“附加动量”对冲式消力池的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在水利水电工程建设中,面广量大的中小型闸坝工程在我国四化建设中起着重要的作用。但这些工程一般都为低佛汝德数水跃消能,如果消能问题解决不好将影响建筑物的正常运行,甚至危及闸坝工程的安全。本论文针对目前中小型水利工程中低佛汝德数底流消能存在的一系列问题提出一种新的消能形式,利用闸下铺设通路形成对冲水流,一方面与闸下正向出流碰撞消能,另一方面降低第二共轭水深,同时抬高消力池尾水高度使水流能在消力池内发生淹没水跃进行消能。本文分别从水力学方法、水力试验、数值模拟计算对此消能形式进行了探讨和研究,分析了对冲消力池中的水流流态及对下游的影响。本文的主要内容有:
     1.对底流消能状况进行了总结。
     2.利用水力学方法对对冲消力池进行了理论分析,推导了消能效率等基本公式。并分析了对冲消力池优于常规消力池的原因。
     3.对对冲消力池进行了多组试验,测量计算了对冲消力池在不同工况下的消能率、速度场、压力场,对实验数据进行了整理,拟合了如消能率、佛汝德数等水流参数之间的关系,并与理论值进行了比较,结果吻合较好。
     4.在直角坐标系下建立控制方程,对对冲消力池流场进行二维数值模拟,计算结果说明RNG k-ε紊流模型较适合于对冲消力池的流场模拟,计算结果与实验资料较为吻合。
     研究表明,对冲消力池消能率高,在低佛汝德数工况下消能效率平均提高15%左右,且具有水流稳定,易于控制成淹没水跃,减轻对下游的冲刷和减少消力池长度及防冲槽长度的优点,对下游河床的演变也起着可调控作用,从而节省工程投资,也可节约河道防冲的维修费用,对工程具有实用价值。同时对底流消能的理论有重要意义,其研究成果可为工程设计提供可靠的设计依据。这种消能形式对高水头泄水建筑物及箱式消力池中的消能也值得借鉴,对泄水建筑物的工程布置也有重要的意义。
A large number of medium and small size sluices and dams are playing important roles on the hydraulic structures for the modernization of our nation. However, the hydraulic jumps are often used in these structures to dissipate energy under low Froude number. If the problem is not well solved, it would influence the normal operation, even to endanger the safety of the hydraulic structures. In the view of the problems in energy dissipation with hydraulic jump of traditional sluices and dams, a kind of new form is introduced in this paper, which uses of the access placed under the floor of sluice gate to form opposed jet flow, on the one hand it bumped with the direct outflow to dissipate energy; on the other hand it heightens tailwater which makes the flow to form stability hydraulic jump to dissipate energy in the stilling basin. This article approaches a subject on this type of energy dissipator from different aspects, such as hydraulic method, hydraulic experiments and mathematic stimulation. Furthermore it analyses the flow patterns of fluid in the stilling basin and the effect on downstream. The main tasks of this paper are the follows:1. The recent research works about Energy dissipation of hydraulic structures have been summarized.2. The flow of convective stilling basin is theoretically analyzed in hydraulic method. Then basic formula for energy dissipation rate and some other equations are derived. Moreover the causes why the energy disspation of convective stilling basin is superior to that of normal ones are analyzed in theory.3. Many groups of experiments on convective stilling basin are carriedout, and the ratio of energy dissipation, velocity field, pressure field are measured and calculated. According to experimental data, the relation between the ratio of energy dissipation and Froude number is established. The theoretical values are well coincided with the experimental results.3. The governing equations are formulated in rectangular coordinate system, The flow fields of convective stilling basin are simulated by RNG k- ε and k- ε turbulent models. The computed results show that RNG k- ε turbulent model is more successfully used to predict flow field.The research work shows that convective stilling basin has high ratio of energy dissipation. For low Froude numbers the ratio of energy dissipation can averagely be risen by 15% or so; The flow is stable and is easily to be controlled as submerged jump so that it can decrease scouring on downstream and can shorten the length of the stilling basin ; it also can adjust and control the development of the bed river, So it can reduce investment of the project and save maintenance and repair cost of the strand. It has practical values on hydraulic project, as well as important significance in energy dissipation of the hydraulic jump. The examples in this paper provide valuable reference for the design of the facilities of energy dissipator. This type of energy dissipator is applicable not only for outlet structures of low water head but also for outlet structures of high water head or box stilling basin, and also important to arrangement plan of the project.
引文
1.潘家铮.中国大坝50年.中国水利水电出版社,2000,9
    2.袁银忠.水工建筑物专题.中国水利水电出版社,1977,6
    3.李劲工等.应用消力戽及弧形导流墙消能一例.人民珠江,1997,2
    4.扬敏,任红亮.拱网消力池过网水流结构及消能防冲特性.黄河水利,1977,1
    5.吴子荣等.多级消力池水力特性的研究及其应用.水利水电技术,1998,12
    6.夏维洪.王河生.旋转水流消能及其空化特性.河海大学学报,1998,5
    7.王咸儒.孔板消能泄洪洞的应用与施工.中国水利杂志数据库,2000.12
    8.赵慧琴.辅助消能工在闸下低弗氏数水流中的应用.泄水工程与高速水流论文集.成都科技大学出版社,1994
    9.冬俊瑞,李永祥等.中小型水工建筑物底流消能技术新发展.海河水利.1996(6)
    10.王才欢,肖兴斌.底流消能设计研究与应用现状述评.四川水力发电.2000(1)
    11.伊格拉琴柯.关于逆流消能工的作用.水利译丛,水利部水利译丛编委会,水利出版社,1957(4)
    12.E.H.威尔逊.用射流稳定水跃.高速水流译文集,长江水利水电科学研究院选译,水利电力出版社,1979
    13. Shou Long Yang. Dispersive-Flow Energy Dissipator, Journal Of Hydraulic Engineering. Vol. 120, No. 12, December, 1994
    14. WILLI H. Hager. Countercurrent Jet Device, Journal Of Hydraulic Engineering. Vol. 120, No. 4, April, 1994
    15.张宗孝.“附加动量”水跃理论的工程应用.西北水资源与水工程,2000(3)
    16.张成等.泄水建筑物一种新型消能形式的构想.东北水利水电,2000(11)
    17.毛昶熙,周名德.闸下消能初步综合研究.南京水利科学实验研究汇编,1995
    18.叶肇朗等.中小型蓄水闸对冲消能试验研究.河北水利专科学校学报,1990.2
    19. Emmett M. Laursen, Pipe Plunge Pool Energy Dissipator, Journal Of Hydraulic Engineering, 1992.4,117 (12)
    20. Hans. J. leutheusser. Backward flow velocity of submerged hydraulic jumps. Journal of Hydraulic Engineering, 2001.6,127(6)
    21.张宗孝,朱争鸣等.用附加动量理论分析齿墩与消力池联合消能机理.长江科学院院报,2001.4,(2)
    
    
    22.吴持恭.水力学(第二版).高等教育出版社,1995.
    23. Taylor GI. Diffusion by continuous movements. Proc London Math Soc. 1921, 20: 196
    24. Prand L. Berichtuber Untersuchungen. Zur Ausgebideten Turbulenz. ZAMM.1925, 5: 136
    25. Von Kármán T. Mechanische knlichkeit and Turbulenz. Nachr Ges Wiss Gottingen Math-Phys. 1930, 51:76
    26.杨建明,曹树良.水轮机尾水管三维湍流数值模拟.水力发电学报,1998:(01)
    27.杨建明,吴建华.淹没水跃的数值模拟.水动力学研究与进展,2001,12
    28.陈群,戴光清等.阶梯溢流坝面流场的紊流数值模拟.天津大学学报(自然科学与工程技术版),2002,(1)
    29.杨学军,李玉柱.挑流冲坑紊流场的二维数值模拟.水利水电技术,2002,2
    30.梁在潮.工程湍流.华中理工大学出版社,1999,4
    31.叶坚,窦国仁.紊流模型中壁面函数关系的改进(J).水利水运科学研究,1990(3)
    32.符松,郭阳.无壁面参数低雷诺数非线形涡黏性模式研究.力学学报,2001,2
    33.张怀新,刘应中.带自由面三维船体周围粘性流场的数值模拟.上海交通大学学报,2001,(10)
    34.袁新明,唐锦春等.双时间尺度紊流模型的非线形修正与验证.水科学进展,2002,(1)
    35.袁新明,毛根海等.双时间尺度紊流模型在工程中l的应用.扬州大学学报(自然科学版),2002,(2)
    36. V. Yakhot and S. A. Orszag. Renormalization group analysis of turbulence(J). Journal of Scientific Computing. Vol. 1. No. 1, 1986:3-5.
    37. V. Yakhot, S. A. Orszag et al. Development of turbulence models for shear flows by double expansion technique (J). Phys. Fluids A, Vol. 4, No. 7, 1992:1510.
    38.王少平,曾扬兵.用RNG κ-ε占模式数值模拟180度弯管内的湍流分离流动.力学学报,1996,5,28(3)
    39.蒋莉,王少平等.应用RNG κ-ε湍流模式数值模拟90度弯曲槽道内的湍流流动.水动力学研究与进展,A13(1),1998,3,8-13.
    
    
    40.兰雅梅,孙西欧.圆管螺旋流的三维数值模拟.太原理工大学学报,2001,3
    41.马贵阳,王岳.三步有限元法的大涡模拟.石油化工高等学校学报,1998,3
    42. Guo Mao-Ying. Numerical Study for the compensation of Axial Flow Force in a spool value by Boundary Element Method. Proc of 1th International Sympoaium on Fluid Power Transition and Contral. 1991, BeiJing, China
    43.孙涛,邱秀云.边界元法在悬板区过流问题上的应用.水利水运科学研究,2000,(2)
    44.周雪漪.计算水力学.清华大学出版社,1995,9
    45.赵毅山,韦鹤平.大型泵站前池非定常平面的流态模拟.同济大学学报(自然科学版),1998,(4)
    46.郑邦民,赵昕.计算流体动力学.武汉大学出版社,2001,8
    47.陶文铨.数值传热学.西安交通大学出版社,1989,9
    48.王艳明.高坝挑流冲坑流场的数值模拟.水动力学研究与进展,1995,(2)
    49. Guan Jian-yong and Chen Bi-hong. 3-D turbulent flow simulation for the tall water-channel. Journal of Hydrandynamics, Ser, B. 4, 1996, 78-87
    50.陈永灿,冬俊瑞.三峡溢流坝下游冲刷坑特性研究.清华大学学报(自然科学版),1998,(1)
    51.蔡兆麟.用有限体积法计算叶轮机械内三维粘性流动.华中理工大学学报,2000,(9)
    52.马福喜.三维带自由表面强紊动水流的数值模拟.河海大学博士论文,1992,6
    53.许卫新,顾兆勋.二维非定常水跃数值计算(J).河海大学学报,1988,16(2)
    54.刘清朝,陈椿庭.水跃紊流特性的数值研究.水利学报,1993,(1)
    55.金忠青,戴会超.坝下消能工局部水流的数值模拟.水动力学研究与进展,1994,(4)
    56.王玲玲,严忠民.石梁河水库消力池强紊动水流的数值模拟.水科学进展,2002,5(3)
    57. Ma Fuxi, Numerical Prediction of Three Dimension Highly-Turbulent Flow With Free Surfaces. Journal of Hydrodynamics. 1995, (1): 77-84
    58.袁新明,毛根海等.闸后水跃的数值模拟.水利学报,1999,(5)
    59. C. W. Hirt and B. D. Nichols. Volume of Fluid Method for the Dynamics
    
    of Free Boundaries. Journal of Computational Physics 39, 1981:201-225
    60.李玲,李玉梁.应用基于 RNG 方法的湍流模型数值模拟钝体绕流的湍流流动.水科学进展,2000.11(4)
    61.金忠青.N-S方程的数值解和紊流模型.河海大学出版社,1989

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700