水分胁迫对苹果砧木及分根灌溉对富士苹果树导水率的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
以苹果砧木平邑甜茶(Malus hupehensis)幼苗为实验材料,采用盆栽控水的方法研究了水分胁迫条件下和不同施钾水平下幼苗的水分传导特征。同时以田间大树(苹果树)为材料,研究了分根灌溉对树体水力学特征影响,取得了以下研究结果:
     1、水分胁迫能够显著降低平邑甜茶根系、叶片、冠层导水率,叶片、冠层的叶比导水率,冠层的茎比导率;与正常水分状况相比,在中度和重度水分胁迫下叶片的叶比导水率分别下降了35%和29%。
     2、正常灌水时,施钾能够提高根系、冠层导水率,根系、叶片、冠层的叶比导水率,冠层的茎比导率。中度钾和高钾水平条件下,叶片叶比导水率与低钾水平的叶片叶比导水率相比分别提高了17%和降低了27%。在严重水分亏缺时,中度钾条件下气孔导度比低钾条件下增加了28%。水分胁迫导致气孔导度降低,而施钾素能在一定程度能缓解这种影响。
     3、对13年生富士苹果树在田间条件下进行全根干旱(NI)、分根灌溉(PDI)与常规灌溉(CI)处理,树体水势、气体交换、叶片和枝条导水特性进行测定分析,结果表明:三个处理的茎水势和叶水势在全天中的日变化呈“V”形,午后14点的水势值最低。各月份的茎水势、叶水势及其日变化为7月份到达最低值。
     4、随着干旱程度的增加,树体的叶片导水率和枝条导水率逐渐下降, PDI和NI处理的叶片导水率与CI处理相比降低了13.27%和42.01%,PDI和NI处理的枝条导水率与CI处理相比降低了3.01%和34.36%; PDI处理的叶比导水率和枝条叶比导水率出现升高,分别比CI与NI处理高出14.32%、14.43%和96.12%、16.55%。与CI和NI处理相比,PDI处理下有更大的叶比导水率,但是其RWC介于CI和NI处理之间,可以看出在一定RWC变化范围内,叶比导水率的增加是以牺牲部分叶片相对含水量为代价的。PDI处理的WUE较CI和NI处理显著提高了29.08%和26.82%,其最大净光合效率、表观量子效率和暗呼吸速率介于NI和CI之间。这表明在半干旱地区分根灌溉能够在不影响苹果树体生理指标的前提下,来提高水分利用效率和光能利用率。
     5、利用高压流速仪(HPFM)测定对平邑甜茶和楸子(Malus prunifolia,苹果砧木)在干旱条件下对根系水力结构及其PV曲线水分参数的影响,结果表明:干旱条件下,平邑甜茶和楸子的根系导水率、根系叶比导水率、根系茎比导水率均降低。但两砧木相比存在一定差异。在适宜水分和干旱条件下,平邑甜茶根系叶比导水率分别为楸子根系叶比导水率的95%和92%,平邑甜茶根系茎比导水率分别为楸子根系茎比导水率的52%和62%,楸子与平邑甜茶相比在根系茎比导水率和根系叶比导水率上出现了增加。干旱胁迫引起了根系导水率的下降,继而导致了地上部分气体交换受到影响。在2种水分条件下,楸子的ψs~(tlp)、ψs~(sat)、RWC~(tlp)、ROWC~(tlp)、ε'值与平邑甜茶相比较均处于较低水平,Va值处在较高水平。对PV曲线水分参数进行隶属函数综合评价得出的值为楸子大于平邑甜茶,平邑甜茶和楸子之间b值差异不明显。在适宜水分和重度干旱条件下楸子所体现出的输水策略优于平邑甜茶。PV曲线水分参数同苹果砧木根系的水力结构一样能够随着植物所处的环境做出相应的调整。对于PV曲线水分参数研究发现,楸子在膨压保持方面与平邑甜茶相比,其抗旱性优于平邑甜茶。
In this study, we use the material of apple rootstock Malus hupehensis seedlings toexperiment materials; use the method of pot water control under the condition of water stressand different potassium levels, study hydraulic structure characteristics of seedlings.Meanwhile, we use field tree (Fuji apple tree) for materials, research paritial rootzonesirrigation effects on the hydraulic characteristics of the tree. The following results wereobtained in this study:
     1. Water deficit greatly decreased hydraulic conductance of root, leaf and plant, leaf areaspecific conductance of leaf and plant, sapwood area specific conductance of plant of Malushupehensis, the leaf area specific conductance of leaf in the moderate and severe water stressreduced to the35%and29%of normal water conditions respectively.
     2. On the normal irrigation conditions and potassium addition can greatly enhancedhydraulic conductance of root and plant; greatly enhanced leaf area specific conductance ofroot, leaf and plant; also greatly enhanced sapwood area specific conductance of plant ofMalus hupehensis. The leaf area specific conductance of leaf in the moderate and highpotassium level were increased by17%and lowered27%compared with low potassium levelrespectively. In the severe water deficit, stomatal conductance in the moderate potassiumlevel increases by28%compared with low potassium level. Water deficit reduced stomatialconductance(GS), however, potassium can decreased this result on some levels.
     3. Taking thirteen years Fuji apple trees as experiment material, we studied the effects ofall root drying irrigation(NI), partial root zone irrigation(PDI), conventional irrigation(CI),three irrigation modes on the water potential, gas exchange, leaf and shoot hydraulicconductivity characteristics in the field conditons. The results indicated that leaf waterpotential and stem water potential reach the lowest valve in July of Fuji apple trees, diurnalvariations of water potential at reach the lowest valve in the14o 'clock, diurnal variations ofleaf water potential and stem water potential presented “V” type.
     4. The leaf hydraulic conductance and leaf area specific conductance have graduallydecline as the increase of the degree of drought, leaf hydraulic conductance of PDI and NIreduced13.27%and42.01%, shoot hydraulic conductance of PDI and NI reduced3.01%and34.36%compared with that of CI. But compared with CI and NI, leaf area specific conductance and shoot area specific conductance of PDI are enhanced by14.32%and14.43%,96.12%and16.55%, respectively. PDI has a bigger leaf area specific conductance comparedwith CI and NI, however, value of RWC is between the two, it showed that in a certain RWCrange, increase of leaf area specific conductance at the expense of RWC. Compared with CIand NI,WUE of PDI greatly improved29.08%and26.82%, and its max net photosyntheticrate, apparent quantum efficiemty and dark respiration rate are between the CI and NI. Thisshows in the semiarid areas of Northwest, PDI treatment can improve water use efficiencywithout influence the apple tree normal physiological indices and utilization rate of solarradiation.
     5. Measured with the high pressure flow meter (HPFM), study the effects of water deficiton hydraulic architecture and pressure-volume curve water parameters of Malus hupehensisand Malus prunifolia. The results indicated that water deficit decreased hydraulic conductance,leaf area specific conductance, sapwood area specific conductance on root of Malushupehensis and Malus prunifolia. But there are certain differences compared to the rootstock.On the condition of suitable soil moisture and severe drought, leaf area specific conductanceon root of Malus hupehensis is95%and92%of Malus prunifolia respectively, sapwood areaspecific conductance on root of Malus hupehensis is52%and62%of Malus prunifoliarespectively, aspects of leaf area specific conductance and sapwood area specific conductanceon root, Malus prunifolia has larger value than Malus hupehensis. Drought stress maydecrease decreased hydraulic conductance of root, and then affected gas exchange of theground part. On the condition of suitable soil moisture and severe drought, compared valuesof ψs~(tlp)、ψs~(sat)、 RWC~(tlp)、 ROWC~(tlp)、ε'of Malus prunifolia with Malus hupehensis, Malusprunifolia was on a low level, values of Va of Malus prunifolia was on a high level. Used bythe subordinate function comprehensive estimating analysis, pressure-volume curve waterparameters, value of Malus prunifolia was larger than Malus hupehensis’s, b value betweenMalus prunifolia and Malus hupehensis have no obvious difference. On the condition ofsuitable soil moisture and severe drought, Malus prunifolia reflects the water strategy whichwas better than Malus hupehensis. Pressure-volume curve water parameters in plants canadjust accordingly with environment. Studied with pressure-volume curve water parameters,Malus prunifolia is better than Malus hupehensis in the abilities of maintaining turgor of andthe drought resistance.
引文
安锋,蔡靖,姜在民,张远迎,兰国玉,张硕新.2006.八种木本植物木质部栓塞恢复特性及其与PV曲线水分参数的关系.西北农林科技大学学报(自然科学版),34(1):38~43
    董学军.1998.九种沙生灌木水分关系参数的实验测定及生态意义.植物学报,140(7):657~664
    杜太生,康绍忠,胡笑涛,张富仓,龚道枝.2005.果树根系分区交替灌溉研究进展.农业工程学报,2:172~178
    付爱红,陈亚宁,李卫红.2007.新疆塔里木河下游柽柳茎水势变化与影响因子研究.干旱区地理,30(1):108~113
    高照全,李天红,张显川.2010.苹果叶片气体交换日变化动态模拟.生态学报,30(5):1258~1264
    韩刚,李彦瑾,孙德祥,赵忠.2008.4种沙生灌木幼苗PV曲线水分参数对干旱胁迫的响应.西北植物学报,28(7):1422~1428
    胡田田,康绍忠.2007.局部灌水方式对玉米不同根区土-根系统水分传导的影响.农业工程学报,23(2):11~15
    黄菊莹,张硕新,冯慧娟.2005.4个树种木质部栓塞与N素营养关系的研究.西北林学院学报,20(3):36~39
    李吉跃,翟洪波.2000.木本植物水力结构与抗旱性.应用生态学报,11(2):301~305
    李秧秧.1995.钾营养对干旱条件下植物叶片光诱导的影响.植物生理学通讯,31(3):178~181
    梁宗锁,康绍忠,高俊凤.1999.植物对土壤干旱信号的感知、传递及其水分利用的控制.干旱地区农业研究19(2):72~78
    刘晚苟,山仑,邓西平.2001.压力室测定根系导水率方法探讨.西北植物学报,21(4):761~765
    刘晚苟,山仑,邓西平.2002.升压和降压过程玉米根系水分传输的比较.水利学报,8:118~124
    山仑,徐萌.1991.节水农业及其生理生态基础.应用生态学报,2(1):70~76
    沈玉芳,王保莉,曲东,陈荣府.2002.水分胁迫下磷营养对玉米苗期根系导水率的影响.西北农林科技大学学报(自然科学版),30(5):11~13
    孙志虎,王庆成.2003.应用PV技术对北方4种阔叶树抗旱性的研究.林业科学,39(2):33~38
    谭勇,梁宗锁,王渭玲,段绮梅.2007.氮、磷、钾营养胁迫对黄芪幼苗根系活力及根系导水率的影响.中国生态农业学报.15(6):69~72
    唐晓蕴.1994.部分根系干旱对柑橘光合作用的影响.园艺学进展,1:374~377
    王进鑫,张晓鹏,高保山.2000.渭北旱塬红富士苹果需水量与限水灌溉效应研究.水土保持研究,(71):69~80
    王万里.1984.压力室(PRESSURE CHAMBER)在植物水分状况研究中的应用.植物生理学通讯,(3):52~57
    王文焰.2002.我国北方旱作节水灌溉技术的研究与发展.河北工程技术高等专科学校学报,4:1~5
    杨茂仁.1992.小叶锦鸡儿等三种灌木PV曲线水分参数和叶水势及其在造林中的意义.内蒙古林业科技,3:26~30
    杨敏生,裴宝华,于冬梅.1997.水分胁迫对毛白杨杂种无性系苗木维持膨压和渗透调节能力的影响.生态学报,17(4):364~370
    杨启良,张富仓,李志军.2007.用高压流速仪测定植物的水分传导.灌溉排水学报,26(4):53~56
    张志亮,张富仓,郑彩霞,杨启良.2008.局部根区灌水和施氮对玉米导水率的影响.中国农业科学,41(7):2033~2039
    杨启良,张富仓,刘小刚.2009.根系分区交替滴灌对苹果幼苗生理特性和水分利用效率的影响.西北植物学报,29(7):1364~1372
    赵军营,孔媛,吴秉礼.2006.果树分根区灌溉技术原理及其发展前景.世界农业,3:44~45
    朱德兰,王得祥,朱首军,贾锐鱼.2000.渭北地区苹果高产灌溉制度研究.干旱地区农业研究,18(1):95~100
    朱德兰,吴发启.2004.黄土高原旱地果园土壤水分管理研究.水土保持研究,11(1):40~42
    邹养军,魏钦平,李嘉瑞.2005.根系分区灌水的生理基础及其在果树上的应用.干旱地区农业研究,23(1):214~219
    Atkinson.2003. Root and stem hydraulic conductivity as determinants of rowth potential in grafted trees ofapple(Malus pumila Mill.). Journal of Experimental Botany,54(385):1221~1229
    Bacelar E A, Moutinho-Pereira J M, Goncalves B C, Ferreira H F, Correia C M.2007. Changing in growth,gas exchang, xylem hydraulic properties and water use efficiency of three olive cultivars under contrasting wateravailability regimes. Environ. Exp. Bot.60:183~192
    Bowman W D, Roberts S W.1985.Seasonal changes in tissue elasticity in chaparral shrubs. Physiol Plant,(65):233~236
    BoyerJ S.1982.Plant productivity and enviroment.Science,218:443~448
    Bucci S J, Scholz F G, Goldstein G, Meinzer F C, Franco A C, Campanello P I, Villalobos-Vega R,Bustamante M, Miralles-Wilhelm F.2006. Nutrient availability constrains the hydraulic architecture and waterrelations of savannah trees. Plant, Cell and Environment,29:2153~2167
    Chrispeels M J, Agre P.1994. Aquaporins: water-channel proteins of plant and a mal cells. Trends inbiochemical sciences,19:421~425
    Claudio Lovisolo, Sara Tramontini, Jaume Flexas and Andrea Schubert.2008. Mercurial inhibition of roothydraulic conductance in Vitis spp. Rootstocks under water stress. Environment and Experimental Botany,63:178~182
    Clearwater M J, Lowe R G, Hofste B J.2004. Hydraulic conductance and rootstock effects ingrafted vines of kiwifruit. Journal of Experimental Botany,55(401):1371~1382
    Cochard H, Martin R, Gross P, Bogeat-Triboulot M B.2000.Temperature effects on hydraulic conductanceand water relations of Quercus robur L. J Exp Bot,(51):1255~1259
    Cochard H, Coll L, Le Roux X, Ameglio T.2002.Unraveling the effects of plant hydraulics on stomatalclosure during water stress in walnut. Plant Physiology,128:282~290
    Cochard H, Bodet C, Améglio T, Cruiziat P.2000. Cryo-Scanning Electron Microscopy Observations ofVessel Content during Transpiration in Walnut Petioles. Facts or Artifacts Plant Physiol,124:1~12
    Cohen Y, Fuchs M, Cohen S.1983.Resistance to water uptake in mature citrus tree. Journal of ExperimentalBotany,34:451~460
    Cruiziat P, Tyree M H.1990. La montée de la sève dans les arbres. La Recherche,21:406~414
    Davies W J, Zhang J.1991.Root signals and the regulation of growth and development of plants in dryingsoil. Plant Physiology and Plant Molecular Biology,42:55~76
    Dixon H H, Joly J.1894. On the ascent of sap, Philos. Trans. R. Soc. London.Ser Biol Sci,186:563~576
    Dixon H H.1914.Transpiration and the ascent of sap in plants, Mac Millan, London,216
    Dry P R, Loverys B R.1998.Factors influencing grapevine vigour and the potential for control withpartialrootzone drying.Australian Journal of Grape and Wine Research,4(3):140~148
    Dry P R, Loveys B R, Botting D, During H.1996. Effects of partial root-zone drying on grapevinevigour, yield, composition of fruit and use of water.Proceedings of the9th Australian Wine IndustryTechnical Conference,126~131
    Dry P R, Loveys B R, During H.2000.Partial drying of the rootzone of grape. I. Transient changesin shoot growth and gas exchange.Vitis,39:3~7
    Dry P R, Loveys B R, During H.2000.Partial drying of the rootzone of grape. II. Changes in thepattern of root development. Vitis,39:9~12
    Hernándeza E I.2009. Root hydraulic conductance, gas exchange and leaf water potential in seedlings ofPistacia lentiscus L. and Quercus suber L. grown under different fertilization and light regimes. Environmentaland Experimental Botany,67:269~276
    Egilla, J N, Davies F T, Boutton T W.2005. Drought stress influences leaf water content, photosynthesis, andwater-use efficiency of Hibiscus rosa-sinensis at three potassium concentrations. Photosynthetica,43:135~140
    Emilio Nicola′s.2005. Sap flow, gas exchange, and hydraulic conductance of young apricot trees growingunder a shading net and different water supplies. Journal of Plant Physiology,162:439~447
    Farquhar G D, Caemmerer S V, Berry J A.1980.A biochemical model of photosynthetic CO2assimilation in leaves of C3species. Planta,149(1):78~90
    Farquhar G D, Sharkey T D.1982.Stomatal conductance and photosynthesis. Annual Review ofPlant Physiology,33:317~345
    Garnier E, BergerA.1985.Testing water potential in peach trees as an indicator of water stress.Journal of Horticultural Science,60(1):47~56
    Gassi G, Meir P, Cormer R.2002.Photosynthetic parameters in seedings of Eucalyptus grandis asaffected by rate of nitrogen supply. Plant, Cell&Environment,25(12):1677~1688
    Gladwin Joseph, Rick G Kelsey, Walter G Thies.1998. Hydraulic conductivity in roots of ponderosa pineinfected with black-stain (Leptographium wageneri) or annosus (Heterobasidion annosum) root disease. TreePhysiol,18:333~339
    Granier A, Breda N, Claustres J, Conlin F.1989.Variation of hydraulic conductance of some adult conifersunder natural conditions. Ann. Sci. For,46:357~360
    Green S R, Clothier B E.1995.Root water uptake by Kiwifruit vines following partial wetting of the rootzone. Plant and Soil,173:317~328
    Green S R, Clothier B E.1988.Water use of Kiwifruit vines and apple trees by heat-pulse technique. Journalof Experimental Botany,39(198):115~123
    Growing G, Davies W J, Jones H G.1990.A positive root sourced signal as an indicator of soil drying in apple,Malus domestica Borkh. J Exp Bot,41(233):1535~1540
    Harvey H P, Driessche van den R.1997.Nutrition, xylem cavitation and drought resistance in hybrid poplar.Tree Physiol,17:647~654
    Ian G W, Desmond M W, David J C.2006. Effects of tree size on water use of peach (Prunus persica L.Batsch), Irrig Science,24:59~68
    Kang Shaozhong, Hu Xiao tao, Peter Jerie, Zhang Jianhua.2003.The effects of partial rootzone drying on root,trunk sap flowand water balance in an irrigated pear (Pyrus communis L.)orchard. Journal of Hydrology,280(4):192~206
    Kavanagh K L, Bond B J, Aitken S N.1999. Shoot and root vulnerability to xylem cavitation in fourpopulations of Douglas-fir seedlings. Tree Physiol,19(1):31~37
    Kikuta S B, Lo Gullo M A, Nardini A.1997.Ultrasound acoustic emissions from dehydrating leaves ofdeciduous and evergreen trees. Plant Cell and Environment,20(11):1381~1390
    Kudoyarova1G R, Vysotskaya1L B, Cherkozyanova1A, Dodd I C.2006.Effect of partial rootzonedrying on the concentration of zeatin-type cytokinins in tomato (Solanum lycopersicum L.) xylem sapand leaves. Journal of Experimental Botany,58(2):161~168
    Larry R P.2000. Water management and water relations of horticultural crops.Hort Science,35(6):1035~1036
    Lo Gullo M A, Salleo S.1988.Different strategies of drought resistance in three Mediterraneansclerophyllous trees growing in the same environmental conditions. New Phytologist,108:267~276
    Loveys B R, Dry P R, During, H.1997. Root signals affect water use efficiency and shoot growth.Acta Horticulturae,427:1~14
    Loveys B R, Dry P R, Stoll M G, Carthy M C.2000.Using plant physiology to improve the water useefficiency of horticultural crops. Acta Hortic,573:187~197
    Lovisolo C, Schubert A.1998.Effect of water stress on vessel size and xylem hydraulic conductivityin Vitis vinifera L. Journal of Experimental Botany,49:693~700
    Martre P, North G B, Nobel P S.2001.Hydraulic conductance and mercury-sensitive water transport for rootsof Opuntia acanthocarpa in relation to soil drying and rewetting.Plant Physiology,126(1):352~362
    Maurel C, Verdoucq L, Luu DT, Santoni V.2008. Plant aquaporins: memberane channels with multipleintegrated functions. Annual Review of Plant Biology,59:595~624
    Meinzer F C, Grantz D A.1990. Stomatal and hydraulic conductance in growing sugarcane: stomataladjustment to water transport capacity. Plant Cell Environment,3(4):383~388
    Meinzer F C, Clearwater J, Goldstein G.2001.Water transport in trees: current perspectives, new insights andsome controversies. Environmental and Experimental Botany,45:239~262
    Mengel K, Kirkby E A.1980. Potassium in crop production.Advances in Agronomy,33:59~110
    Milburn J A.1996. Sap ascent in vascular plants: challengers to the cohesion theory ignore the significanceof immature xylem and recycling of Münch water, Ann. Bot.-London,78:399~407
    Morales.2003. High-temperature preconditioning and thermal shock imposition affects water relations,gasexchange and root hydraulic conductivity in tomato. Biologia plantarum,47(2):203~208
    Naor A.1998.Relationship between leaf and stem water potential and stomatal conductance in threefield-grown woody species. Journal of Horticultural Science Biotechnology,73:431~436
    Nelson W L.1982.Interaction of potassium with moisture and temperature. In: Potassium for agriculture-Asituation and analysis. Indian Journal of Plant Physiology,36(2):94~97
    North G B, Nobel P S.1996. Changes in hydraulic conductivity and anatomy caused by drying andrewetting roots of A gave deserti (Agavaceae). American Journal of Botany,78(7):906~915
    North G B, Nobel P S.1996. Radial hydraulic conductivity of individual root tissues of Opuntia ficus-indica(L) Miller as soil moisture varies. Annals of Botany,77(2):133~142
    Passioura J B.1988. Water transport in and to roots.Annual Review of Plant Physiology and Plant MolecularBiology,39:245~265
    Pettigrew, W T.2008. Potassium influences on yield and quality production for maize, wheat, soybean andcotton. Physiol. Plant,133:670~681
    Pickard W F.1981. The ascent of sap in plants. Prog Biophys Mol Biol,37:181~229
    Pierre C, Hervé C. ThierryA.2002. Hydraulic architecture of trees: main concepts and results. EDPSciences,Annals of Forest Science,59:723~752
    Pierre-éric Lauri, Guillaume Bourdel, Catherine Trottier, Hervé Cochard.2008. Apple shoot architecture:evidence for strong variability of bud size and composition and hydraulics within a branching zone. NewPhytologist,178:798~807
    Rodriguez P, Dellamico J, Morales D, Sanchez Blanco MJ, Alarcon J J.1997. Effects of salinity on growth,shoot water relations and root hydraulic conductivity in tomato plants. Agricultural Science,128:439~444
    Saliendra N Z, Sperry J S, Comstock J P.1995. Influence of leaf water status on stomatal response tohumidity, hydraulic conductance, and soil drought in Betula occidentalis. Planta,196(2):357~366
    Salleo S, Lo Gullo M A.1986.Xylem cavitation in nodes and internodes of whole Chorisia insignis. AnnBot,58:431~441
    Salleo S, Nardini A, Pitt F, Gullo M A.2002.Xylem cavitation and hydraulic control of stomatal conductancein Laurel (Laurus nobilis L.). Plant Cell Environ,23(1):71~79
    Scholander P F, Hammel H T.1965. Sap pressure in vascular plants. Science,148:339~345
    Shabtai C, Amos N, John B, Avraham G, Melvin T.2007.Hydraulic Resistance components of mature appletrees on rootstocks of different vigours. Journal of Experimental Botany,58(15/16):4213~4224
    Souza Gu, Guoqiang Du, David Zoldoske.2004. Effects of irrigation amount on water relations, vegetativegrowth, yield and fruit composition of Sauvignon blanc grapevines under partial rootzone drying and conventionalirrigation in the San Joaquin Valley of California, USA. Journal of Horticultural Science&Biotechnology,79(1):26~33
    Sperry J S.2000. Hydraulic constraints on plant gas exchange. Agricultural and Forest Meteorology,104:13~23
    Sperry J S, Donnelly JR, Tyree M T.1998.A method for measuring hydraulic conductivity and embolism inxylem. Plant Cell Environment,11:35~40
    Sperry J S, Holbrook N M, Zimmermann M H.1987.Spring filling of xylem vessel sin wild grapevine. PlantPhysiology,83(2):414~417
    Sperry J S, Saliendra N Z, Pockman WT, Cochard H, Cruiziat P, Davis S.D, Ewers F W, Tyree MT.1996.New evidence for large negative xylem pressures and their measurement by the pressure chamber method. PlantCell Environ,19:427~436
    Spicer R, Gartner B L.1998.Hydraulic properties of Douglas fir(Pseudotsuga menziesii) branches andbranch halves with reference to compression wood. Tree Physiol,18:777~784
    Steudle E.1994.Water transport across roots. Plant Soil,167:79~90
    Tan C S, Buttery B R.1982. The effect of soil moisture stress to fractions of the root system on transpirationphoto synthesis and internal water relations of peach seedlings.J Amer Soc Hort Sci,107:845~849
    Tognetti R, Michelozzi M, Giovannelli A.1997. Geographical variation in water relations, hudraulicarchitecture and terpene composition of Aleppo pine seedlings from Italian provenances.Tree Physiol,7:241~250
    Tripler C E, Kaushal S S, Likens G E, Walter M T.2006.Pattens in potassium dynamics in forest ecosystems.Ecol Lett,9(4):451~466
    Tyree M T, Sinclair B, Lu P, Granier A.1993. Whole shoot hydraulic resistance in quercus species measuredwith a new high-pressure flow meter. Ann Sci For,50:417~423
    Tyree M T, Hammel H T.1972.The measurement of the turgor pressure and water relations of plants bypressure bomb technique. Journal of Experimental Botany,23:267~282
    Tyree M T.1997. The cohesion-tension theory of sap ascent: current controversies. J. Exp. Bot,48:1753~1765
    Tyree M T, Ewers F W.1991.The hydraulic architecture of trees and other woody plants. New Phytol,119:345~360
    Tyree M T, Sperry J S.1988.Do woody plants operate near the point of catastrophic xylem dysfunctioncaused by dynamic water stress? Answer from a model. Plant Physiology,88:574~580
    Van Beusichem M L, Kirkby E A, Baas R.1988. Influence of nit rat e and ammonium nutrition and theuptake assimilation and distribution of nutrients in Ricinus communis. Plant Physiol,86:914~921
    Wan X C, Zwiazek J J.1999.Mercuric chloride effects on root water transport in aspen seedlings. PlantPhysiology,121(3):939~946
    Willigen C V, Pammenter N W.1998. Relationship between growth and xylem hydraulic characteristics ofclones of Euclypt us spp. at contrasting sites. Tree Physiol,18:595~600
    Yang S, Grantz D A.1996.Root hydraulic conductance in Pimacotton: comparison of reverse flow,transpiration, and root pressurization. Crop Sci,36:1580~1589
    Zhang J, Davies W J, Tardieu F.1992. What information is conveyed by an ABA signal from maizeroots in drying field soil? Plant, Cell&Environment,15(2):185~191
    Zhang W H. Tyerman S D.1999. Inhibition of water channels by HgCl2in intact wheat root cells. PlantPhysiology,120(3):849~858
    Zimmermann M H.1978. Hydraunic architecture of some diffuse-porous trees.Canadian Journal of Botany,56:2286~2295
    Zufferey V, Cochard H, Ameglio T, Spring J L, Viret O.2011. Diurnal cycles of embolism formationand repair in petioles of grapevine(Vitis vinifera cv. Chasselas). Journal of Experimental Botany,62(11):3885~3894

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700