水资源的多种功能。本文主要内容有以下几点:
     1.对反渗透海水淡化过程进行了模拟和设计研究,首先对过程的每个单元给出了单元操作模型和相关的经济模型。通过一定的变量将这些模型相互关联,组成系统模型。系统模型主要考虑了一级流程,一级两段流程和二级流程。以年费用最小为目标,对反渗透海水淡化系统进行设计,将设计问题表达为一个混合整数非线性规划。将膜组件分为高脱盐膜,高通量膜,普通膜,低脱盐膜四种类型。当产品水的设计要求不同,进料水浓度不同时,采用本文的设计方法分别得出了不同的最优设计方案。当进料水浓度逐渐降低时,所用膜的类型逐渐由高脱盐膜转变为高通量膜,低脱盐膜,这些膜的脱盐率降低,水通量增大,这说明了进料水浓度高时,脱盐是主要矛盾,进料水浓度低时,水通量是主要矛盾。
     当进料水浓度较高,反渗透系统需要较高的操作压力,能量消耗大,因此换能器效率对年费用影响较大。如能量回收效率较高时,采用结构简单的一级流程;进料水浓度低时,能量费用在年费用中占的比例小,投资费用对年费用的影响较大,采用水回收率高,膜组件的选用合理的二级流程。这个方法可用于海水、苦咸水淡化的工程设计,也可用于高浓度含盐废水的脱盐工艺设计。本文对一个实例进行了设计,得到的吨水费用,能耗低于文献报道值,结果合理,表明这种方法是有效的。
     2.本文对在不同进料水水质条件下,不同产品水需求时,反渗透系统的优化设计进行了研究。提出了一种系统化的、集成化的方法对反渗透系统进行设计。首先,采用状态空间法给出一个网状的超结构描述,这个超结构包括了所有可行的设计方案。它和其它结构相比,不同之处在于:1).假定反渗透网络只有一个进料水入口,进料水从第一个反渗透级进入网络。2).将物流分布集合简化为物流混合节点。淡水、盐水物流在增压级进行混合,在反渗透级进行分离。3).超结构数学模型中采用了物流分率,等压混合约束等技术手段,简化了模型中物流混合、分离的数学描述。4).反渗透网状超结构的描述中以功压交换器作为能量回收装置。
     这个超结构数学模型中采用了物流分率,等压混合约束等技术手段,减少了整数变量的数目和算法的搜索空间,使得模型的求解更容易。当进料水水质发生变化时,可通过改变多级反渗透系统的结构,选择恰当的操作条件和膜组件的型号,获得具有最大经济效益的产品水。
     本文同时给出改进的卷式膜组件模型。该模型考虑了膜元件中的压降和浓差极化,可以近似地描述膜分离单元中压力容器的行为。由此就可以将系统中膜组件的设计和整个反渗透系统的设计结合起来,同时进行优化。设计的结果可以确定最优的压力容器排布方式,每个压力容器中膜元件的个数以及元件的选型。反渗透网络的优化设计问题最终可表达为一个混合整数非线性规划(MINLP),它以反渗透系统年费用最小为目标,满足过程热力学、单元操作、设计要求的约束。提出的系统化的反渗透网络优化设计方法被应用到海水、苦咸水淡化实例中。结果表明,采用最优化设计方案可以明显地降低单位产品水的费用,同时这种设计方法可以加深对整个反渗透系统的了解,适合应用于实际的反渗透淡化工程设计中。
     3.在综合考虑了多种水源合理配置和有效利用的基础上,根据反渗透淡化技术的特点,提出了同时考虑多水质输入、多水质输出的反渗透淡化系统的设计问题。该系统不仅可以将海水转变成淡水,而且也可以同时用来处理苦咸水和工业废水,提高了水的利用率。同时根据不同的用途,输出多种水质,充分发挥了水资源的多种功能。本文采用过程综合优化的方法,对多水质输入、多水质输出的反渗透系统的优化设计进行了研究。首先,在前面提出的网状超结构的基础上,给出这个问题的超结构描述。改进之处在于:该反渗透网络由Nps个增压级和NRO个反渗透级构成。网络中有四套物流节点,分别是Nw个进料物流节点;Nps个物流混合节点;NRO个反渗透单元节点;Np个产品水节点。这个结构描述简单,易于表达。在它的数学模型表达中采用了物流分率,物流混合逻辑表达等技术手段,减少了整数变量的数目和算法的搜索空间,使得模型的求解更容易。
     这个系统结构中的膜分离单元也采用了上一章给出的卷式膜组件模型,在系统优化的同时也对膜组件的设计进行优化,设计的结果可以确定最优的压力容器排布方式,每个压力容器中膜元件的个数以及元件的选型。
     反渗透系统的优化设计问题最终表达为一个混合整数非线性规划(MINLP)。当输入的水源发生变化或输出的水质需求不同时,可通过改变多级反渗透系统的结构,选择恰当的操作条件和膜组件的型号,恰当的进料水源搭配,进料的位置,获得具有最大经济效益的产品水。这种过程综合优化的方法可以用较低的成本,实现水资源的合理配置和有效利用,充分发挥了水资源的多种功能。
     4.膜组件的定期清洗是防治膜污染的主要措施之一。本文在反渗透海水淡化过程的模拟和工艺设计基础上,进一步对一级反渗透系统的清洗时机问题进行了研究。本文以规划期内总操作费用最小为目标,提出了新的污染模型,给出了清洗的判据,建立了清洗规划模型,将清洗策略问题表达为一个混合整数非线性规划(MINLP)。用这种方法对一个一级反渗透系统的操作、清洗维护进行优化,计算结果给出了该系统在五年规划期内的最优操作和清洗策略,最优单元数为两个单元。在不同的反渗透系统中,最优单元数依赖于清洗的固定费用,每个膜组件的清洗费用,以及整个反渗透系统膜组件的数量。实例计算结果表明,这种策略对于优化寿命为3-5年的膜组件的清洗维护是有效的。
     5.在工艺优化和操作优化的基础上,对考虑膜组件清洗及更换的反渗透系统的优化设计进行了研究。由于影响一个反渗透系统正常运行的主要因素是膜污染,它引起的操作压力上升、水质恶化,从而使操作费用大增。本文在设计阶段考虑了膜组件的清洗和更换对整个反渗透系统的工艺设计和运行操作的影响,采取了以下步骤对反渗透过程进行设计:1)给出过程单元数学模型,用这些模型模拟反渗透过程,预测不同条件下操作参数对过程的影响;2)建立系统模型对反渗透结构进行描述;3)建立描述膜组件污染的数学模型,提出膜组件清洗和更换的判据,给出规划期内膜组件的最优清洗和更换策略。4)给出相关的经济模型,将投资费用、操作费用和设计变量相关联。5)在前四步的基础上以年费用最小为目标,将设计问题表达为一个混合整数非线性规划(MINLP)。在GAMS集成开发环境中求解以上混合整数非线性规划,可得出最优的设计工艺及操作策略。
     按照本文提出的优化设计模型,它假设系统的单元数是个变量,每个单元所包含的膜组件数目也是个变量,反渗透系统中不同单元可根据自身受污染的情况,操作上可进行相互补偿,以满足最终产水量,产水水质的要求。这种设计使得反渗透系统的操作更灵活,消耗的费用更低。对三个实例进行了设计,分别为在设计阶段只考虑膜清洗情况的例子,膜组件使用五年后统一更换。及在设计阶段同时考虑膜清洗和更换的例子。从设计结果来看,得到的吨水费用,能耗低于文献报道值,表明这种优化设计方法是有效的。
The fresh water is an important resource to human. It is becoming increasingly scarcity. Therefore, the problem of fresh water resource should be solved for the sustainable develop in China. One of the more promising alternative is desalination of seawater and brackish water. In the last few year, the reverse osmosis (RO) desalination process have found widespread application in the field of water resource protect and develop. The rapid growth of RO process is because it is able to produce fresh water with lower cost . The other attractive feature of RO process is that the plant design and operation is simplicity and modularity. At present, the technical economical indices of RO don’t reach the public desired value, and the cost of desalination is on the high side. It shows that the current RO system can be improved in some aspects-the RO technology, the engineering design, and the operation etc.
     In this paper, the optimization method based on process synthesis has been applied to design the RO system. The reverse osmosis desalination process with multiple-feed and multiple-product required has been studied. The adoption of this approach can provide an economically attractive desalination scheme. It can lead to significant energy and raw-materials saving and provide income from the multiple product water sales. The main contents are extracted and listed below:
     1. The simulation and design of RO desalination process has been investigated. From the beginning, the detailed mathematical models of each process units are given, and the relevant economic models to the RO desalination process are introduced. Then the interdependence of the above mathematical models via some corresponding variables constitutes a system model. Single-stage and two-stage processed are considered. The membrane module can be classed four type, i.e. higher salt-rejection membrane, high-flux membrane, normal membrane, lower salt-rejection membrane. Finally, the optimum design problem can be solved as a mixed-integer non-linear programming (MINLP), which incorporates thermodynamic, technical and flexibility constraints and minimizes the total annualized cost. The different optimal design options are obtained for different design specification and feed water quality and the corresponding design rule are derived. Two examples in different cases are solved to illustrate the advantage and effectiveness of the new method.
     2. The design of various multistage RO systems under different feed concentration and product specification is presented in this work. An optimization method using the process synthesis approach to design an RO system has been developed. First, a simplified superstructure that contains all the feasible design in present desalination process has been presented. It offers extensive flexibility towards optimizing various types of RO system and thus may be used for the selection of the optimal structural and operating schemes. A pressure vessel model that takes into account the pressure drop and concentration changes in the membrane channel has also been given to simulate multi-element performance in the pressure vessel. The solution to the problem includes optimal arrangement of the RO modules, pumps, energy recovery devices, the optimal operating conditions, and the optimal selection of types and number of membrane elements.
     3. The reverse osmosis (RO) desalination process with multiple-feed and multiple-product required has been studied in this work. The optimization method based on process synthesis has been applied to design the RO system. The adoption of this approach can provide an economically attractive desalination scheme. Membrane separation units employing the spiral wound reverse osmosis elements were described by using the pressure vessel model presented in this paper, which takes into account the pressure drop and concentration changes in the membrane channel. A simplified superstructure that contains all the feasible design for this desalination problem has also been presented. In this structural representation, the stream split ratios and logical expressions of stream mixing were employed which can make the mathematical model to be easily handled. The solution of the problem includes the optimal system structure and operating conditions, and the optimal streams distribution. The design method could also be used for the optimal selection of the types of membrane elements in each stages and the optimal number of membrane elements in each pressure vessel.
     4. In the reverse osmosis desalination process, the membrane fouling and scaling is a big problem that must be solved. The regular cleaning is one of main measures that prevent and cure the membrane fouling and scaling. Cleaning can eliminate the surfacial contamination of membranes and recover the water flux. On the condition that the water production is ensured, the optimal cleaning frequency and the minimum cleaning cost can be obtained by choosing the appropriate cleaning strategy and time. This paper makes a more deep research on the problem of membrane module cleaning and replacing base on the previous study, and addresses the new fouling model and the criterion of cleaning. The mathematical formulation of the optimum design problem is a mixed-integer non-linear programming (MINLP), which targets the minimum total operation cost during the whole project period. One example was solved and the corresponding optimal time and cleaning strategy was acquired during the five-year project period, which illustrates the effectiveness of the new method for the optimal maintenance cost of the 3-5 year life-span membrane modules.
     5. Based on the studies of technology and operation optimization, this paper made a more deep research into optimization design of reverse osmosis seawater desalination system. In the design process, the optimal cleaning and replacing schedule of membrane module during the five-year project period is consided simultaneously. RO system process design is carried out in the following steps: 1) The mathematical model of each operation unit is given and used to simulate and predict the effects in different conditions of operation; 2) RO system model is built up to describe the overall RO process; 3) RO system model describing the pollution of membrane module is built up and the criterion of membrane washing and repairing are presented; 4) The economic model of RO system is given, which correlates the investment and operation cost via some design variables; 5) Based on the above 4 steps, the RO process is designed using the mathematical programming method. Two examples in different cases are solved to illustrate the advantage and effectiveness of the new method.
引文
1.高从堦,篕程福ぜ际蹙茫?003,21(11):24-26
    2.王世昌,人类需要海水淡化技术,国际学术动态,1997,(1):13-14
    3.俞栋,高殿森,方振东,海水淡化技术的发展现状,西南给排水,2003,25(2):17-19
    4.解利昕,阮国岭,张耀江,反渗透海水淡化技术现状与展望,中国给水排水,2000,16(3):24-27
    5.林斯青,国外海水反渗透淡化技术现状及未来,水处理技术,1998,24(1):1-6
    6.俞三传,高从堦,膜技术在篕妥酆侠弥械男陆梗Q笸ūǎ?001,20(1):83-87
    7.李忠钦,蓬勃发展的海水淡化事业—中国及世界海水淡化的发展和现状综述,中国科技成果,2004(15):20-23
    8. G. F. Leither, Breaking the Cost Barrier for seawater desalting, Desalination water Reuse, 1998(8)1:14-21
    9. G. F. Leither, Singapore, Time for Seawater Desalination, Desalination & Water Reuse ,1998(7)4:50-58
    10. N.M. Wade, Distillation plant development and cost update, Desalination, 2001,136: 3-12
    11. S.Ebrahim,M.Abdel–Jawad. Economics of seawater desalination by reverse osmosis. Desalination, 1994, 99: 39-55
    12.王世昌,周清,王志,海水淡化与反渗透技术的发展形势,膜科学与技术,2003,23(4):162-165
    13.谭永文,沈炎章,卢光荣,石雷,嵊山500吨/日反渗透海水淡化示范工程,工业水处理和海水淡化技术应用与发展研讨会文集.科技部高新技术发展与产业化司,北京,1999,6,291-296
    14.解利昕,阮国岭,吕庆春,高进,18000m3/d苦咸水淡化设计方案,中国给水排水,2000,16(7):33-34
    15.高从堦,谭永文,张耀江,加快我国篕际醪捣⒄寡芯浚涌煳夜?海水利用技术产业发展及政策研究,中国高科技产业化研究会海洋分会,北京,2000,11,25-31
    16.彭彦龙,吴松海,贾绍义,海水淡化技术的发展,天津化工,2006,20(3):15-19
    17.艾钢,吴建平,朱忠信,海水淡化技术的现状和发展,净水技术,2004,23(3):24-28
    18. Ibrahim Massaoud E1-Azizi, Design criteria of 10,000 m3/d SWRO desalination plant of Tajura, Libya, Desalination 2002, 153:273-279
    19. Peter Moss, Jose Manrique de Laray Gil, Twenty-five years of desalination in the Canary Islands, Desalination, 1999, 125:17-23
    20. Harvey Winters, Twenty years experience in seawater reverse osmosis and how chemicals in pretreatment affect fouling of membranes, Desalination, 1997, 110:93-96
    21.王世昌,海水淡化工程[M],化学工业出版社,2003
    22.时钧,袁权,高从堦,膜技术手册[M],化学工业出版社,2001
    23.解利昕,李凭力,王世昌,海水淡化技术现状及各种淡化方法评述,化工进展,2003,22,(10):1081-1084
    24.林斯清,张维润,海水淡化的现状与未来,工业水处理和海水淡化技术应用与发展研讨会文集,科技部高新技术发展与产业化司,北京,1996,6,275-281
    25.薛怀德,反渗透膜法简要介绍(三),膜科学与技术,1990,10(4):54-57
    26.熊日华,王世昌,海水淡化中的替代型能源,化工进展,2003,22(11):1139-1142
    27.李凭力,马佳,解利昕,王世昌,冷冻法海水淡化技术新进展,化工进展,2005,24(7):749-753
    28.苏润西,太阳能海水淡化技术,海洋技术,2002,21(4):27-32
    29.张耀明,邹宁宇,海水淡化技术与太阳能利用,中国工程科学,2005,7(11):37-41
    30.赵河立,初喜章,阮国岭,核能在海水淡化中的应用,海洋技术,2002,21(4):17-21
    31.王喜鹏,傅学起,核能反渗透海水淡化缓解华北水资源危机的作用分析,资源科学,2004,26(6):47-54
    32.樊雄,张希建,沈炎章,谭永文,山东长岛县反渗透海水淡化工程,水处理技术,2003,29(1):30-35
    33.鲁学仁,国家海洋局杭州水处理中心膜技术进展概况,水处理技术,1999,25(1):1-8
    34.薛怀德,膜科学技术简要介绍,膜科学与技术,1990,10(2):17-20
    35.陈东升,用膜分离技术处理废水的研究,膜科学与技术, 1998,18(15):32-34
    36.蔡振雄,范志贤,膜分离海水淡化技术,集美大学学报(自然科学版),2000,5(1):21-23
    37.高从堦,俞三传,金可勇.集成膜过程,中国工程科学,2000,2(7):43-46
    38.董秉直,菩达文,范谨初,膜技术应用于净水处理的研究和现状,给水排水,1999,25(1):28-32
    39.王湛,膜分离技术基础[M],化学工业出版社,2000
    40. N.G.Voros, Z.B.Maroulis, D.Marinos-Kouris, Salt and water permeability in reverse osmosis membranes, Desalination, 1996, 104:141-154
    41. Masaaki Sekino, Study of an analytical model for hollow fiber reverse osmosis module systems, Desalination, 1995, 100:85-97
    42. M. Wilf, Design consequences of recent improvements in membrane performance, Desalination, 1997, 113: 157-163
    43. Lidy E, Fratila-Apachitei, Influence of membrane morphology on the flux decline during dead-end ultrafiltration of refinery and petrochemical waste water, Journal of Membrane Science, 2001, 182:151-159
    44. Victor M.Starov, Jim Smart, Performance optimization of hollow fiber reverse osmosis membranes, PartⅠDevelopment of theory, Journal of Membrane Science, 1995, 103:257-270
    45. Jim Smart, Victor M. Starov, Performance optimization of hollow fiber reverse osmosis membranes, PartⅡComparative study of flow configurations. Journal of Membrane Science, 1996, 119:117-128
    46.徐晅阔,王世昌,反渗透淡化系统余压水力能量回收装置的研究进展,水处理技术, 2002(28):63-65
    47.金树德,陈次昌.现代水泵设计方法[M].兵器工业出版社,1993
    48.范德明.工业泵选用手册.化学工业出版社。1998
    49.陈次昌.金树德.水泵微型计算机辅助设计[M],机械工业出版社,1993
    50. S.A.Shumway, The work Exchanger for SWRO Energy Recovery, Desalination & Water Reuse, 1999(8)4:27~33
    51. P.Geisler, F.U.Hahnenstein, Pressure exchange system for energy recovery in reverse osmosis plants, Desalination, 1999,12:151-156
    52. Eli.Oklejas.Jr, Integration of advanced high-pressure pumps and energy recovery equipment yields reduced capital and operating costs of seawater RO systems, Desalination, 2000, 127:181-188
    53. PX, Energy Recovery, Inc., San Leandro
    54. R.L. Stover, Development of a fourth generation energy recovery device, Desalination, 2004, 165: 313-321
    55. G. Migliorini, E. Luzzo, Seawater reverse osmosis plant using the pressure exchanger for energy recovery, Desalination, 2004, 165: 289-298
    56.王克涛,水处理系统反渗透膜的污染及清洗方法,中国电力,1999,12(32):34-36
    57.杨昆,王宇彤,反渗透系统的结垢污染与清洗维护,膜科学与技术,2001,21(4):61-64
    58.曹旭辉,反渗透膜的清洗,设备及自动化,2001,5:69-72
    59.刘向东,楼伟,卷式反渗透膜的损害及预防,膜科学与技术,2002,22(6):69-72
    60.杨洋,李国彬,吕松,反渗透的经济评价及污染防止,东北电力学院学报, 2002, 22(1):52-54
    61. D. Vial, G. Doussau, The use of microfiltration membranes for seawater pre-treatment prior to reverse osmosis membranes, Desalination, 2002 ,153:141-147
    62. S.C.J.M.van Hoof, J.G.Minnery, Dead-end ultrafiltration as alternative pre-treatment to reverse osmosis in seawater desalination: a case study, Desalination, 2001,139 :161-168
    63. Abdulmajeed Ali Alawadhi, Pretreatment plant design-Key to a successful reverse osmosis desalination plant, Desalination, 1997, 110:1-10
    64. A.Teuler, K.Glucina, Assessment of UF pretreatment prior RO membranes for seawater desalination, Desalination, 1999, 125:89-96
    65. Bruce Durham, Membrane pretreatment of reverse osmosis- Long term experience on difficult waters, Desalination, 1997, 110:49-58
    66. Pierre Cote, Jason Cadera, A new immersed membrane for pretreatment to reverse osmosis, Desalination, 2001, 139:229-236
    67. R.Rautenbach, T.Linn, Present and future pretreatment concepts-Strategies for reliable and low-maintenance reverse osmosis seawater desalination, Desalination, 1997, 110:97-106
    68. I.M. El-Azizi, Design criteria of 10,000 m3/d SWRO desalination plant of Tajura, Libya, Desalination, 2002, 153: 273-279
    69. Ali Zilouchian, Mutaz Jafar, Automation and process control of reverse osmosis plants using soft-computing methodologies, Desalination, 2001, 135:51-59
    70. Ghazi Al-Enezi,Design consideration of RO units:case studies, Desalination, 2002 (153):281-286
    71. Boris Pilat, Practice of water desalination by electrodialysis, Desalination, 2001,139:385-392
    72. I.Kanal & G. V. Sims, Power plant Repowering, Desalination & Water Reuse, 1998(8)2:22-31
    73. Mohan Noronha, Valko Mavrov, Efficient design and optimisation of two-stage NF processes by simplified process simulation, Desalination, 2002, 145:207-215
    74. Wentie Ma, Zhicai Sun, Application of membrane technology for drinking water, Desalination, 1998, 119:127-131
    75. Abdul Hadi Hasan Al-Sheikh, Seawater reverse osmosis pretreatment with an emphasis on the Jeddah Plant operation experience, Desalination, 1997, 110:183-192
    76. R.Rosberg, Ultrafiltration (new technology), a viable cost-saving pretreatment for reverse osmosis and nanofiltration-A new approach to reduce costs, Desalination, 1997, 110:107-114
    77.赵广英,罗敏,李艳芝,孙培毅,反渗透膜的污染分析及其清洗,工业水处理, 2000,20(1):25-27
    78.李小涛,黄凯,反渗透膜的污染和清洗,医药工程设计杂志, 2002,23(5):19-21
    79.王乐云,反渗透膜的污染及其控制,水处理技术, 2003,29(2):102-105
    80.孟繁敬,郝俊果,反渗透膜的污染及清洗,河北化工, 2001,1:30-31
    81.孙培毅,反渗透膜的污染及在线清洗,工业水处理, 2000 ,20(6):34-36
    82.黄敢林,许振良,反渗透膜污染分析及清洗研究,化学世界, 183-184
    83.靖大为,反渗透系统优化设计[M],化学工业出版社,2006
    84. J.I.Marriott,Detailed mathematical modeling of membrane modules, Comp,Chem,Eng.,2001 (25):693-700
    85. Shoji Kimura, Analysis of reverse osmosis membrane behaviors in a long-term verification test, Desalination, 1995, 100:77-84
    86. D. Van Gauwbergen, J. Baeyens, Modelling and scale-up of reverse osmosis separation, Desalination, 2001, 139:275-279
    87. Jenny WeilJbrodt, Michael Manthey, Separation of aqueous organic multi-component solutions by reverse osmosis - development of a mass transfer model, Desalination, 2001, 133:65-74
    88. Ani Idris, M.Y. Noordin, Study of shear rate influence on the performance of cellulose acetate reverse osmosis hollow fiber membranes, Journal of Membrane Science, 2002, 202: 205-215
    89. S.De, P.K.Bhattacharya, Prediction of mass-transfer coefficient with suction in the applications of reverse osmosis and ultrafiltration, Journal of Membrane Science, 1997, 128: 119-131
    90. Armin Kargo, Effect of boundary layers on reverse osmosis through a horizontal membrane, Journal of Membrane Science, 1999, 159:177-184
    91. I.S.Al-Mutaz, M.A.Soliman, Modeling and simulation of hollow fine fiber modules with radial dispersion– a parametric sensitivity study, Desalination, 1997, 110:239-250
    92. Simcha Srebnik, Theoretical model of the porosity of copolymer membranes, Journal of Membrane Science, 2001,184:97-106
    93. O. Kedem, A. Katchalsky, Thermodynamic analysis of the permeability of biological membranes to Non-electrolytes, Biochemical et Biophysica Acta, 1958 27: 229-246
    94. Kimura. S, Sourirajan. S, Analysis of data in reverse osmosis with porous cellulose acetate membranes used, AICHE J, 1967, 13 (3): 497-503
    95. Kimura. S, Sourirajan. S, Stagewise reverse osmosis process design, Ind. Eng. Chem. Proc. Des. Dev., 1969, 8(1): 79-89
    96. H. K. Lonsdale, U. Merten, R. L. Riley, Transport properties of cellulose acetate osmotic membranes, Journal of applied polymer science, 1965, 9: 1341-1362
    97. Williams Michael E, Dibakar Bhattacharyya, Roderick. J. Ray, Scott. B. McCray, Reverse osmosis: Selected applications, in membrane handbook, Van Nostrand Reinhold, NY, 1992
    98. A.Malek, M.N.A.Hawlader, Design and economics of RO seawater desalination, Desalination, 1996 (105):245-261
    99. Wiley. D. E, C. J. D. Fell, A. G. Fane, Optimization of membrane module design for brackish water desalination, Desalination, 1985, 52, 249
    100.Maskan. F, Wiley. D. E, L. P. M. Johnston, D. J. Clements, Optimal design of reverse osmosis module networks, AICHE J, 2000, 46 (5): 946-954
    101.Evangelista. F, A short cut method for the design of reverse osmosis desalination plants, Ind. Eng. Chem. Proc. Des. Dev., 1985, 24: 211-223
    102.Evangelista. F, Improved graphical-analytical method for the design of reverse osmosis plants, Ind. Eng. Chem. Proc. Des. Dev., 1986, 25: 366-375
    103.Sirkar.K. K, P. T. Dang, G. H. Rao, approximate design equations for reverse osmosis desalination by spiral-wound modules, Ind. Eng. Chem. Proc. Des. Dev., 1982, 21: 517-527
    104.Sirkar.K. K, G. H. Rao, Explicit flux expressions in tubular reverse osmosis desalination, Desalination, 1978, 7: 99-116
    105.W.G.J. Van der Meer, M. Riemersma, Only two membrane modules per pressure vessel hydraulic optimization of spiral-wound membrane filtration plants, Desalination, 1998, 119: 57-64
    106.W.G.J. Van der Meer, C.W.A. Averink, Mathematical model of nanofiltration systems, Desalination, 1996, 105: 25-31
    107.L.P. Wessels, W.G.J. Van der Meer, Innovative design of nano- and ultrafiltration plants, Desalination, 1998, 119: 341-345
    108.Gupta. O. K, V. Ravindran, Branch and bound experiments in convex nonlinear integer programming, management science, 1985, 31(12): 1533-1546
    109.Avlonitis. S, G. P. Sakellaropoulos, W. T. Hanbury, Optimal design of spiral wound modules: An analytical method, Trans. IchemE, 1996, 73: 575-580
    110.Nader M,Al-Bastaki,Modeling an industrial reverse osmosis unit,Desalination, 1999 (126):33-39
    111.Chan Ching Yuen,Aatmeeyata, Multi-objective optimization of membrane separation modules using genetic algorithm, J.Membr.Sci., 2000 (176)177-196
    112.Mark Wilf, Optimization of seawater RO systems desige, Desalination, 2001 (138):299-306
    113.Awwad J, Dababneh, M.A. Al-Nimr, A reverse osmosis desalination unit, Desalination, 2002, 153:265-272
    114.Ioannis K, Kookos, A targeting approach to the synthesis of membrane networks for gas separations, Journal of Membrane Science, 2002,208 :193-202
    115.Chan Ching Yuen, Aatmeeyata, Multi-objective optimization of membrane separation modules using genetic algorithm, Journal of Membrane Science, 2000,176 :177-196
    116.Runhong Qi, Michael Henson, Membrane system design for multicomponent gas mixtures via mixed-integer nonlinear programming, Computers and Chemical Engineering, 2000,24:2719-2737
    117.Yonglie Wu, Xi Peng, Study on the integrated membrane processes of dehumidification of compressed air and vapor permeation processes, Journal of Membrane Science, 2002, 196 :179-183
    118.Pratibha Pandey, R.S.Chauhan, Membranes for gas separation, Prog.Polym.Sci, 2001, 26:853-893
    119.Harri Niemi, Abhay Bulsari, Simulation of membrane separation by neural networks, Journal of Membrane Science, 1995, 102:185-191
    120.E. El-Zanati, S. Eissa, Development of a locally designed and manufactured small-scale reverse osmosis desalination system, Desalination, 2004, 165: 133-139
    121.A. Villafafila, I.M. Mujtaba, Fresh water by reverse osmosis based desalination: simulation and optimization, Desalination, 2003, 155: 1-13
    122.M. Wilf, C. Bartels, Optimization of seawater RO systems design, Desalination, 2005, 173: 1-12
    123.M.G. Marcovecchio, P.A. Aguirre, N.J. Scenna, Global optimal design of reverse osmosis networks for seawater desalination: modeling and algorithm, Desalination, 2005, 184: 259-271
    124.G. Al-Enezi, N. Fawzi, Design consideration of RO units: case studies, Desalination, 2002, 153: 281-286
    125.A. Malek, M.N.A. Hawlader, Design and economics of RO seawater desalination, Desalination, 1996, 105: 245-261
    126.N.M. Al-Bastaki, A.Abbas, Predicting the performance of RO membranes, Desalination, 2000, 132: 181-187
    127.N.M. Al-Bastaki, A.Abbas, Modeling an industrial reverse osmosis unit, Desalination, 1999, 126: 33-39
    128.A.Abbas, N.M. Al-Bastaki, Modeling of an RO water desalination unit using neural networks, Chemical Engineering Journal, 2005, 114: 139-143
    129.McCutchan. J. W, Goel. V, System analysis of a multistage tubular module reverse osmosis plant for seawater desalination, Desalination, 1974, 14: 57-76
    130.Evangelista. F, Improved graphical-analytical method for the design of reverse osmosis plants Ind. Eng. Chem. Proc. Des. Dev., 1986, 25: 366-375
    131.M.M. El-Halwagi, Synthesis of reverse osmosis networks for waste reduction, AICHE J, 1992, 38: 1185-1198
    132.M. Zhu, M.M. El-Halwagi, Optimal design and scheduling of flexible reverse osmosis networks, Journal of membrane science, 1997, 129: 161-174
    133.N.G. Voros, Z.B. Maroulis, Optimization of reverse osmosis networks for seawater desalination. Comp.Chem.Eng, 1996, 20: 345-350
    134.N.G. Voros, Z.B. Maroulis, Short-cut structural design of reverse osmosis desalination plants, Journal of membrane science, 1997, 127: 47-68
    135.J.E. Nemeth, Innovative system designs to optimize performance of ultra-low pressure reverse osmosis membranes, Desalination, 1998, 118: 63-71
    136.M.M. Nederlof, J.C. Kruithof, Comparison of NF/RO membrane performance in integrated membrane systems, Desalination, 2000, 131:257-269
    137.H.J.See, VS.Vassiliadis, Optimisation of membrane regeneration scheduling in reverse osmosis networks for seawater desalination, Desalination, 1999 (125):37-54
    138.Marlene Dresch, Georges Daufin, Integrated membrane regeneration process for dairy cleaning-in-place, Separation and Purification Technology, 2001,22-23:181-191
    139.Deborah Squire, Reverse osmosis concentrate disposal in the UK, Desalination, 2000,132:47-54
    140.Peter Geisler, Optimization of the energy demand of reverse osmosis with a pressure-exchange system, Desalination, 1999 (125):167-172
    141.A.Grundisch, B. P. Schneider, Optimising energy consumption in SWRO systems with brine concentrators, Desalination, 2001 (138):223-229
    142.Leif. J. Hauge, The pressure exchanger-A key to substantial lower desalination cost, Desalination, 1995 (102):219-223
    143.Leif J.Hauge, The pressure exchanger- A Key to substantial lower desalination cost, Desalination, 1995,102:219-223
    144.Chip Harris, Energy recovery for membrane desalination, Desalination, 1999, 125:173-180
    145.Alessandra Criscuoli, Enrico Drioli, Energetic and exergetic analysis of an integrated membrane desalination system, Desalination, 1999, 124:243-249
    146.Agustin Aragon Mesa, Design of the maximum energy efficiency desalination plant, Desalination, 1996, 108:111-116
    147.M. Busch, W.E. Mickols, Reducing energy consumption in seawater desalination, Desalination, 2004, 165: 299-312
    148.J.A. Redondo, A. Casanas, Designing seawater RO for clean and fouling RO feed. Desalination experiences with the FilmTec SW30HR-380 and SW30HR-320 elements–Technical– economic review, Desalination, 2001, 134: 83-92

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700