温室番茄需水规律与优质高效灌溉指标研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
温室能充分调节利用光、热、水、土资源,为作物的生长发育提供适宜的环境。随着社会经济的快速发展和生活水平的日益改善,人们更加重视蔬菜产品品质的提高和无公害生产。在水资源日益紧缺的大背景下,以滴灌为主的节水灌溉技术被越来越多的应用于温室蔬菜的生产中,并突显出其优越性和重要性。基于目前的社会经济形势,研究滴灌条件下温室蔬菜的需水特性及优质高效灌溉指标,可以促进日光温室蔬菜节水灌溉的发展,提高水分利用效率,实现日光温室蔬菜的优质高产、以水调质的功效,对日光温室水肥资源高效利用及生产效益的提高具有重要意义。
     本项研究以种植区域十分广泛、种植面积非常大的番茄为主要研究对象。试验于2008年和2009年在中国农业科学院农田灌溉研究所作物需水量试验场内的日光温室中进行,采用常见的宽窄行方式种植。根据番茄的生长发育特性,将番茄的整个生育期划分为苗期、开花坐果期和成熟采摘期3个阶段,在苗期设计3个土壤水分控制下限(占田间持水量的百分比)处理,在开花坐果期和成熟采摘期都设置4个土壤水分控制下限处理,另外设置一个全生育期都充分供水的处理作为对照,共计10个试验处理。试验采用随机布设,重复3次。
     通过两年较为系统的田间试验和实验室分析,对不同土壤水分状况下温室番茄植株生长发育状况、生理生态特性、棵间土壤蒸发和植株蒸腾规律、最终产量和产品品质及水分利用效率进行了系统的观察研究,取得的主要研究结果如下:
     (1)任何生育阶段发生水分亏缺均会降低番茄叶片光合速率及气孔开度,进而影响干物质的累积和运转,但不同时期水分亏缺的影响形式及程度有所不同。苗期水分亏缺会抑制番茄植株的正常生长,但水分过高会使植株营养生长过大,不利于光合产物向果实的运移;开花坐果期水分亏缺不仅抑制了番茄植株的生长发育,而且会降低干物质的累积速率,并最终影响到果实产量;成熟采摘期水分亏缺会加速番茄植株的衰老,降低植株干物质总量,对番茄果实产量的影响最为明显。试验表明,只有在适宜的阶段合理的控制土壤水分下限,才能既不影响番茄植株正常生长发育及生理需水,又能有效地抑制番茄的冗余生长,使光合产物向有利产量形成的方向运转,为产量形成提供良好的基础。
     (2)番茄苗期适度水分亏缺(土壤水分保持在田间持水量的50%~55%)可提高坐果率,降低畸形果比率,但果实总体偏小,果实成熟主要集中到采摘后期;开花坐果期过度水分亏缺(土壤水分降到田间持水量的65%以下)虽可促进果实成熟,但降低了成果数,且易形成小果和畸形果;成熟采摘期水分过高(田间持水量的80%以上)或过低(田间持水量的65%以下)均会降低番茄产量,水分亏缺(田间持水量的65%以下)使成果数降低、畸形果比率增加。
     (3)滴灌条件下,温室番茄的耗水量与土壤水分状况(处理)有着密切的关系。不论是总耗水量还是阶段耗水量,均随着土壤水分的降低而减小。番茄产量与全生育期灌水量及耗水量之间均呈现良好的二次函数关系,相关系数均达到0.90以上。温室番茄的经济耗水量在311.83~348.18mm之间。
     (4)在番茄整个采摘过程中,同一水分处理不同时间采摘的果实,品质具有较大差异。因此,某一次采摘果实的品质测定值,均无法很好地代表整个采摘期的品质性状。这一现象在所有水分处理中都存在。因此,取若干次采摘果实品质测定值的平均值,可以在一定程度上消除采摘时间不同所产生的差异。
     不同生育阶段土壤水分调控对番茄果实储运品质(硬度)和营养品质(糖酸比、VC含量、可溶性蛋白含量、硝酸盐含量等)的影响程度不同,其中苗期影响较小,开花坐果期和成熟采摘期影响较大。总体上看,果实硬度和VC含量随水分胁迫程度的增加而提高,与耗水量呈线性负相关关系;硝酸盐含量与耗水量呈下凸型二次抛物线关系,糖酸比与耗水量呈上凸型二次抛物线关系,而可溶性蛋白质含量对水分调控的敏感性较小。水分调控可在一定程度上改善果实的某些品质特性。
     (5)番茄棵间土壤蒸发和植株蒸腾速率受气象条件、土壤水分状况及作物自身生长状况等因素的影响。棵间土壤蒸发与总辐射、气温、饱和水汽压差等气象因子呈指数正相关关系,而植株日茎流量与日总辐射呈线性正相关,与空气饱和水汽压差呈对数正相关关系。相对土壤蒸发强度与番茄叶面积指数呈指数负相关关系,而茎流速率与叶面积指数呈线性正相关关系,二者呈现明显的此消彼长变化。研究结果表明,番茄植株茎流速率经标准化处理后可以很好地表示植株的蒸腾速率。
     以Penman-Monteith方程为基础,针对温室特定的小气候环境,对番茄冠层整体气孔阻力、空气动力学阻力等参数进行了修正,建立了以气象数据、叶面积指数和冠层高度为主要参数的温室番茄蒸腾量估算模型。分别采用2009年5月2日~13日(处于开花坐果期内)和2009年6月9日~20日(处于成熟采摘期内)两个时段内的茎流速率与茎流量实测值对建立的蒸腾量估算模型进行验证,模拟结果的平均相对误差分别为8.48%和9.20%,表明所建模型可以较好地的计算温室番茄的蒸腾量。
     通过对温室番茄需水规律及其影响因素的分析,首次提出了基于常规气象数据的温室番茄需水量估算模型,分别采用2009年5月2日~13日(处于开花坐果期内)和2009年6月9日~20日(处于成熟采摘期内)两个时段的实测蒸腾量和实测棵间土壤蒸发量对模型进行验证,模型模拟值的平均相对误差小于10%。在建立的需水量估算模型基础上,引入土壤水分修正系数K(θ),建立了适用于水分胁迫条件下估算温室番茄蒸发蒸腾量的模型。
     (6)以产量、水分利用效率、单果重、果实硬度、糖酸比和VC含量为主要评价指标,采用主成份分析法,确定了能够实现温室番茄优质、高产、高效三者相统一的土壤水分适宜控制下限指标,即苗期为田间持水量的60%~65%,开花坐果期和成熟采摘期均为田间持水量的70%-75%。
Greenhouse technology can contribute to utilize the resources such as light, heat, water and soil in various ways and provide with an optimum environmental medium for crop growth. With the rapid economic development and the improvement of people's living conditions, people pay more attention to the vegetables quality and non-polluted production. With increasing shortage of water resources, water-saving irrigation technologies mainly in drip irrigation were used in greenhouse vegetable production more and more, and showed an importance and superiority. Base on the current economic situation, water requirement and optimal irrigation index for effective water use and high-quality of tomato in Greenhouse were studied in this paper, which can improve the development of water-saving irrigation and water use efficiency on vegetables in greenhouse and achieve the vegetable products with high-yield and high-quality by water. At the same time, these studies will play an important role in improving high efficient utilization of water and fertilizer and production profit.
     Tomato, as a vegetable crop, being cultivated in a wide range of region and greater acreage, was regarded as the main research object in this study. The experiment was carried out in a greenhouse in 2008 and 2009 at the water requirement experimental station of Farmland Irrigation Research Institute. Tomatoes were transplanted in wide-narrow row plantation method. According to the growth characteristics of tomato, it was divided into three growing stages, such as vegetative growth stage, flowering and fruit development stage and fruit maturation stage. On the same basis of irrigation endpoint of 90% (taking up percentage of field water capacity), there were three different irrigation water levels (irrigation start point was 50%, 60% and 70%, respectively) at the vegetative growth stage, and four different irrigation water levels (irrigation start point was 50%, 60%, 70% and 80%, respectively) at the flowering and fruit development stage and the fruit maturation stage, respectively. In additiona, an adequate water treatment (irrigation start point was 80% for the whole growing season) was designed as a control. The experiment was laid out in a randomize block design consisting of ten treatments and three replications.
     Plant growth situation, physioecological characteristics, soil evaporation, plant transpiration, final yield, fruit quality and water use efficiency were investigated with field laboratory experimental data got in two years. The main results were as following:
     (1) Water deficit at any growth stage decreased photosynthetic rate and stomatal aperture of tomato leaves, furthermore, affected the accumulation and transportation of dry matters, but influencing pattern and degree of water stress were not same at the different growth stages. Water stress inhibited tomato growth and development at the vegetative growth stage, but too enough water led to plant spindling and over growth and affected photosynthate transportation to the fruit. Water stress at the flowering and fruit development stage not only inhibited tomato growth, but also reduced dry matter accumulation, and affected the yield formation. Water deficit at the fruit maturation stage accelerated tomato plants aging, decreased the ultimate amount of dry matters, and affeted yield formation obviously. Therefore, moderate soil moisture can not influence tomato normal growth and physiological water requirement, can inhibit plant excessive growth of tomato and has an advantage of transporting photosynthate to fruit and providing a good base for yield formation.
     (2) Water deficit (50%~55% of field capacity) occurred at the vegetative growing stage increased fruit numbers and decreased the percentage of malformed fruit, but reduced fruit size generally. Fruit maturation also were delayed and concentrated mainly in the later picking period. During flowering and fruit development stage, severe water deficit (less than 65% of field capacity) promoted tomato fruit maturation, but reduced fruit numbers and increased the risk of forming small fruit and malformed fruit. At the fruit maturation stage, too high (more than 80% of field capacity) or too low (less than 65% of filed capacity) soil moisture both reduced tomato yield, but had few effects on fruit maturation. Too low soil moisture also decreased fruit numbers and increased the percentage of malformed fruit.
     (3) There was a close relationship between tomato water consumption and soil moisture (water treatment) in greenhouse under drip irrigation. Water consumption was decreased with soil moisture whether in the whole growth season or at any stage. A quadratic function relation with correlation coefficient above 0.90 was showed between tomato yield and water consumption or amount of irrigation in the whole growth season. Economic water consumption ranged from 311.83mm to 348.18mm for the greenhouse grown tomato.
     (4) There was a difference of fruit quality among the different picking time for the same water treatment in the whole picking process. Quality traits in the whole picking stage would be not represented by one fruit quality value that existing in each treatment. Therefore, takeing the average value of the fruit quality measurement in several times can eliminate differences in the different picking time to a certain extent.
     The effects of soil moisture at different growth stages on fruit storage-transportation quality (firmness) and nutrition quality (such as sugar-acid ratio, vitamin C content, soluble protein content, nitrate content, etc.) varied, which was little at the vegetative growing stage and large both at the flowering and fruit development stage and fruit maturation stage. Overall, fruit firmness and VC content increased with the degree of water deficit imposed, and a negative linear relationship was observed between these two indexes and water consumption. There was a lower convex second-degree parabola relation between nitrate content and water consumption, but a upper convex second-degree parabola relation between sugar-acid ratio and water consumption. However, the effect of soil moisture on soluble protein content was little in this study. Therefore, water regulation can improve some fruit quality in a certain extent.
     (5) Soil evaporation and plant transpiration were affected by meteorological condition, soil water moisture and tomato growth status. It was showed that a positive exponential correlation existed between soil evaporation and meteorological factors such as solar radiation, air temperature and vapor pressure difference. Daily sap flow rate had a positive linear correlation with daily solar radiation, and a logarithm relationship with vapor pressure difference. Soil evaporation was negatively exponential correlated with leaf area index, sap flow rate was positive linear correlated with leaf area index, and the obvious interweave changes was showed between soil evaporation and plant transpiration. The study also showed standardized sap flow rate can express the plant transpiration of tomato well.
     Based on Penman-Monteith equation and the existing research results, the parameters such as canopy stomatal resistance of tomato and aerodynamic resistance were modified in connection with a microclimate environment in greenhouse, and the estimation model of transpiration for greenhouse grown tomato was established by considering the meteorological data, leaf area index and canopy height as main parameters. The model was verified by measurement values of sap flow rate from May 2 to 13 in 2009 (at the flowering and fruit development stage) and from June 9 to 20 in 2009 (at the fruit maturation stage), respectively. The result showed that average relative error for the model simulation was 8.48% and 9.20% at two stages, respectively. Therefore, plant transpiration can be estimated using the model.
     With the analysis of water requirement and its influence factors for greenhouse grown tomato, the estimation model for water requirement was established for the first time based on the meteorological data. The model was verified by measurement values of transpiration and soil evaporation from May 2 to 13 in 2009 (at the flowering and fruit development stage) and from June 9 to 20 in 2009 (at the fruit maturation stage), respectively. The result showed that average relative error of the model was less than 10%. Based on the model for estimating water requirement, the evapotranspiration model was established by introducing soil moisture correction coefficient K(θ) when water deficit occurred.
     (6) Taking yield, water use efficiency, single fruit weight, fruit firmness, sugar-acid ratio, VC content as the main evaluation indicator and using the principal component analysis method, the lower limit index of soil water was determined with achieving high yield, high fruit quality and efficiency for greenhouse grown tomato. The lower limit index value of soil moisture was 60%-65%, 70%-75% and 70%-75% of field capacity at the three growth stages of tomato, respectively.
引文
1.安华明,陈力耕,樊卫国,等.刺梨果实中维生素C积累与相关酶活性的关系[J].植物生理与分子生物学学报,2005,31 (4):431-436
    2.毕宏文.水分对蔬菜产品质量影响[J].北方园艺,1997,(117):68-69
    3.陈新明,蔡焕杰,李红星,等.温室大棚内作物蒸发蒸腾量计算[J].应用生态学报,2007,18(2):317-321
    4.陈新明,蔡换杰,单志杰,等.根区局部控水无压地下灌溉技术对黄瓜和番茄产量及其品质影响的研究[J].土壤学报,2006,43(3):486-492
    5.崔学明.农业气象学观测实习指导[M].北京:高等教育出版社,2006
    6.陈玉民,郭国双,王广兴,等.中国主要作物需水量与灌溉[M].北京:水利水电出版社,1995
    7.丁兆堂,卢育华,徐坤.环境因子对番茄光合特性的影响[J].山东农业大学学报(自然科学版), 2003,34(3):356-360
    8.段爱旺.一种可以直接测定蒸腾速率的仪器—茎流计[J].灌溉排水,1995,14(3):44-47
    9.段爱旺.水分利用效率的内涵及使用中需要注意的问题[J].灌溉排水学报,2005,24(1):8-11
    10.段爱旺,孙景生,刘钰,等.北方地区主要农作物灌溉用水定额[M].北京:中国农业科学出版社,2004
    11.段爱旺,张寄阳.中国灌溉农田粮食作物水分利用效率的研究[J].农业工程学报,2000,4:41-44.
    12.高方胜,徐坤,徐立功,等.土壤水分对番茄生长发育及产量品质的影响[J].西北农业学报,2005,14(4):69-72
    13.高新昊,张志斌,郭世荣,等.日光温室番茄越夏栽培滴灌指标的研究[J].中国蔬菜,2004,6:11-13
    14.高阳,段爱旺.冬小麦间作种植模式下棵间蒸发规律试验研究[J].灌溉排水学报,2005,24(2):13-17
    15.高占旺,庞万福,宋伯符.水分胁迫对马铃薯的生理反应[J].马铃薯杂志,1995,9(1):1-5
    16.郭金强,王肖娟,危常州,等.坐果—成熟期光温因子对新疆加工番茄品质的影响[J].中国农业气象,2009,30(增2):235-237
    17.龚道枝,王金平,康绍忠,等.不同水分状况下桃树根茎流变化规律研究[J].农业工程学报,2001,17(4):34-38
    18.贺康宁,田阳,张光灿.刺槐日蒸腾过程的Penman-Monteith方程模拟[J].生态学报,2003,23(2):251-258
    19.贺忠群,邹志荣,陈小红,等.温室黄瓜节水灌溉指标的研究[J].西北农林科技大学报(自然科学版),2003,31(3):77-80
    20.顾智章.蔬菜的品质[J].蔬菜,1997,4:34-35
    21.韩淑敏.不同灌水方式下温室青椒的耗水规律[J].干旱地区农业研究,2005,23(2):54-58
    22.康绍忠,蔡焕杰.农业水管理学[M].北京:中国农业出版社,1996
    23.康绍忠,刘昌明.裸地蒸发和麦田蒸散的预报方法[J].中国农业气象,1992,13(2):33-36
    24.康绍忠,刘晓明,熊运章.土壤—植物—大气连续体水分传输理论及其应用[M].北京:水利水电出版社,1994
    25.吕家龙,李敏,钱伟.蔬菜品质、标准和感官鉴定[J].长江蔬菜,1992,6:3-5
    26.李合生.植物生理生化实验原理和技术[M],北京:高等教育出版社,2000.
    27.李清明,邹志荣,郭晓东,等.不同灌溉上限对温室黄瓜初花期生长动态、产量及品质的影响[J].西北农林科技大学学报,2005,4:47-51
    28.李天来.我国日光温室产业发展现状与前景[J].沈阳农业大学学报,2005,36(2):131-138
    29.刘安能,周新国,孟兆江,等.麦棉套作方式下小麦棵间蒸发量研究[J].河南农业大学学报,2006,40(4):375-379
    30.刘昌明,张喜英,由懋正.大型蒸渗仪与小型棵间蒸发器结合测定冬小麦蒸散的研究[J].水利学报,1998,10:36-39
    31.刘德林,刘贤赵. CEWWNSPAN茎流法对玉米蒸腾规律的研究[J].水土保持研究,2006,13(2):134-137
    32.刘浩,段爱旺,孙景生,等.温室滴灌条件下土壤水分亏缺对番茄产量及其形成过程的影响[J].应用生态学报,2009,20(11):2699-2704
    33.刘浩,段爱旺,高阳.间作种植模式下冬小麦棵间蒸发变化规律及估算模型研究[J].农业工程学报,2006,22(12):34-38
    34.刘浩,孙景生,段爱旺,等.日光温室萝卜棵间土壤蒸发规律试验[J].农业工程学报,2009,25(1):176-180
    35.刘浩,孙景生,段爱旺,等.基于AutoCAD软件确定番茄与青椒叶面积的简易方法[J].中国农学通报,2009,25(5):287-293
    36.刘浩,孙景生,段爱旺,等.日光温室白菜棵间土壤蒸发变化规律试验研究[J].水土保持学报,2008,22(1):1-5;
    37.刘明池,陈殿奎.亏缺灌溉对樱桃番茄产量和品质的影响[J].中国蔬菜,2002,6:4-6
    38.刘明池,刘向莉.不同灌溉方式对番茄生长和产量的影响[J].华北农学报,2005,20(1):93-95
    39.刘胜,贺康宁.基于Penman-Monteith模型的林木日蒸腾模拟[J].西北林学院学报,2006,21(3):15-20
    40.刘贤赵,康绍忠.不同光照条件下作物蒸腾量计算的研究[J].水利学报,2001,6:45-50
    41.刘钰,Fernado R. M.,Pereira L S.微型蒸发器实测麦田与裸地土面蒸发强度的试验研究[J].水利学报,1999,6:45-50.
    42.刘祖贵,段爱旺,吴海卿,等.水肥调配施用对温室滴灌番茄产量及水肥利用效率的影响[J].中国农村水利水电,2003,1:10-12
    43.刘祖贵,孙景生,张寄阳,等.风沙区春小麦棵间蒸发规律的试验研究[J].灌溉排水学报,2003,22(6):60-62
    44.罗家雄,魏一谦.塑料大棚滴灌蔬菜的耗水量及灌溉制度[J].新疆农业科学,1981,(4):42-52
    45.马福生,康绍忠,胡笑涛,等.不同阶段亏水处理对温室栽培梨枣树茎液流变化影响的研究[J].农业工程学报,2006,22(4):6-14
    46.毛学森,李登顺.日光温室黄瓜节水灌溉研究[J].灌溉排水,2000,19(2):45-47
    47.齐红岩,李天来,曲春秋,等.亏缺灌溉对设施栽培番茄物质分配及果实品质的影响[J].中国蔬菜,2004,2:10-12
    48.齐红岩,李天来,张洁,等.亏缺灌溉对番茄蔗糖代谢和干物质分配及果实品质的影响[J].中国农业科学,2004,37(7):1045-1049
    49.齐述华.应用农田水量平衡原理计算三种蔬菜的需水量和作物系数[J].中国农业大学学报,2002,7(1):71-76
    50.彭致功,段爱旺,刘祖贵,等.日光温室条件下茄子植株蒸腾规律的研究[J].灌溉排水,2002,21(2):47-50
    51.桑艳朋,王祯丽,刘慧英.膜下滴灌量对甜瓜产量和品质的影响[J].中国甜瓜,2005,6:11-13
    52.孙宏勇,刘昌明,张永强,等.微型蒸发器测定土面蒸发的试验研究[J].水利学报,2004, 8: 114-118.
    53.孙景生,康绍忠,王景雷,等.沟灌夏玉米棵间土壤蒸发规律的试验研究[J].农业工程学报,2005,21(11):20-24
    54.田义,张玉龙,虞娜,等.温室地下滴灌灌水控制下限对番茄生长发育、果实品质和产量的影响[J].干旱地区农业研究,2006,24(5):88-92
    55.王安志,裴铁璠.森林蒸散测算方法研究进展与展望[J].应用生态学报,2001,12(6):933- 937
    56.王健,蔡焕杰,陈凤,等.夏玉米田蒸发蒸腾量与棵间蒸发的试验研究[J].水利学报,2004,11:108-113
    57.王健,蔡焕杰,陈新明,等.日光温室作物蒸发蒸腾量的计算方法研究及其评价[J].灌溉排水学报,2006,25(6):11-14
    58.王新元,李登顺,张喜英.日光温室冬春茬黄瓜产量与灌水量的关系[J].中国蔬菜,1999(1):18-21
    59.王政友.土壤水分蒸发的影响因素分析[J].山西水利,2003,2:26-27
    60.许贵民,姜竣业.塑料大棚黄瓜节水灌溉的研究[J].农业工程学报,1990,6(2):55-63
    61.徐坤,郑国生,王秀峰.施氮量对生姜群体关合特性及产量和品质的影响[J].植物营养与肥料学报,2001,7(2):189-193
    62.徐坤范,艾希珍,张晓慧,等.氮素水平对日光温室黄瓜品质的影响[J].西北农业学报,2005,14(1):162-166
    63.许金香,高丽红.日光温室不同栽培茬口番茄需水量初探[J].中国农学通报,2005,5(5):308-312
    64.徐淑贞,张双宝,鲁俊奇,等.滴灌条件下日光温室番茄需水规律及水分生产函数[J].河北农业科学,2000,4(3):1-5
    65.扬丽娟,梁成华.不同用量氮、钾肥对油菜产量和品质的影响[J].沈阳农业大学学报,1999,30(2):109-111
    66.原保忠,康跃虎.番茄滴灌在日光温室内耗水规律的初步研究[J].节水灌溉,2000,3:25-27
    67.岳广阳,赵哈林,张铜会,等.不同天气条件下小叶锦鸡儿茎流及耗水特性[J].应用生态学报,2007,18(10):2173-2178
    68.翟胜,王巨媛,梁银丽.地面覆盖对温室黄瓜生产及水分利用效率的影响[J].农业工程学报,2005,21(10):129-133
    69.张寄阳,刘祖贵,孙景生,等.风沙区春玉米棵间蒸发规律的研究[J].中国农村水利水电,2002,12:33-35
    70.张宪法,于贤昌,张振贤.土壤水分对温室黄瓜结果期生长与生理特性的影响[J].园艺学报, 2002, 29(4):343-347.
    71.张宪法,于贤昌,张凌云.水分对蔬菜生长动态和生理活动的影响[J].中国蔬菜, 2000, 4:48-50
    72.张岩,许廷武,杨培岭,等.基于Penman-Monteith模型的杨树日蒸腾模拟[J].中国农村水利水电,2006,9:18-21
    73.张兆斌,赵学常,史作安,等.生态因子对冬枣果实品质的影响[J].中国生态农业学报,2009,17(5):923-928
    74.赵冰,赵晋蓉,张克强,等.蔬菜品质学概论[M].北京:化学工业出版社,2003
    75.郑紫燕,郑国琦,朱强,等.果实中糖分的运输和积累相关研究进展[J].农业科学研究,2009,30(1):42-46
    76.中华人民共和国2009年国民经济和社会发展统计公报[R].北京:中华人民共和国国家统计局,2010-02-25. http://www.gov.cn/gzdt/2010-02/25/content_1541240.htm
    77.中华人民共和国2008年中国水资源公报[R].北京:中华人民共和国水利部,2010-01-19. http://www.mwr.gov.cn/zwzc/hygb/szygb/qgszygb/201001/t20100119_171051.html
    78.诸葛玉平,冯永军,李军,等.塑料大棚番茄渗灌多孔管埋深的研究[J].山东农业大学学报,2004,35(3):325-330
    79.诸葛玉平,张玉龙,张旭东,等.塑料大棚渗灌灌水下限对番茄生长和产量的影响[J].应用生态学报,2004:15(5):767-771
    80. Allen R.G., Pereira L.S., Raes D., et al. Crop evapotranspiration: Guidelines or Computing Crop Water Requirements [M]. Rome:FAO Irrigation and Drainage Paper No.56,1998
    81. Allen. S.J. Measurement and estimation of evaporation from soil under sparse barley crops in northern Syria. Agricultural and Forest Meteorology [J], 1990, 49: 291-309
    82. Allen S.J., Grime VL. Measurements of transpiration from savannah shrubs using sap flow gauges [J]. Agricultural and Forest Meteorology, 1995, 75: 23-41
    83. Bafna A.M., Daftardar S.Y., Khade K.K., Patel V.V., Dhotre R.S., Utilization of nitrogen and water by tomato under drip irrigation system [J]. J. Water Manage. 1993, 1 (1), 1-5.
    84. Baker J M, van Bavel C H M. Measurement of mass flow of water in stems of herbaceous plants [J]. Plant, Cell and Environment, 1987, 10: 777-782
    85. Baselga Yrisarry J J. Response of processing tomato to three different levels of water nitrogen applications [J]. Acta Hort., 1993, 335: 149-153
    86. Bhaskar J.C. Global pattern of potential evaporation calculated from the Penman2Monteith equation using satellite and assimilated data [J]. Remote. Sens. Environ., 1997, 61: 64-81
    87. Boast C. W., Robertson T. M. A micro-lysimeter method for determining evaporation from bare soil: description and laboratory evaluation [J]. Soil Science Society of American Journal, 1982, 46: 689-696
    88. Boulard T., Wang S. Greenhouse crop transpiration simulation from external climate conditions [J]. Agricultural and Forest Meteorology, 2000, 100: 25-34
    89. Boutraa T, Sanders F.E. Influence of water stress on grain yield and vegetative growth of two cultivars of bean (Phaseolusv ulgarwas L) [J]. A Gronomy & Crop Scinence, 2001, 187: 251-257
    90. Branthome X, Ple Y, Machado J.R. influence of drip on the technological characteristics of processing tomatoes [J]. Acta Horticulturae, 1994, 376: 285-290
    91. Brecht J.K., Locascio S.J., Bergsma K.A. Water quantity affects quality of drip irrigated tomato fruit [J]. Hort. Sci. 1994, 29, 154–160.
    92. Cahn M.D., Herrero E.V., Snyder R.L., Hanson B.R. Water management strategies for improving fruit quality of drip irrigated processing tomatoes [J]. Acta Hort., 2001, 542, 111-117
    93. Chartzoulakis K., Drosos N. Water use and yield of greenhouse grown eggplant under drip irrigation [J]. Agricultural Water Management, 1995, 28: 113-120
    94. Chartzoulakis K., Drosos N. Water requirements of greenhouse grown pepper under drip irrigation [J]. Acta. Hort., 1997, 449: 175-180
    95. Chabot R, Bouarfa S, Zimmer D, et al. Evaluation of the sap flow determined with a heat balance method to measure the transpiration of a sugarcane canopy [J]. Agricultural Water Management, 2005, 75: 10-24
    96. Costa J.M., Ortuno M.F., Chaves M.M. Deficit irrigation as a strategy to save water: physiology and potential application to horticulture [J]. Journal of Integrative Plant Biology, 2007, 49: 1421-1434
    97. Davies, J.N., Hobson, G.E. The constituent of tomato fruit—the influence of environment, nutrition, and genotype [J]. Critical Review of Food Science and Technology, 1981 15, 205–280.
    98. Demrati H., Boulard T., Fatnassi H. et al. Microclimate and transpiration of a greenhouse banana crop [J]. Biosystems Engineering, 2007, 98: 66-78
    99. Dorais, M., Ehret, D.L., Papadopoulos, A.P. Tomato (Solanum lycopersicum) health components: from the seed to the consumer [J]. Phytochem. Rev., 2008, 7, 231–250
    100. Dorji K, Behboudian M.H, Zegbe-Domínguez J.A. Water relations, growth, yield, and fruit quality of hot pepper under deficit irrigation and partial rootzone drying [J]. Agricultural Water Management 2005, 104: 137-149
    101. Ertek A., ?ensoy S., Gedik ?brahim et al. Irrigation scheduling based pan evaporation values for cucumber (Cucumis sativus L.) grown under field conditions [J]. Agricultural Water Management. 2006, 81: 159-172
    102. Estrada B., Pomar F., Diaz, et al. Pungency level in fruits of the pardon pepper with different water supply [J]. Scientia Hort., 1999, 81: 385-396
    103. Favati F., Lovelli S., Galgano F. et al. Processing tomato quality as affected by irrigation scheduling [J]. Scientia Horticulturae. 2009, 122: 562–571
    104. Grime V.L., Morison J.I.L., Simmonds L.P. Sap flow measurements from stem heat balances: a comparison of constant with variable power methods [J]. Agricultural and Forest Meteorology, 1995, 74: 27-40
    105. Grime V.L., Sinclair F.L. Sources of error in stem heat balance sap-flow measurements [J]. Agricultural and Forest Meteorology, 1999, 94: 103-121
    106. Harmanto, Salokhe V.M., Babel M.S., Tantau H.J. Water requirement of drip irrigated tomatoes grown in greenhouse in tropical environment [J]. Agricultural Water Management, 2005, 71: 225-242
    107. Hanson B.R., May D.M. Crop coefficients for drip-irrigated processing tomato [J]. Agricultural Water Management, 2006, 81: 381-399
    108. Ho L.C. The physiological basis for improving tomato fruit quality [J]. Acta. Hort., 1999, 487: 33-40
    109. Ho L.C., Grange R.I., Picken A.J. An analysis of the accumulation of water dry matter in tomato fruit [J]. Pl. Cell Environ., 1987, 10: 157-162
    110. Imitiyaz M., Mgadla N.P., Manase S.K. et al. Yield and economic return of vegetable crops under variable irrigation [J]. Irrigation Science, 2000, 19: 87-93
    111. Janoudi A.K., Widders I.E., Flore J.A. water deficits and environmental factors affect photosynthesis in leaves of cucumber (Cucumis astivus) [J]. J. Am. Soc. Hortic. Sci., 1993, 118(3): 336-370
    112. Javanmardi J., Kubota C. Variation of lycopene, antioxidant activity, total soluble solids and weight loss of tomato during postharvest storage [J]. Postharvest Biol. Technol., 2008, 41, 151–155
    113. Johnstone P.R., Hartz T.K., LeStrange M., Nunez J.J., Miyao E.M. Managing fruit soluble solids with late-season deficit irrigation in drip-irrigated processing tomato production [J]. HortScience, 2005, 40: 1857-1861
    114. Jolliet O., Bailey B.J. The effects of climate on tomato transpiration in greenhouse: measurements and models comparison [J]. Agricultural Forest Meteorology, 1992, 58: 43-62
    115. Jones H G, Tardieu F. Modelling water relations of horticultural crops: A review [J]. Scientia Horticulturae, 1999, 74: 21-46
    116. Jorn N S. Nitrogen effects on vegetable crop production and chemical composition [J]. Acta Horticulturae, 1999, 506: 41-50
    117. Kadayifci A., Tuylu G?khan ?smail, Ucar Y. Crop water use of onion (Allium cepa L.) in Turkey [J]. Agricultural Water Management, 2005, 72: 59-68
    118. Kanber, R., Yazar A., Onder S., et al. Evapotranspiration of graperfruit in the Eastern Mediterranean region of Turkey [J]. Scientia Horticulturae, 1992, 52: 53-62
    119. Kang Shaozhong, zhang L., Hu X. et al. An improved water use efficiency for hot pepper grown under controlled alternate drip irrigation on partial roots [J]. Scientia Horticulturae, 2001, 89: 257-267
    120. Kigalu J.M. Effect of planting density on the productivity and water use of tea clones I. Measurement of water use in young tea using sap flow meters with a stem heat balance method[J]. Agricultural Water Management, 2007, 90: 224-232
    121. Krystyna E, Irena B. Influence of irrigation and nitrogen fertilization on quality of fresh and frozen broccoli [J]. Vegetable crops research bulletin, 1999, 50: 93-106.
    122. Lovelli S., Perniola M., Arcieri M., et al. Water use assessment in muskmelon by the Penman-Monteith“one-step”approach [J]. Agricultural Water Management, 2008, 95: 1153-1160
    123. Machado R.M.A, Oliveira M.R.G. Tomato root distribution, yield and fruit quality under different subsurface drip irrigation regimes and depths [J]. Irrigation Science, 2005, 24: 15-24
    124. Mahajan, G., Singh, K.G., Response of greenhouse tomato to irrigation and fertigation [J]. Agricltural Water Manage, 2006, 84, 202-206
    125. Mao Xuesen, Liu Mengyu, Wang Xinyuan et al. Effects of deficit irrigation on yield and water use of greenhouse grown cucumber in North China Plain [J]. Agricultural Water Management, 2003, 61: 219-228
    126. May D.M, Gonzales J, Bieche B.J. Irrigation and nitrogen management as they affect fruit quality and yield of processing tomatoes [J]. Acta Horticulturae, 1994, 376: 227-234
    127. Miranda F.R., Gondim R.S., Costa C.A.G. Evapotranspiration and crop coefficients for Tabasco pepper (Capsicum frutescens L.) [J]. Agricultural Water Management, 2006,82: 237-246
    128. Mitchell J P, C Shennan, et al. Tomato yields and quality under water deficit and salinity [J]. J. Amer. Soc. Hort. Sci., 1991a, 116: 215-221
    129. Mitchell, J.P., Shennan, C., Grattan, S.R. Developmental changes in tomato fruit composition in response to water deficit and salinity [J]. Plant Physiol., 1991b, 83, 177–185.
    130. Mofoke A.L.E., Adexumi J.K., Babatunde F.E. et al. Yield of tomato grown under continuous-flow drip irrigation in Bauchi state of Nigeria [J]. Agricultural Water Management, 2006, 84: 166-172
    131. Montero J.I., Anton A. Transpiration from geranium grown under high temperatures an low humidityes in greenhouse [J]. Agricultural an Forest Meteorology, 2001,107: 323-332
    132. Obreza T.A., Pitts D.J., McGovern R.J., Spreen T.H. Deficit irrigation of microirrigated tomato affects yield, fruit quality, and disease severity [J]. Journal of Production Agriculture, 1996, 2: 270-275
    133. Onder S., Caliskan M.E., Onder D. et al. Different irrigation methods and water stress effects on potato yield and yield components [J]. Agricultural Water Management, 2005, 73: 73-86
    134. Orgaz F., Fernández M.D., Bonachela S. et al. Evapotranspiration of horticultural crops in an unheated plastic greenhouse [J]. Agricultural Water Management, 2005, 72: 81-96
    135. Panigrahi B., Panda S.N., Raghuwanshi N.S. Potato water use and yield under furrow irrigation [J]. Irrigation Science, 2001, 20:155-163
    136. Patane C., Cosentino S.L. Effects of soil water deficit on yield and quality of processing tomato under a Mediterranean climate [J]. Agricultural Water Management, 2010, 97: 131-138
    137. Pereira L.S., Oweis T., Zairi A. Irrigation management under water scarcity [J]. Agricultural Water Management, 2002, 57: 175-206
    138. Pulupol, L.U., Behboudian, M.H., Fisher, K.J. Growth, yield and postharvest attributes of glasshouse tomatoes produced under water deficit [J]. Hort. Sci., 1996, 31: 926-929
    139. Ramalan A.A., Nwokeocha C.U. Effects of furrow irrigation methods, mulching and soil water suction on the growth, yield and water use efficiency of tomato in the Nigerian Savanna [J]. Agricultural Water Management, 2000, 45:317-330
    140. Renquist A.R., Reid J.B. Processing tomato fruit quality; influence of soil water deficit at flowering and ripening [J]. Australian Journal of Agricultural Research, 2001, 52: 793-799
    141. Rodriguez A., Leoni S., Bussieres P., Dadomo M., Christou M. Macua I.J., Cornillon P. The influence of water and nitrogen level levels on the quality of the processing tomato grown in European Union Countries [J]. Acta Horticulturae, 1994, 376: 275-278
    142. Salles C., Nicklaus S., Septier C. Determination and gustatory properties of taste-active compounds in tomato juice [J]. Food Chemistry, 2003, 81: 395-402
    143. Sakuratani T.A heat balance method for measuring water flow in the stem of intact plant [J]. Japanese Agricultural Meteorology, 1981, 37: 9-17
    144. Saylan L., Bernhofer C. Using the Penman-Monteith approach to extrapolate soybean evapotranspiration [J]. Theor. Appl. Climatol., 1993, 46: 241-246
    145. Seginer I. The Penman-Monteith evapotranspiration equation as an element in greenhouse ventilation design [J]. Biosystems Engineering, 2002, 82(4): 423-439
    146. ?im?ek M., Tonkaz T., Ka??ra M. The effect of different irrigation regimes on cucumber (cucumbis sativus L.) yield and yield characteristics under field conditions [J]. Agricultural Water Management, 2005, 73: 173-191
    147. Stanislaw K, Jan R, Jacek D. Response of leek to irrigation, fertigation and broadcast nitrogen fertilization [J]. Vegetable crops research bulletin, 1999, 51: 39-48.
    148. Soraya G., Nadia B., Cherubino L., Christian G. Tomato fruit quality in relation to water and carbon fluxes [J]. Agronomie, 2001, 21, 385-392.
    149. Sorensen J.N, Burns I.G, Bending G.D. et al. Nitrogen effects on vegetable crop production and chemical composition [J]. Acta Horticulturae, 1999, 506: 41-49
    150. Tardieu F. Plant tolerance to water deficit: physical limits and possibilities for progress [J].Comptes Rendus Geoscience, 2005, 337: 57-67
    151. Topcu S., Kirda C., Dasgan Y., Kaman H., Cetin M., Yazici A., Bacon M.A. Yield response and N-fertiliser recovery of tomato grown under deficit irrigation [J]. European Journal of Agronomy, 2007, 26: 64-70
    152. Tuzel I.H., Ul M.A., Tuzel, Y. Effects of different irrigation intervals and rates on spring season glasshouse tomato production [J]. II. Fruit quality. Acta Hort., 1994, 366: 389-396
    153. Wan S.Q., Kang Y.H. Effect of drip irrigation frequency on radish (Raphanus sativus L.) growth and water use [J]. Irrigation Science, 2006, 24: 161-174
    154. Wang S, Boulard T. Predicting the microclimate in a naturally ventilated plastic house in a Mediterranean climate [J]. Journal of Agricultural Engineering Research, 2000,75: 27-38
    155. Yohannes F, Tadesse T. Effect of drip and furrow irrigation and plant spacing on yield of tomato at Dire Dawa, Ethiopia [J]. Agricultural Water Management, 1998, 35: 201-207
    156. Yuan B.Z., Kang Y.H., Nishiyama S. Drip irrigation scheduling for tomatoes in unheated greenhouse [J]. Irrigation Science, 2001, 20: 149-154
    157. Yuan B.Z., Sun J., Nishiyama S. Effect of drip irrigation on strawberry growth and yield inside a plastic greenhouse [J]. Biosystems Engineering, 2004, 87(2): 237-245
    158. Yue G.Y., Zhao H., Zhang T., et al. Evaluation of water use of caragana microphylla with the stem heat-balance method in Horqin Sandy Land, Inner Mongolia, China [J]. Agricultural and Forest Meteorology, 2008, 148: 1668-1678
    159. Vassey T. L., Quick P., Sharkey T. D. et al. Water stress, carbon dioxide, and light effects on sucrose phosphate synthase activity in phaseolus vulgaris [J]. Physiologia Plantarum, 1991, 81: 37-44
    160. Van Bavel MG, Van Bavel CHM. Dynagage Installation and Operation Manual [M]. Dynagage Inc., 2005, Houston.
    161. Wallker G.K. Measurement of evaporation from soil beneath crop canopies [J]. Can J.Soil Sci., 1983, 63: 137-141
    162. Zegbe-Domínguez J.A, Behboudian M.H., Lang A. et al. Deficit irrigation and partial rootzone drying maintain fruit dry mass and enhance fruit quality in‘Petopride’processing tomato [J]. Scientia Horticulturae, 2003, 98: 505-510
    163. Zotarelli L., Scholberg, J.M., Dukes M.D. Tomato yield, biomass accumulation, root distribution and irrigation water use efficiency on a sandy soil, as affected by nitrogen rate and irrigation scheduling [J]. Agricultural Water Management, 2009, 96: 23-34
    164. Zushi K, Matsuzoe N. Effect of soil water deficit on Vitamin C, sugar, organic acid, amino acid and carotene contents of large-fruited tomatoes [J]. Japan. Soc. Hort. Sci., 1998, 67(6): 927-933.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700