用户名: 密码: 验证码:
水飞蓟籽仁蛋白和油的主要特性与生物活性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水飞蓟(Silybum marianum)为菊科草本植物,其籽主要用来提取分离其有效成分水飞蓟素。由于水飞蓟素主要存在于籽壳中,采用脱壳工艺不仅可使其壳仁分离,便于高纯度水飞蓟素的高效提取,同时也为籽仁的综合利用创造了条件。由于籽仁中油和蛋白质的含量均较高,因此,有必要深入研究水飞蓟油和水飞蓟蛋白的主要特性与生物活性,为其作为新资源食品的开发提供理论依据,也为实现水飞蓟资源的综合利用、提高其附加值提供技术支持。
     本论文以水飞蓟籽仁为原料,在研究水飞蓟油和水飞蓟蛋白的基本营养成分和主要特性的基础上,进一步研究了水飞蓟油和水飞蓟蛋白酶解物的抗氧化、抗衰老活性,主要研究内容与结果如下:
     1.分析了水飞蓟籽仁的主要营养成分及其含量。籽仁脱脂粉中蛋白质含量为47.23%,其氨基酸种类齐全,谷氨酸和天冬氨酸含量丰富;脱脂粉中矿物质元素含量丰富,钙、锌、铜等元素的含量高于一般谷物;籽仁中含油量为34.12%,其中不饱和脂肪酸含量高达77.21%,且主要以亚油酸为主(48.20%),油中α-VE含量为339.42mg/kg。
     2.初步研究了水飞蓟籽仁脱脂粉的食用安全性和水飞蓟蛋白的消化性能。水飞蓟籽仁脱脂粉对小鼠的经口LD50>15g/kg,属于无毒级别;利用胃蛋白酶-胰蛋白酶体外模拟消化水飞蓟蛋白结果表明,其中的高分子量蛋白比大豆分离蛋白中的更容易被降解,消化性能优良。
     3.采用响应面分析法优化了制备水飞蓟蛋白的工艺条件。在pH11、液料比16:1、温度50℃的条件下,蛋白的提取率为54.52%。
     4.采用Osbome蛋白分类法对水飞蓟蛋白进行分级分离,并对其主要特性进行了研究。结果表明,水飞蓟蛋白以清蛋白为主(42.94%),其次是球蛋白(10.1%);水飞蓟总蛋白及其四种蛋白组分都含有丰富的谷氨酸、精氨酸、天冬氨酸和亮氨酸,必需氨基酸构成较平衡;SDS-PAGE结果显示:水飞蓟蛋白主要以中、低分子质量蛋白为主,主要集中在32.4-44.5kD和14.5-24.8kD两个区域,清蛋白和球蛋白的主要电泳条带分布与总蛋白一致;表面疏水性测定结果显示:球蛋白的表面疏水指数最高,清蛋白的最低;对总蛋白、清蛋白和球蛋白的主要加工特性的研究结果表明,总蛋白的加工特性优于清蛋白和球蛋白。
     5.从5种蛋白酶中筛选出水飞蓟蛋白的最佳水解酶为中性蛋白酶,其酶解水飞蓟蛋白的最适条件为:底物浓度2%,反应温度55℃,加酶量14000U/g,pH值7.0,酶解时间120min。在此条件下,蛋白酶解物对·OH清除率达到了88.57%。水飞蓟蛋白酶解物中约有65%是分子量小于1000Da的寡肽。
     6.研究了水飞蓟蛋白酶解物抗氧化活性的稳定性。结果表明,在试验范围内,水飞蓟蛋白酶解物的耐热性较好,在酸、碱条件下,抗氧化稳定性良好;NaC1、蔗糖和葡萄糖对酶解物的抗氧化稳定性影响不明显;苯甲酸和山梨酸会降低酶解物的抗氧化活性;不同金属离子对酶解物的抗氧化稳定性影响程度不同;酶解物对胃肠道的酶系有较好的耐受性。
     7.对水飞蓟蛋白酶解物进行超滤分级,研究了不同分子量肽段的体外抗氧化活性。结果表明,分子量<1kD的水飞蓟肽的体外抗氧化活性最强,其次为1-3kD肽,3-10kD肽的体外抗氧化活性最弱;分子量<1kD的肽可以显著抑制H202诱导的小鼠红细胞的氧化溶血,抑制小鼠肝细胞线粒体的肿胀和MDA的生成,提高肝细胞线粒体Na+-K+-ATPase、Ca2+-Mg2+-ATPase和SDH的活性,维持肝细胞线粒体的膜电位和膜流动性。
     8.研究了水飞蓟油和水飞蓟蛋白酶解物的抗衰老活性。结果表明,水飞蓟油和水飞蓟蛋白酶解物可显著降低D-半乳糖诱导的衰老小鼠的血脂水平,提高小鼠肝、脑组织的抗氧化能力和小鼠肝细胞线粒体膜的流动性与膜电位及其线粒体中SDH、Na+-K+ATPase和Ca2+-Mg2+ATPase的活性;显著提高小鼠肝、脑组织中Bc12的含量,降低caspase-3的活性;水飞蓟蛋白酶解物可显著降低小鼠肝、脑组织中8-OHdG的水平;水飞蓟油可显著降低肝组织中8-OHdG的水平,但脑中8-OHdG的含量与模型组没有显著差异;水飞蓟油和水飞蓟蛋白酶解物均可保护小鼠肝、脑组织细胞形态的完整性。在试验剂量范围内,水飞蓟蛋白酶解物以中剂量组效果最好,水飞蓟蛋白酶解物的抗衰老效果优于水飞蓟油。
Silybum Marianum is compositae herbaceous plant. Its seed is mainly used for extraction of silymarin. Silymarin is the effective component of Silybum Marianum, which mainly exists in the seed shell. Separation of the shell and kernel can not only facilitate efficient extraction of silymarin with high purity, but also facilitate the comprehensive utilization of seed kernel. Seed kernel contains abundant oil and protein therefore it is necessary to study the main properties and biological activities of Silybum marianum oil and protein. The research can not only provide the theoretical basis for the new resources of food development of Silybum marianum seed kernel protein and oil, but also provide the technical support for comprehensive utilization and improve added value of Silybum Marianum.
     In this dissertation, the basic nutrition composition and physicochemical properties of Silybum marianum seed kernel protein and oil were studied. The researches concering antioxidant and anti-aging activities of Silybum marianum oil and protein hydrolysates were also investigated. The main results were as follows:
     1. The protein content of Silybum marianum seed kernel defatted powder was47.23%and amino acid composition was reasonable, especially it was rich in glutamic acid and aspartate. Its mineral element content was high, the content of calcium, zinc, copper and other elements were higher than other grain. The oil content in the seed kernel was34.12%, of which unsaturated fatty acid content was77.21%. Linoleic acid was the main unsaturated fatty acid (48.20%). α-VE content in oil was339.42mg/kg.
     2. The edible security of the Silybum marianum seed kernel defatted powder and the digestion performance of Silybum marianum protein were preliminarily studied. The oral LD50on mice about Silybum marianum seed kernel defatted powde was more than15g/kg. So it belongs to the non-toxic level. In vitro digestibility of Silybum marianum protein using pepsin trypsin and pepsin was studied. High molecular weight proteins in Silybum marianum protein were easier to be hydrolysed than SPI. So Silybum marianum protein had good digestion performance.
     3. The optimum processing conditions of Silybum marianum protein was determined through response surface methodology. Under the optimized processing conditions as pH11, liquid-solid ratio16:1and50℃, the maximum extraction rate was54.52%.
     4. Silybum marianum protein was fractionated by the osborne protein classification method and its main properties were studied. Albumin was the main constituent (42.94%), followed by globulin (10.1%). Both total protein and four protein components of Silybum marianum contained abundant glutamic acid, arginine, aspartic acid and leucine. The composition of essential amino acid was balanced. The SDS-PAGE result showed that Silybum marianum protein was mainly composed of protein of middle and low molecular weight. The main bands were in the range of32.4~44.5kD and14.5~4.8kD. Globulin had the highest surface hydrophobic index, albumin was just the reverse of globulin. The processing performance of total protein was better than that of albumin and globulin.
     5. Neutral protease was the optimal hydrolases for Silybum marianum protein among5proteases which were investigated. The optimum conditions of enzymatic hydrolysis were determined as substrate concentration [S]2%, temperature55℃,[E]/[S]14000U/g, pH7.0, time120min. Under these conditions, the·OH scavenging rate was88.57%. The hydrolysates contained around65%oligopeptide whose molecular weight were smaller than1000Da.
     6. The stability of antioxidant activity of protein hydrolysates of Silybum marianum was studied. Protein hydrolysates of Silybum marianum had good stabilities in acid and alkaline conditions. NaCl, sucrose and glucose have little effects on the antioxidation activity, while benzoic acid and sorbic acid could reduce the activity. Different metal ions had the different effects on the antioxidation activity. The hydrolysates could keep high activity in vitro digestive system.
     7. Protein hydrolysates of Silybum marianum were ultrafiltrated consecutively by the ultrafiltration membrane. The antioxidant activities of peptides with different molecular weight were studied.<1kD peptide had the strongest antioxidant activity in vitro, followed by1-3kD peptide and3-10KD peptide in turn.<1kD peptide could inhibit the hemolysis of red blood cells induced by H2O2, the swelling of liver mitochondria and the generation of MDA in mice. It also could improve the activities of Na+-K+-ATPase, Ca2+-Mg2+-ATPase and SDH, and maintain liver mitochondria membrane potential and membrane fluidity.
     8. Results of anti-aging activity showed that Silybum marianum oil and protein hydrolysates could significantly decrease the blood lipid level and increase the antioxidant capacity of liver and brain in D-galactose-induced aging mice. Both of them could improve liver mitochondria membrane fluidity, membrane potential and the activities of SDH, Na+-K+-ATPase, Ca2+-Mg2+-ATPase, decrease the concentration of caspase-3and improve the activity of Bcl2in the liver and brain of aging mice. Protein hydrolysates of Silybum marianum could significantly reduce the levels of8-OHdG in the liver and brain of aging mice. While Silybum marianum oil could significantly reduce the levels of8-OHdG only in liver. Compared with the model group, there were no significant differences in the levels of8-OHdG in brain. Silybum marianum oil and protein hydrolysates could protect the integrity of the cell morphology of liver and brain of mice. In the test dose range, the middle dose group of protein hydrolysates of Silybum marianum had the best effect. The effect of anti-aging of the hydrolysates was better than Silybum marianum oil.
引文
[1]西安植物园中草药研究组.水飞蓟[M].中草药通讯,1973,(6):28-35.
    [2]水飞蓟综合利用编写组.水飞蓟综合利用[M].北京:科学出版社,1980.
    [3]Bhattacharya S. Phytotherapeutic properties of milk thistle seeds:An overview[J].Journal of Advanced Pharmacy Education & Research,2011,1:69-79.
    [4]严国兵,自同春.水飞蓟素在水中溶解度的测定及关联[J].苏州大学学报(自然科学版),2004,20(2):79-83.
    [5]Tong CB,Guo BY,Jie HH,et al.Solubility of silybin in aqueouspoly (ethyleneglycol) solution. [JJInternational Journal of Pharmaceutics,2006,30(8):100-106.
    [6]尚炜,才松,杨彦春.水飞蓟种壳与种子总黄酮含量比较[J].中国中医科技,1995,2(5):24-25.
    [7]Kvasnicka F,Biba B,Seveik R,et al.Analysis of the active components of silymarin[J]. Journal of ChromatographyA,2003,99(10):239-245.
    [8]刘洪玲.水飞蓟素的化学成分及药理作用研究进展[J].中国民族民间医药,2008,3(7):23-25.
    [9]Lee JI,Hsu BH.,Wu D,et al.Separation and characterization of silybin,isosilybin,silydianin and silychristin in milk thistle extract by liquid chromatography electrospray tandem mass spectrometry[J].Journal ofChromatographyA,2006,11(16):57-68.
    [10]Brandon-Warner E,Eheim AL,Foureau DM,et al.Silibinin (Milk Thistle) potentiates ethanol-dependent hepatocellular carcinoma progression in male mice [J].Cancer letters, 2012,326(1):88-95.
    [11]Fu H,Lin M,Muroya Y,et al.Free radical scavenging reactions and antioxidant activities of silybin:mechanistic aspects and pulse radiolytic studies[J].Free Radic Res,2009,43:887-897.
    [12]Prabu SM, Muthumani M. Silibinin ameliorates arsenic induced nephrotoxicity by abrogation of oxidative stress, inflammation and apoptosis in rats[J]. Molecular biology reports,2012, 39(12):11201-11216.
    [13]Guigas B,Naboulsi R,Villanueva GR,et al.The flavonoid silibinin decreases glucose-6 phosphate hydrolysis in perfused rat hepatocytes by an inhibitory effect on glucose-6-phosphatase[J].Cell Physiol Biochem,2007,20:925-934.
    [14]Mashayekhi M. Renoprotective effect of silymarin on gentamicin-induced nephropathy[J]. African journal of pharmacy and pharmacology,2012,6(29):2241-2246.
    [15]Tyagi A,Sharma Y,Agarwal C,et al.Silibinin impairs constitutively active TGF alpha-EGFR autocrine loop in advanced human prostate carcinoma cells[J].Pharm Res,2008,25: 2143-2150.
    [16]Nabavi SM, Sureda A,Nabavi SF,et al. Neuroprotective effects of silymarin on sodium fluoride-induced oxidative stress [J].Journal of fluorine chemistry,2012,142:79-82.
    [17]Kauntz H, Bousserouel S, Gosse F,et al. Silibinin, a natural flavonoid, modulates the early expression of chemoprevention biomarkers in a preclinical model of colon carcinogenesis [J].International journal of oncology,2012,41(3):849-854.
    [18]Yousefi M,Ghaffari SH, Soltani BM,ct al. Therapeutic Efficacy of Silibinin on Human Neuroblastoma Cells:Akt and NF-kappa B Expressions May Play an Important Role in Silibinin-Induced Response [J].Neurochemical Research,2012,37(9):2053-2063.
    [19]Lin CJ,Sukarich R,Pelletier J.Silibinin inhibits translation initiation:implications for anticancer therapy[J].Mol Cancer Ther,2009,8:1606-1612.
    [20]Min K,Yoon WK,Kim SK,et al.Immunosuppressive effect of silibinin in experimental autoimmune cncephalomyelitis[J].Arch Pharm Res,2007,30:1265-1272.
    [21]El-Bahay C,Gerber E,Horbach M et a/. Influence of tumor necrosis factor-alpha and silibin on the cytotoxic action of alpha-amanitin in rat hepatocyte culture[J].Toxicol Appl Pharmacol,1999,158:253-260.
    [22]Saller R,Brignoli R,Melzer J et aL.An updated systematic review with meta-analysis for the clinical evidence of silymarin[J].Forsch Komplementmed,2008,15:9-20.
    [23]Singh RP,Sharma G,Dhanalakshmi S,et al.Suppression of advanced human prostate tumor growth in athymic mice by silibinin feeding is associated with reduced cell proliferation, increased apoptosis, and inhibition of angiogenesis[J].Cancer Epidemiol Biomarkers Prev, 2003,12(9):933-9.
    [24]钱学射,张卫明,顾龚平等.值得开发与利用的水飞蓟油[J].中国野生植物资源.2006,25(5):31-34.
    [25]Gil'miiarova FN,Tutel'ian VA, Radomskaia VM, et al. Biological value of Silybum marianum oil[J].Vopr Pitan,2002,71(4):32-5.
    [26]E1-Mallah MH,E1-Shami SM,Hassanein MM. Detailed studies on some lipids of Silybum marianum(L.) seed oil[J].Grasasy Aceites 54.Fasc,2003,4:397-402.
    [27]Hadolin M,Skerget M,Knez Z,et al.High pressure extraction of vitamin E-rich oil from Silybum marianum[J].Food Chemistry,2001,74:355-364.
    [28]何维明,许牡丹,杨著,等.水飞蓟油的营养成分及降脂作用的研究[J].营养学报,1996,18(2):163-167.
    [29]陶立平,张亚茹,张宪有,等.水飞蓟由对兔实验性主动脉粥样硬化病变影响的观察[J].佳木斯医学院学报,1995,18(5):17-19.
    [30]郭忠兴,陶富山,张春英,等.水飞蓟对家兔实验性高脂血症及动物粥样硬化斑块影响的初步观察[J].佳木斯医学院学报,1979,(3):15-19.
    [31]Kurkin Vladimir A.The new possibilities of the use of Silybum marianum (I..) Gaertn. Fruits. Samara State Medical University 2nd International Electronic Conference on Synthetic Organic Chemistry (FCSOC-2)[C],1998,9:1-30.
    [32J Batakov EA.Effect of Silybum marianum oil and legalon on lipid peroxidation and liver antioxidant systems in rats intoxicated with carbon tetrachloride[J].Ekspcrimental'naia iklinicheskaia farmakologiia,2001,64(4):53-57.
    [33]陈毓荃,王春梅,张文魁.水飞蓟综合利用基础研究Ⅱ果实油脂和蛋白质[J].西北农业学 报,1998,7(1):79-81.
    [34]孙艳辉.水飞蓟粕制备抗氧化物及其活性研究.[D]镇江:江苏大学,2007.
    [35]徐德峰.水飞蓟种仁油脂新型制备技术与蛋白综合利用研究[D]南京:南京农业大学,2007.
    [36]田灵敏,邱雪梅,潘子敬,等.新型糖组成高效液相色谱分析技术的构建及其在水飞蓟多糖质控中的应用[J].药学学报,2010,45(4):498-504.
    [37]徐德峰,张卫明,史劲松,等.超临界CO2萃取水飞蓟由工艺研究[J].食品与机械,2007,23(1):93-96.
    [38]王新,郑先哲.微波快速萃取水飞蓟籽油试验.[J].东北农业大学学报,2008,39(7):118-122.
    [39]Osborne T.B.The proteins of wheat kernel [M].Publication of Washington DC,Carnegie Institution of Washington,1907.
    [40]王章存,王雷,董吉林,等.花生蛋白的不同提取工艺及其功能性质研究[J].中国粮油学报,2009,24(3):117-119.
    [41]Latif S, Pfannstiel J, Makkar HPS, et al. Amino acid composition, antinutrients and allergens in the peanut protein fraction obtained by an aqueous enzymatic process[J]. Food Chemistry,2013,136(1):213-217.
    [42]Sari YW, Bruins ME, Sanders JPM.Enzyme assisted protein extraction from rapeseed, soybean, and microalgae meals[J]. Industrial Crops and Products,2013,43:78-83.
    [43]Kamalji V, Raymond M, Lioyd S,et al.Applicacations and opportunites for ultrasound assisted extraction in the food industry-A review[J].Innovative Food Science and Emerging Technologies,2008,9:161-169.
    [44]Cheung YC, Siu KC, Liu YS,et al. Molecular properties and antioxidant activities of polysaccharide-protein complexes from selected mushrooms by ultrasound-assisted extraction [J].Process biochemistry,2012,47(5):892-895.
    [45]Arzeni C, Perez OE, Pilosof AMR. Functionality of egg white proteins as affected by high intensity ultrasound[J].Food Hydrocolloids,2012,29(2):308-316.
    [46]Kinsella,J.E.Functional properties of food proteins:A review [M].CRC Crit. Rev. Food Sci Nutr.1976,7:219-280.
    [47]李品高.可降解改性大豆蛋白凝胶的制备工艺与应用研究[D].广州:广东工业大学.2007.
    [48]Damodaran,S..Structure-function relationship of food proteins,in Protein Functionality in Food Systems(N.S.Hettiazachchy and G.R.Ziegler,eds.)[M].Marcel Dekker,NewYork, 1994:1-38.
    [49]Kang I.J.Gelation and gel properties of soybean glycicin in a transglutaminase-catalyzed system[J].Journal of Agricultural and Food Chemistry,1994,42(l):159-165.
    [50]李家燕.糖基化对芸豆蛋白功能性质与结构的影响[D].广州:华南理工大学,2009.
    [51]Chen KI, Erh MH, Su NW,et al. Soyfoods and soybean products:from traditional use to modern applications[J]. Applide microbiology and biotechnology,2012,96(l):9-22.
    [52]Anderson TJ, Lamsal BP.Zein Extraction from Corn, Corn Products, and Coproducts and Modifications for Various Applications:A Review[J].Cereal Chemistry,2011,88(2):159-173.
    [53]Zhao, XY Chen, J Du, FL.Potential use of peanut by-products in food processing:a review [J]. Journal of food science and technology,2012,49(5):521-529.
    [54]Sun H,Tang JW, Yao XH,et al. Improvement of the Nutritional Quality of Cottonseed Meal by Bacillus subtilis and the Addition of Papain[J]. International journal of agriculture and biology,2012,14(4):563-568.
    [55]王晓凡,熊光权,汪兰,等.菜籽蛋白提取及应用研究进展[J].粮食与油脂,2010,12:5-9.
    [56]朱科学.小麦胚蛋白质及其酶解产物的研究[D].无锡:江南大学,2006.
    [57]肖莲荣,任国谱.大米蛋白改性研究进展[J].食品与发酵公工业,2012,38(2):151-156.
    [58]Kou XH,Gao J, Xue ZH,et al. Purification and identification of antioxidant peptides from chickpea (Cicer arietinum L.) albumin hydrolysates[J]. Food science and technology,2013, 50(2):591-598.
    [59]sanmartin E, Arboleya JC,Villamiel M, et al.Recent advances in the recovery and improvement of functional proteins from fish processing by-products:Use of ptotein glycation as an alternative method[J].comprehensive Reviews in Food Science and Food Safety,2009, 8(4):332-344.
    [60]Korhonen H.Pihlanto A.Bioactive peptides:Production and functionality[J].International Dairy Journal,2006,16:945-960.
    [61]Urista CM, Fernandez RA, Rodriguez FR,et al. Review:Production and functionality of active peptides from milk[J].Food science and technology international,2011,17(4):293-317.
    [62]Ng KL, Ayob MK, Said M,et al. Optimization of enzymatic hydrolysis of palm kernel cake protein (PKCP) for producing hydrolysates with antiradical capacity [J].Industrial crops and products,2013,43:725-731.
    [63]李琳.鳙鱼蛋白控制酶解及酶解物抗氧化研究[D].广州:华南理工大学,2006.
    [64]游丽君.泥鳅蛋白抗氧化肽的分离纯化及其抗疲劳、抗癌功效研究[D].广州:华南理工大学,2010.
    [65]Jamdar SN,Rajalakshmi V,Pednekar MD,et al.Influence of degree of hydrolysis on functional properties, antioxidant activity and ACE inhibitory activity of peanut protein hydrolysate[J].Food Chemistry,2010,121:178-184.
    [66]Zhang JZ, Zhang H, Wang L,et al.Isolation and identification of antioxidative peptides from rice endosperm protein enzymatic hydrolysate by consecutive chromatography and MALDI-TOF/TOF MS/MS[J].Food Chemistry,2010,119:226-234.
    [67]Qian ZJ,Jung WK,Kim SK.Free radical scavenging activity of a novel antioxidative peptide purified from hydrolysate of bullfrog skin, Rana catesbeiana Shaw[J].Bioresource Technology,2008,99:1690-1698.
    [68]Boye JI,Roufik S,Pesta N,et al.Angiotensin I-converting enzyme inhibitory properties and SDS-PAGE of red lentil protein hydrolysates[J].Food Chemistry and Technology,2010,43 (6):987-991.
    [69]章绍兵,王璋,许时婴.利用电喷雾串联质谱测定菜籽抗氧化肽的结构[J].河南工业大学学报(自然科学版),2009,30(2):1-4.
    [70]Parrella A, Caterino E, Cangiano M,et al. Antioxidant properties of different milk fermented with lactic acid bacteria and yeast[J].International Journal of Food Science and Technology, 2012,47:2493-2502.
    [71]Park, EY, Imazu, H,Matsumura, Y,et al. Effects of Peptide Fractions with Different Isoelectric Points from Wheat Gluten Hydrolysates on Lipid Oxidation in Pork Meat Patties [J].Journal of agriculrtral and food chemistry,2012,60(30):7483-7488.
    [72]Decker, E A, et al. Different antioxidant mechanism of carnosine in the presence of copper and iron[J].J Agric Food Chem,2003,68:173-182.
    [73]Uchida,K., Kawakishi, S. Sequence-dependent reactivity of histidine-containing peptides with copper(Ⅱ)/ascorbate[J]. Journal of agriculrtral and food chemistry,1992,40:13-16.
    [74]王瑞雪,孙洋,钱方.抗氧化肽及其研究进展[J].食品科技,2011,36(5):83-86.
    [75]Kittiphattanabawon P, Benjakul S, Visessanguan W,et al. Gelatin hydrolysate from blacktip shark skin prepared using papaya latex enzyme:Antioxidant activity and its potential in model system[J] Food Chemistry,2012,135 (3):1118-1126.
    [76]Li XX, Shi XW, Jin Y,et al.Controllable antioxidative xylan-chitosan Maillard reaction products used for lipid food storage [J].Carbohydrate Polymers,2013,91(1):428-433.
    [77]Valdecantos MP,Matute PP,Quintero P,et al.Vitamin C,resveratrol and lipoic acid actions on isolated rat liver mitochondria:all antioxidants but different[J].Redox Report,2010,15 (5):207-216.
    [78]Samaranayaka, AGP,Li-Chan, ECY.Food-derivod peptidic antioxidants:A review of their production, assessment, and potential applications[J].Journal of functional foods.2011,3 (4):229-254.
    [79]Harman D,Free radical theory of aging:consequences of mitochondial aging.[J].Age,1983, 6:86-94.
    [80]Ghosh N, Ghosh R, Mandal SC. Antioxidant protection:A promising therapeutic intervention in neurodegenerative disease [J].Free radical research,2011,45(8):888-905.
    [81]Aenold R, Wassef DM, Heinemann SH.,et al.Oxidative damage, aging and anti-aging strategies. [J]. AGE,2005,27:183-199.
    [82]Csiszar A,Labinskyy N,Jimenez R,et al.Anti-oxidative and anti-inflammatory vasoprotective effects of caloric restriction in aging:Role of circulating factors and SIRT1[J],Mechanisms of Ageing and Development,2009,130:518-527.
    [83]Kerr JF,Wyllie AH,CurrieAR.Apoptosis:a basic biological phenomenon with Wide-ranging implications in tissue kinetics[J].BrJ Cancer.1972,26(4):239-257.
    [84]Desagher S,Martinou JC.Mitochondria as the central control point of apoptosis[J].Trends Cell Biol,2000,10:369-377.
    [85]Shoshan-Barmatz V, De PintoV, Zweckstetter M,et al.VDAC,a multi-functional mitochondrial protein regulating cell life and death[J].Molecular aspects of medicine,2010,31(3):227-285.
    [86]Twiddy D,Brown DG,Adrain C,et al.Pro-apoptotic proteins released from the mitochondria regulate the protein composition and caspase-processing activity of the native Apaf-1/ caspase-9 apoptosome complex[J].Journal of Biological Chemistry,2004,279(19): 19665-19682.
    [87]Kantari C,Walczak H.Caspase-8 and Bid:Caught in the act between death receptors and mitochondria[J].BBA-Molecular Cell Research,2011,1813(4):558-563.
    [88]Bleicken S, Wagner C, Garcia-Saez AJ.Mechanistic Differences in the Membrane Activity of Bax and Bcl-xL Correlate with Their Opposing Roles in Apoptosis [J].Biophysical Journal, 2013,104(2):421-431.
    [89]Antonsson B,Conti F,Ciavatta A,et al.Inhibition of Bax channel forming activity by Bcl-2 [J].Seienee,1997,277:370-372.
    [90]Miquel J, Economos AC, Fleming J, et al.Mitochondrial role in cell aging[J].Exp Gerontol, 1980,15:575-91.
    [91]Linnane Aw,Marzuki S,Ozawa T,et al.Mitochondrial DNA mutations as an important contributor to ageing an degenerative diseases[J]Lancet,1989,1(8639):642-645.
    [92]linnane Aw,Baumer A,Maxwell RJ,Mitochondrial gene mutation:the ageing process and degenerative diseases[J].Biochemistry International,1990,22(6):1067-1076.
    [93]Miquel J.An update on the mitochondrial-DNA mutation hypothesis of cell aging[J]. Mutation Research,1992,275(3-6):209-216.
    [94]Cefalu CA.Theories and mechanisms of aging[J].Clinics in Geriatric Medicine,2011,27 (4): 491-506.
    [95]Gilchrest BA,Bohr AV.Aging processes,DNA damage,and repair[J]The FASEB Journal, 1997,11(5):322-330.
    [96]Park PU,Defossez PA,Guarente L.Effect of mutations in DNA repairgenes onformation of ribosomal DNA circles and life span in saccharomyces cerevisiae [J].Mol Cell Biol,1999, 19(5):3848-3856.
    [97]徐黻本.D-半乳糖的亚急性毒性[R].第二届国际衰老研究会议,中国:哈尔滨,1985.
    [98]Unadar NJ,Tsui JY,Johnson MJ.Prefeeding of aldose reductase inhibitor and galactose cataratogenis[J].Curr Eye RES,1989,8(10):997-1010.
    [99]龚国清,徐黻本.小鼠衰老模型研究[J].中国药科大学学报,1991,22(2):101-103.
    [100]Tsai SJ, Yin MC. Anti-glycative and anti-inflammatory effects of protocatechuic acid in brain of mice treated by D-galactose [J].Food and Chemical Toxicology,2012,50(9): 3198-3205.
    [101]崔旭,李文彬,张炳烈等.D-半乳糖拟脑老化模型的脂质过氧化机理[J].中国老年学杂志,1998,18(2):38-40.
    [102]张秀丽.梓醇对D-半乳糖衰老小鼠的神经保护作用研究[D]大连:大连理工大学,2008.
    [103]Anand KV, Jaabir MSM,Thomas PA,et al. Protective role of chrysin against oxidative stress in d-galactose-induced aging in an experimental rat model [J].Geriatrics and gerontology international,2012,12(4):741-750.
    [104]Lei YF, Chen JL, Zhang WT,et al. In vivo investigation on the potential of galangin, kaempferol and myricetin for protection of D-galactose-induced cognitive impairment [J].Food Chemistry,2012,135(4):2702-2707.
    [105]Zhong SZ,Ge QH,Qu R. Paeonol attenuates neurotoxicity and ameliorates cognitive impairment induced by D-galactose in ICR mice[J]Journal of the Neurological Sciences,2009,277:58-64.
    [106]Li ZX, Zhang Z, Zhang JS,et al.Cordyceps militaris Extract Attenuates D-Galactose-Induced Memory Impairment in Mice [J].Journa of Medicinal Food,2012,15(12): 1057-1063.
    [107]Wang DL, Liu MX,Cao JC,et al. Effect of Colla corii asini (E'jiao) on D-Galactose Induced Aging Mice [J].Biological and Pharmaceutical Bulletin,2012,35(12):2128-2132.
    [108]Tsai SJ, Yin MC. Anti-oxidative, anti-glycative and anti-apoptotic effects of oleanolic acid in brain of mice treated by D-galactose[J].European journal of pharmacology,2012,689 (1-3):81-88.
    [109]Su Y, Sun H, Fang J,et al.Brain Mitochondrial Dysfunction in Ovariectomized Mice Injected with D-Galactose[J].Neurochem Res,2010,35:399-404.
    [110]Du ZD, Hu YJ, Yang Y,et al. NADPH oxidase-dependent oxidative stress and mitochondrial damage in hippocampus of D-galactose-induced aging rats [J].Journal of Huazhong University of Science and Technology,2012,32(4):466-472.
    [111]Zhang L, Shao WF, Yuan LF,et al. Decreasing pro-inflammatory cytokine and reversing the immunosenescence with extracts of Pu-erh tea in senescence accelerated mouse (SAM) [J].Food Chemistry,2012,135(4):2222-2228.
    [112]Sawano E, Negishi T, Aoki T,et al. Alterations in local thyroid hormone signaling in the hippocampus of the SAMP8 mouse at younger ages:Association with delayed myelination and behavioral abnormalities[J].Journal of neuroscience research,2013,91(3):382-392.
    [113]TakedaT.Senescence-Accelerated Mouse (SAM) with Special References to Neuro-degeneration Models, SAMP8 and SAMP10 Mice[J].Neurochemical Research,2009, 34(4):639-659.
    [114]周惠嘉.制备衰老动物模型的一种可控臭氧装置[J].中国药理学通报,1996,12(3):285-286.
    [115]崔美芝,刘浩,李春艳.衰老动物模刑的建立及评价[J].中国比较医学杂志,2006,16(2):118-121.
    [116]Chidgey AP, Boyd RL. Stemming the tide of thymic aging[J].Natute immunology,2006, 7(10):1013-1016.
    [117]李云,杨素青.急性致衰老动物模型的探讨[J].卫生研究,2002,31(4):290-291.
    [118]杨薛康,海春旭,梁欣等.辐射致急性小鼠衰老模型的建立[J].癌变.畸变.突变,2007.
    [119]郑巨约.水飞蓟中有效成分的分离制备及其抗氧化活性[D].杭州:浙江工商大学,2009.
    [120]何志勇,夏文水.两种不同橄榄核石油中脂肪酸组成的GC/MS分析[J].食品科学,2006,27(3):188-190.
    [121]徐斌,董英,吴艳博等.麦胚多层多室流化床在线稳定化试验[J].农业机械学报,2010,41(1):127-131.
    [122]Alexandra N,Correia I,Barros A,et al.Sequential in vitro digestion of uncooked and cooked sorghum maize samples[J].J Agric Food Chem,2004,52:2052-2058.
    [123]Laemmli,UK.Cleavage of structural proteins during the assembly of the head of the bacteriophage T4[J].Nature,1970,227:680-685.
    [124]王颖,赵德山,王淑荣等.水飞蓟中微量元素与肝炎患者体内微量元素变化的临床意义[J].第二军医大学学报,1994,15(6):584-587.
    [125]Umesha SS, Naidu KA. Vegetable oil blends with alpha-linolenic acid rich Garden cress oil modulate lipid metabolism in experimental rats [J].Food Chemistry,2012,135(4):2845-2851.
    [126]姚云游.花生油与橄榄油营养价值的比较[J].中国油脂,2005,30(4):66-68.
    [127]段涛.不同菜籽油的理化特性比较及其中甾醇和α-生育酚的提取研究[D].重庆:西南大学,2009.
    [128]柏云爱,宋大海,张富强,等.油茶籽油与橄榄油营养价值的比较[J].中国油脂,2008,33(3):39-41.
    [129]王志国.清热利胆片的长期毒性试验研究[J].中医药学报,2005,33(4):38-40.
    [130]Wang XS, Tang CH, Yang XQ,et al.Characterization, amino acid composition and in vitro digestibility of hemp (Cannabis sativa L.) proteins[J].Food Chemistry,2008,107:11-18.
    [131]李艳,郑亚军.杏仁分离蛋白提取工艺的研究[J].现代食品科技,2009,1:57-59.
    [132]Zhong C,Wang R,Zhou Z,et al.Functional Properties of Protein Isolates from Caragana korshinskii Kom. Extracted by Three Different Methods[J].Journal of agricultural and food chemistry,2012,60(41):10337-10342.
    [133]Vilkhu Kamaljit,Mawson Raymond,Simons Lioyd,et al.Applicacations and opportunites for ultrasound assisted extraction in the food industry-A review[J].Innovative Food Science and Emerging Technologies,2008,9:161-169.
    [134]Xia N, Wang JM, Gong Q,et al. Characterization and In Vitro digestibility of rice protein prepared by enzyme-assisted microfluidization:Comparison to alkaline extraction[J].Journal of cereal science,2012,56(2):482-489.
    [135]王多宁,赵雁武,田芙蓉.考马斯亮蓝微盘比色法测定蛋白质含量[J].第四军医大学学报,2001,22(6):528-529.
    [136]张立娟,孔保华,刘骞.环境条件对猪血浆蛋白功能性质的影响[J].食品科学,2009,30(11):37-42.
    [137]刘立闯,胡志和,刘彤,等.螺旋藻蛋白提取方法比较研究[J].食品科学,2008,2(11):228-233.
    [138]郭红英,董英.麦胚的微细化处理及其蛋白提取工艺优化[J].农业工程学报,2009,25(2):261-266.
    [139]Chavan UD,McKenzie DB,Shahidi F.Functional properties of protein isolates from beach pea (Lathyrus maritimus L.)[J].Food Chemistry,2001,74:177-187.
    [140]FAO/WHO.Energy and protein requirements.FAO Nutrition Meetings Report Series No.52.FA0:Rome.1973.
    [141]Chavan UD,McKenzieb DB,Shahidia F.Protein classification of beach pea(Lathyrus maritimus L.) [J].Food Chemistry,2001,75(2):145-153.
    [142]Njingtang NY,Mbofung CMF,Waldron KW.In vitro protein digestibility and physicochemical properties of dry red bean (Phaseolus vulgaris)flour:Effect of processing and incorporation of soybean and cowpea flour[J].J Agric Food Chem,2001,49:2465-2471.
    [143]Nunes A,Correia I,Barros A,Delgadillo I.Sequential in vitro pepsin digestion of uncooked and cooked sorghum and maize samples[J].J Agric Food Chem,2004,52:2052-2058.
    [144]Abdul-Hamid A,Bakar J,Bee GH.Nutritional quality of spray dried protein hydrolysate from black tilapia (Oreochromis mossambicus)[J].Food Chem.,2002,78:69-74.
    [145]Wang XS,Gao WR,Zhang JS,et al.Subunit,amino acid composition and in vitro digestibility of protein isolates from Chinese kabuli and desi chickpea (Cicer arietinum L.) cultivars [J]. Food Research International,2010,43:567-572.
    [146]Kato A,Nakai S.Hydrophobicity determined by a fluorescence probe method and its correlation with surface properties of proteins [J]. Biochemica et Biophysica Acta,1980, 624(1):13-20.
    [147]Tang CH.Functional properties and in vitro digestibility of buckwheat protein products: Influence of processing[J].Journal of Food Engineering,2007,82:568-576.
    [148]Kotlar CE, Ponce AG, Roura SI,et al.Improvement of functional and antimicrobial properties of brewery byproduct hydrolysed enzymatically[J].LWT-Food Science and Technology, 2013,50(2):378-385.
    [149]Sathe S K.Functional Properties of the Great Northern Bean Proteins:Emulsion, Foaming, Viscosity and Gelation Properties[J].J Food Sci,1981,46(1):71-74.
    [150]Tang S, Hettiarachchy NS, Horax R,et al.Physicochemical properties &functionality of rice bran protein hydrolyzate prepared from heat-stabilized defatted rice bran with the aid of enzymes[J].Journal of Food Science,2003,68 (1):152-157.
    [151]欧行奇,任秀娟,周岩.叶菜型甘薯茎尖的氨基酸含量及组成分析[J].中国食品学报,2007,7(4):120-125.
    [152]Chen HM,Muramoto K,Yamauchi F,et al.Antioxidant activity of designed peptides based on the antioxidative peptide isolated from digests of a soybean protein[J].J.Agric. Food Chem., 1996,44:2619-2623.
    [153]Antona GD,Ragni M,Cardile A,et al.Branched-Chain Amino Acid Supplementation Promotes Survival and Supports Cardiac and Skeletal Muscle Mitochondrial Biogenesis in Middle-Aged Mice[J].Cell Metabolism,2010,12:362-372.
    [154]Solerte SB,Gazzaruso C, Bonacasa R, et al.Nutritional Supplements with Oral Amino Acid Mixtures Increases Whole-Body Lean Mass and Insulin Sensitivity in Elderly Subjects with Sarcopenia[J].The American Journal of Cardiology,2008,101(11A):69-77.
    [155]Wang XS, Li BS, Tang CH, et al.Effects of high-pressure treatment on some physicochemical and functional properties of soy protein isolates [J].Food Hydrocolloids,2008,2:560-567.
    [156]管骁,姚惠源.燕麦麸蛋白的组成及功能性质研究[J].食品科学,2006,27(7):72-76.
    [157]任健,郑喜群,刘晓兰等.葵花蛋白的分离及特性研究[J].中国粮油学报,2008,23(3):100-103.
    [158]李小华.非洲山毛豆种子成分分析及其油脂和蛋白质的研究[D].兰州:甘肃农业大学,2009.
    [159]刘邻渭.食品化学[M].北京:中国农业出版社,2000.
    [160]Abd El-Salam MH, El-Shibiny S.Bioactive Peptides of Buffalo, Camel, Goat, Sheep, Mare, and Yak Milks and Milk Products[J].Food Reviews International,2013,29(1):1-23.
    [161]Howard A, Udenigwe.CC. Mechanisms and prospects of food protein hydrolysates and peptide-induced hypolipidaemia [J].Food & Function,2013,4(1):40-51.
    [162]Chalamaiah M, Kumar BD, Hemalatha R,et al.(Fish protein hydrolysates:Proximate composition, amino acid composition, antioxidant activities and applications:A review[J]. Food Chemistry,2012,135(4):3020-3038.
    [163]Najafian L, Babji AS.A review of fish-derived antioxidant and antimicrobial peptides:Their production, assessment, and applications [J].Peptides,2011,33(1):178-185.
    [164]柴丽红,孙高奎.乳链菌肽热稳定性的研究[J].食品科学,2009,30(3):201-203.
    [165]丁青芝,马海乐,骆琳,等.米糠蛋白ACEI活性肽的超滤分离及其稳定性研究[J].食品研究与开发,2008,29(9):48-51.
    [166]张寒俊,刘大川,杨国燕.紫外光谱法定量测定不同种蛋白酶活力的研究[J].粮食与饲料工业,2004,9:44-45.
    [167]谢正军,金征宇,徐学明.超滤对苜蓿蛋白酶解物抗氧化性的影响[J].江苏大学学报(白然科学版),2009,30(2):109-112.
    [168]贾俊强,马海乐,曲文娟等.超声预处理大米蛋白制备抗氧化肽[J].农业工程学报,2008,24(7):288-293.
    [169]Amarowicz R, Naczk M.Shahidi F.Antioxidant activity of various fractions of non-tanin phenolics of canola hulls[J].Journal of Agriculture and Food Chemistry,2000,48(7):2755-2759.
    [170]Zhu LJ,Chen J,Tang XY,et al.Reducing, radical scavenging and chelation properties of in vitro digests of Alcalase-treated zein hydrolysate[J].Journal of Agriculture and Food Chemistry,2008,56:2714-2721.
    [171]Farrell M, Hill PW, Farrar J,et al.Oligopeptides Represent a Preferred Source of Organic N Uptake:A Global Phenomenon? [J].Ecosystems,2013,16(1):133-145.
    [172]Zambrowicz A,Timmer M, Polanowski A, et al. Manufacturing of peptides exhibiting biological activity Amino Acids[J].2013,44(2):315-320.
    [173]Hsu KC, Lu GH, Jao CL.Antioxidative properties of peptides prepared from tuna cooking juice hydrolysates with orientase (Bacillus subtilis) [J].Food Research International,2009,42: 647-652.
    [174]Guo H, Kouzuma Y, Yonekura M.Structures and properties of antioxidative peptides derived from royal jelly protein[J]. Food Chemistry,2009,113:238-245.
    [175]You LJ, Zheng L, Regenstein JM,et al.Effect of thermal treatment on the characteristic properties of loach peptide[J].International Journal of Food Science and Technology,2012,47: 2574-2581.
    [176]Brown JE,et al.Structural dependence of favonoid interactionswith Cu2+ ions:implications for their antioxidan properties[J].Biochemical Journal,1998,330(3):1173-1178.
    [177]Wallace DC. Mitochondrial diseases in man and mouse[J].Science,1999,283:1482-1488.
    [178]Yen G.C,Chen HY.Antioxidant activity of various tea ectracts in relation to their antimutagenicity[J].Journal of Agricultural and Food Chemistry,1995,43(l):27-32.
    [179]朱淑云,董英,周越等.超滤对水飞蓟蛋白酶解物抗氧化活性的影响[J].林产化学与工业,2011,31(5):37-40.
    [180]路雪雅.抗坏血酸和硫酸亚铁诱导鼠肝线粒体损伤的实验研究[J].生物化学与生物物理进展,1989,16(5):372.
    [181]Emaus, RK.,Grunwald,R.,Lemasters,J.J.Rhooamine123 as a probe of transmembrane potential in isolated rat-liver mitochondria:spectral and metabolic properties[J].Biochim. Biophys.,1986,850:436-448.
    [182]Zhou XM,Cao YL,Dou DQ.Protective Effect of Ginsenoside-Re against Cerebral Ischemia/ Reperfusion Damage in Rats[J].Biol.Pharm.Bull.,2006,29(12):2502-2505.
    [183]Shahidi F,Liyana-Pathirana CM,Wall DS.Antioxidant activity of white and blacksesame seeds and their hull fractions[J].Food Chem.,2006,99(3):478-483.
    [184]赵晶,白云.白由基相关疾病研究进展[J].生物学教学,2003,28(4):6-9.
    [185]Saiga A.,Tanabe S,Nishimura T.Antioxidant activity of peptides obtained from porcine myofibrillar proteins by protease treatment[J].J. Agric.Food Chem.,2003,51:3661-3667.
    [186]Ferreira ICFR.,Baptista P.,Vilas-Boas M., et ai. Free-radical scavenging capacity and reducing power of wild edible mushrooms from northeast Portugal:Individual cap and stipe activity [J].Food Chem.2007,100(4):1511-1516.
    [187]Rival SG.,Boeriu CG.,Wichers HJ. Casein and casein hydrolysates.2. Antioxidative properties and relevance to lipoxygenase inhibition[J].J.Agric.Food Chem,2001,49:295-302.
    [188]Jia XJ,Wu YX,Liu P.Effects of flour bleaching agent on mice liver antioxidant status and ATPases[J].environmental toxicology and pharmacology,2011,31:479-484.
    [189]CormierA,Morin C,Zini R.Nicotine protects rat brain mitochondria against experimental injuries[J].Neuropharmacology,2003,44:642-652.
    [190]Harman D.Aging:a theory based on free radical, andradiation chemistry[J].J Gerontol A Biol Sci Med Sc,1956,11:298-300.
    [191]Harman D.Free radical theory of aging:an update:increasing the functional life span[J].Ann NY Acad Sci,2006,1067:10-21.
    [192]Haenold R,Wassef DM.Heinemann SH,et al.Oxidative damage,aging and anti-aging strategies [J].AGE,2005,27:183-199.
    [193]Lei YF,Chen JL,Zhang WT,et al.In vivo investigation on the potential of galangin, kaempferol and myricetin for protection of D-galactose-induced cognitive impairment [J]. Food Chemistry,2012,135(4):2702-2707.
    [194]Li ZX,Zhang Z, Zhang JS,et al. Cordyceps militaris Extract Attenuates D-Galactose Induced Memory Impairment in Mice[J]. Journal of Medicinal Food,2012,15(12):1057-1063.
    [195]Anand KV, Jaabir MSM, Thomas PA,et al. Protective role of chrysin against oxidative stress in d-galactose-induced aging in an experimental rat model[J].Geriatrics&Gerontology International,2012,12(4):741-750.
    [196]杨平.刺五加苷延缓衰老作用机理研究[D].沈阳:沈阳农业大学,2009.
    [197]Jin SL,Yin YG.In vivo antioxidant activity of total flavonoids from indocalamus leaves in aging mice caused by D-galactose[J].Food and Chemical Toxicology,2012,50(10): 3814-3818.
    [198]Yang XJ,Chen J,Zhang CX,et al.Evaluation of antioxidant activity of fermented soybean meal extract.[J].African Journal of Pharmacy and Pharmacology,2012,6:1774-1781.
    [199]Liu A,Ma Y,Zhu Z.Protective effect of selenoarginine against oxidative stress in D-galactose-induced aging mice[J].Biosci Biotechnol Biochem.2009,73:461-1464.
    [200]Wang DL,Liu MX, Cao JC,et al.Effect of Colla corii asini (E'jiao) on D-Galactose Induced Aging Mice[J].Biological & Pharmaceutical Bulletin,2012,35(12):3814-3818.
    [201]Ohkawa H,Ohishi N,Yagi K.Assay of lipid peroxides in animal tissue by thiobarbituric acid reaction.[J].Anal Biochem,1979,95:351-358.
    [202]Zhang ZF, Fan SH, Zheng YL, Lu J. Purple sweet potato color attenuates oxidative stress and inflammatory response induced by D-galactose in mouse liver[J].Food and Chemical Toxicology,2009,47:496-501.
    [203]Tian Y,Zou B,Yang L,et al.High molecular weight persimmon tannin ameliorates cognition deficits and attenuates oxidative damage in senescent mice induced by D-galactose[J].Food and Chemical Toxicology,2011,49:1728-1736.
    [204]Xu RH,Shang N, Li PL,et al. In vitro and in vivo antioxidant activity of exopolysaccharide fractions from Bifidobacterium animalis RH[J].ANAEROBE,2011,17(5):226-231.
    [205]Zhong SZ,Ge QH,Qu R.Paeonol attenuates neurotoxicity and ameliorates cognitive impairment induced by D-galactose in ICR mice [J].Journal of the Neurological Sciences, 2009,277:58-64.
    [206]Gerhard M,Raddy MA,Creager SJ,et al.Aging progressively impairs endotheliumdependent vasodilation in forearm resistance vessels of humans[J].Hypertension,1996,27:846
    [207]Hongo K,Nakagomi T,Kassell NF,et al.Effects of aging and hypertension on endothelium-dependent vascular relaxation in rat carotid artery[J].Stroke,1998,19:892
    [208]孔德娟,陈永春,李恩等.老年大鼠体内NO、NOS、AGEs和SOD水平与衰老的关系[J].中国老年性杂志,1999,19(3):175-176.
    [209]Scorrano L,Nicolli A,Basso E,et al.Two modes of activation of the permeability transition pore:The role of mitochondrial cy-clophilin[J].Mol Cell Biochem,1997,174:181-184.
    [210]Marchetti P,Castedo M,Susin SA,et al.Mitochondrial perme-ability transition is a central coordinating event of apoptosis[J].J Exp Med,1996,184:1155-1160.
    [211]Pintus F,Floris G, Rufini A,et al.Nutrient availability links mitochondria,apoptosis,and obesity[J].Aging-US,2012,4(11):734-741.
    [212]Sudheera SD, Leitch J, Garg ML. N-3 polyunsaturated fatty acid supplementation alters inositol phosphate metabolism and protein kinase C activity in adult porcine cardiac myocytes [J]. Journal of Nutritional Biochemistry,2001,12:7-13.
    [213]Georgios SB.The Na+, K+-ATPase:more than just a sodium pump[J].Cardiovascular Research,2011,89:6-8.
    [214]Foster TC,Norris CM.Age-associated changes in Ca2+-dependent processes:relation to hippocampal synaptic plasticity[J].Hippocampus,1997,(7):602-612.
    [215]Banerjee U,Dasgupta A,Rout JK,et al. Effects of lithium therapy on Na+-K+-ATPase activity and lipid peroxidation in bipolar disorder[J].Progress in Neuro-Psychopharmacology & Biological Psychiatry,2012,37(l):56-61.
    [216]樊金娟,岩松,宗立立,等.米糠肽对D-半乳糖致衰小鼠线粒体损伤的影响[J].中国粮油学报,2011,26(1):30-33.
    [217]Green DR,Reed JC.Mitochondria and apoptosis[J].Science,1999,281:1309-1313.
    [218]Garcia-Saez AJ.The secrets of the Bcl-2 family[J].Cell Death and Differentiation,2012,19 (11):1733-1740.
    [219]Gillardon F,Wiekert H,Zimmermann M.Up-regulation of bax and down-regulation of Bcl-2 is associated with kainate-induced apoptosis in mouse brain[J].Neurosci Lett,1995,192: 85-88.
    [220]Scatena R,Bottoni P, Botta G,et al.The role of mitochondria in pharmacotoxicology:a reevaluation of an old,newly emerging topic[J].Am J Physiol Cell Physiol,2007,293:12-21.
    [221]Hacker G,Paschen SA.Therapeutic targets in the mitochondrial apoptotic pathway [J].Expert Opin Ther Targets,2007,11:515-526.
    [222]Snigdha S,Smith ED, Prieto GA,et al.Caspase-3 activation as a bifurcation point between plasticity and cell death[J]. Neuroscience Bulletin,2012,28(1):14-24.
    [223]Kuribayashi K,Mayes PA,E1- Deiry W S.What are caspases 3 and 7 doing upstream of the mitochondria [J].Cancer Biol Ther,2006,5(7):763-765.
    [224]Alzoubi K, Khabour O,Hussain N,et al. Evaluation of vitamin B12 effects on DNA damage induced by pioglitazone[J].Mutation Research-Genetic Toxicology and Environmental, 2012,748(1-2):48-51.
    [225]Hashimoto K,Takasaki W,Sato I,et al.DNA damage measured by comet assay and 8-OH-dG formation related to blood chemical analyses in aged rats[J].J Toxicol Sci,2007,32(3): 249-259.
    [226]Nakae D,Akai H,Kishida H,et al.Age and organ dependent spontaneous generation of nuclear 8-hydroxydeoxyguanosine in male Fischer 344 rats[J].Lab Invest,2000,80(2):249-261.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700