合成孔径雷达干涉(InSAR)测量技术测量地表变形的理论与算法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
合成孔径雷达干涉测量(InSAR)技术是由Graham首先提出的一项对地测量技术。由于这一新技术具有全天候、全天时的工作特点和高精度定量对地测量的技术优势,目前已经发展成为对地观测和开展地球物理研究的重要工具。InSAR技术通过挖掘SAR遥感器在不同时间或空间位置针对地面同一区域所采集的SAR数据的相位差信息对地表高程和地表变形进行计算,其中的相位差信息就保存在应用干涉技术获得的干涉图中,干涉图本质上就是关于雷达与地面散射点之间距离变化的等值线图。因此,实现InSAR对地测量的关键就是要解决如何获取高质量的干涉图和如何通过对干涉图解释获取精确的地表高程和地表变形信息这两个基本问题。
     研究工作紧紧围绕上述基本问题,对应用InSAR技术进行地表变形测量的基本理论与数据处理算法进行了系统而全面的研究。主要研究工作包括:
     (1)SAR数据成像和SAR影像的几何处理是合成孔径雷达干涉处理的基础,因此,我们对SAR数据成像的基础理论与算法以及SAR影像几何纠正的基本原理及实现算法进行了深入的综合研究,为项目研究的开展奠定基础,并对黄河三角洲地区ESR-2原始数据进行了成像处理,取得了较好成像效果。
     (2)在对合成孔径雷达干涉测量(InSAR)的基本原理进行研究的基础上分析了InSAR数据处理的过程,并对影响干涉成像质量的影像配准算法和在对干涉图解释中具有关键作用的相位解缠算法进行了深入研究,选取典型SAR影像数据进行了干涉处理,取得了较好的干涉成像结果。
     (3)在研究差分合成孔径雷达干涉测量(D-InSAR)测量地表变形的基本原理的基础上,对双轨和三轨D-InSAR数据处理的技术过程进行了讨论,特别对影响D-InSAR测量精度的去相关和大气影响进行了定量分析,结合实际数据处理讨论了时间去相关问题。
     (4)在永久散射体合成孔径雷达干涉测量(PS-InSAR)测量地表变形的基本原理进行深入分析的基础上提出了PS-InSAR处理过程,并对应用时间序列分析进行永久散射点识别算法进行了分析研究,讨论了大量不规则分布永久散射点的存储问题,提出了基于图的永久散射点存储结构。
     (5)详细研究了多基线永久散射点相位解缠算法,提出了基于周期图和谱分析的计算机实现算法,并针对线性和非线性两种地表变形模型,讨论了永久散射点变形的反演技术。
     以上研究工作为开展InSAR基础研究和应用研究平台建设创造了条件,从而为这一重要科技领域相关关键技术的自主创新研发奠定了基础。
Synthetic aperture radar interferometry (InSAR) firstly proposed by Graham is a new imaging technique for earth observation. Since this new technique can acquire information independently of meteorological conditions and sun illumination and possesses characteristics of measuring the earth quantificationally with high accuracy, it is becoming a very important tool for earth observation and geophysical research. InSAR geodetic technique can calculate the topography of a surface and its changes over time by exploiting the phase differences exited in an interferogram formed by at least two complex-valued SAR images acquired from different orbit position and/or at different times. In fact, the interferogram is in essence the contour map of the change in distance between the ground and SAR instrument. Therefore, the key points inside InSAR technique are two basic problems: how to acquire a high quality interferogram and how to extract the information about topography and land deformation from this interferogram.
     This project aims at theses basic problems, and launches a systemic and all-around research work about basic theory and data processing algorithms of InSAR land deformation measurement techniques. Some main works include:
     (1) SAR data imaging and SAR image geometrical processing are very basic for InSAR data analysis, therefore the basic theory and algorithms about SAR imaging and SAR image geometrical correction, and a foundation is lay for further research. At the same time, we apply theses algorithms on the SAR raw data acquired at Huanghe delta area, and get a good imaging effect.
     (2) Based on analysis about the basic theory of InSAR, the flowchart for InSAR data processing is discussed, and the coregistration algorithm which can influence the quality of interferogram and the phase unwrapping algorithm which is very important for extracting information from the interferogram are further investigated. We also choose SAR data about some typical areas to do InSAR data processing work and acquire some high quality interferograms.
     (3) The basic principle of differential InSAR (D-InSAR) is discussed in detail, and the D-InSAR data processing flowcharts for two-pass and three-pass respectively are further investigated, especially the effects posed by deccorelation and atmosphere are analyzed quantificationally. We also discussed the temporal decorrelation problem integrating with real SAR data.
     (4) The flowchart for permanent scatterers InSAR (PS-InSAR) data processing is carefully studied based upon detailed analysis about the basic principle of PS-InSAR. An algorithm for PS identified from SAR data is investigated in detail by SAR image time series analysis. The data structure for saving large quantities of irregular PSs in computer memory is discussed and a graph structure is proposed for this purpose.
     (5) an algorithm based on periodgram and spectrum analysis is introduced to solve multi-baseline phase unwrapping problem about each PS. Deformation inverse techniques for PS are carefully discussed aim at linear and non-linear deformation models respectively.
     By these research works, not only some preconditions for setting up a platform to do basic theory and application research work are created, but also a foundation is laid for further research about key InSAR techniques.
引文
1. Ahmed S, Warren H R, Symonds D and Cox R P, The Radarsct system. IEEE Trans. Geosci. Remote Sens. 28: 598-602, 1990
    2. Bamler R, A comparison of range-Doppler and wavenumbcr domain SAR focusing algorithms, IEEE Trans. Geosci. Remote Sens. 30: 706-13, 1992
    3. Bamler R and Hartl P, Synthetic aperture radar interferometry, Inverse problems, 14: R1-R54, 1998
    4. Barber B C, Theory of digital imaging from orbital synthetic-aperture radar, Int. J. Remote Sens. 6: 1009-57, 1985
    5. Born M and WolfE, Principles of Optics: Pergamon Press LTD, 1959
    6. Bracewell R N, Two-Dimensional Imaging: Prentice-Hall, 1995
    7. Bracewell R N, Fourier Analysis and Imaging, Kluwer Academic/Plenum Publisher, 2003
    8. Bragg W L, The X-Ray Microscope: Nature, April25,, Vol.149, P149-150, 1942
    9. Briole P, Massonnet D and Delacourt C, Post-eruptive deformation associated with the 1986-87 and 1989 lava flows of Etna: detected by radar interferometry, Geophys. Res. Lett. 24: 37-40, 1997
    10. Brown W M, Synthetic aperture radar, IEEE Trans. Aerosp. Electron. Syst. AES-3 (2): 217-29, 1967
    11. Brown W M and Porcello L J, An introduction to synthetic aperture radar, IEEEE Spectrum September: 52-62, 1969
    12. Cowley J W., Diffraction Physics.: Elsevier Science, 1995
    13. Colesanti C., Locatelli R. and Novali F., Ground Deformation Monitoring Exploiting SAR Permanent Scatterers, Proc. IGARSS, 2002:1219-1221
    14. Cumming I G and Wong F H, Digital processing of synthetic aperture data: ARTECH HOUSE, INC., 2005
    15. Curlander J, Location of spaceborne SAR imagery, 1EEE Trans. Geosci. Remote Sens. GE-20: 359-64, 1982
    16. Curlander J C and McDonough R N, Synthetic aperture radar: systems and signal processing, New York: Wiley, 1991
    17. Davidson G W and Cumraing I G, Signal properties of spaceborne squint-mode SAR, IEEE Trans. Geosci. Remote Sens. 35: 611-17, 1997
    18. Elachi C, Spaceborne Radar Remote Sensing: Applications and Techniques, New York:IEEE, 1988
    19. Elachi C, Spaceborne imaging radars, Int. J. Imaging Syst. Technol. 3: 167-85, 1991
    20. Ferreti A, Prati C, Rocca F and Monti guamieri A, Mulibaseline SAR interferometry for automatic DEM reconstruction, 3rd ERS Workshop, Florence, 1997
    21. Ferreti A, Prati C and Rocca F, Permanent scatterers in SAR interferometry, IEEE Trans. Geosci. Remote Sens. 39: 8-30, 2001
    22. Ferreti A, Prati C and Rocca F, Nonlinear subsidence rate estimation using permanent scatterers in differential SAR interferometry, Trans. Geosci. Remote Sens. 38: 2202-2212, 2000
    23. Flynn T J, Two-dimensional phase unwrapping with minimum weighted discontinuity, J. Opt. Soc. Am. A 14:2692-701, 1997
    24. Fomaro G, Franceschetti G and Lanari R, Interferometric SAR phase unwrapping using Green's formulation, Trans. Geosci. Remote Sens. 34: 720-7, 1996
    25. Gabor D, A New Microscopic Principle: Nature, May 15, Vol.161, P.777-778, 1948
    26. Gabor D, Light and Information, in Progress in Optics Edited by E. Wolf, Vol. 1, P. 109-153: North-Holland Publishing Co., 1961
    27. Gabor D, Optical Image Synthesis (Complex Amplitude Addition and Subtraction) by Hollographic Fourier Transformation: Physics Letter, Vol.18, N0.2, P116-165, 1965
    28. Gabriel A K and Goldstein R M, Crossed orbit interferometry: theory and experimental results from SIR-B, Int. J. Remote Sens. 9: 857-72, 1988
    29. Gabriel A K, Goldstein R M and Zebker H A, Mapping small elevation changes over large areas: differential radar interferometry, J. Geophys. Res. 94: 9183-91, 1989
    30. Ghiglia D C and Pritt M D, Two-dimensional Phase Unwrapping: Theory, Algorithms, and Software, New York: Willey, 1998
    31. Ghiglia D C and Romero L A, Robust two-dimensional weighted phase unwrapping that use fast transforms and iterative methods, J. Opt. Soc. Am. A 11: 107-17, 1994
    32. Goldstein R, Atmospheric limitations to repeat-track radar interferometry, J. Geophys. Res. 22:2517-20, 1995
    33. Goldstein R, Engelhardt H, Kamb B, and Frohlich R M, Satellite radar interferometry for monitoring ice sheet motion: Application to an Antarctic ice stream, Science 262: 1525-30, 1993
    34. Goldstein R M, Barnett T P, and Zebker H A, Remote sensing of ocean current, Science 246: 1282-5, 1989
    35. Goldstein R M and Zebker H A, Interferometric radar measurement of ocean surface current, Nature 328: 707-9, 1987
    36. Goldstein R M, Zebker H A, and Werner C L, Satellite radar interferometry: two-dimensional phase unwrapping, Radio Sci. 23:713-20, 1988
    37. Goodman J W, Introduction to Fourier Optics: The McGraw-Hill Companies Inc, 1996
    38. Graham L C, Synthetic interferometer radar for topographic mapping, Proc. IEEE 62: 763-8, 1974
    39. Harger R O, Synthetic Aperture Radar Systems: Theory and Design, New York: Academic, 1970
    40. Hasselmann K and Hasselmann S, on the nonlinear mapping of an ocean wave spectrum into a synthetic aperture radar image spectrum and its inversion, J. Geophys. Res. 96(10): 713-29, 1991
    41. Haykin S, Radar signal processing, IEEE Acoust. Speech Sig. Process. Mag. April 2-18, 1985
    42. Hermann J, Least-squares wave front errors of minimum norm, J. Opt. Soc. Am. 69:393-99, 1980
    43. Jin M Y and Wu C, A SAR correlation algorithm which accommodates large-range migration, IEEE Trans. Geosci. Remote Sens. GE-22: 592-7, 1984
    44. Krogstad H, A simple derivation of Hasselmanns nonlinear ocean-synthetic aperture radar, J. Geophs. Res. 97:2421-5, 1992
    45. Lanari R et al, Generation of digital elevation models by using SIR-C/X-SAR multifrequency two-pass interferometry: the Etna case study, IEEE Trans. Geosci. Remote Sens. 34: 1097-115, 1996
    46. Li F K and Johnson W T K, Ambiguities in spaceborne synthetic aperture radar system, IEEE Trans. Aerosp. Electron. Syst. AES-19: 389-97, 1984
    47. Madsen S N, Spectral properties of homogeneous and nonhomogeneous radar images, IEEE Trans. Aerosp. Electron. Syst. AES-23: 583-8, 1987
    48. Massonnet D, Briole P and Arnaud A, Deflation of Mount Etna monitored by spaceborne radar interferometry, Nature 375: 567-70, 1995
    49. Massonnet D and Feigl K, Satllite radar interferometryc map of the coseismic deformation field of the M=6.1 Eureka Valley California earthquake of May 17,1993, Geophys. Res. Lett. 22: 1541-4, 1995
    50. Massonnet D and Feigl K, Discrimination of geophysical phenomena in satellite radar intefferograms, Geophys. Res. Lett. 22: 1537-40, 1995
    51. Massonnet D and Holzer T and Vadon H, Land subsidence caused by the East Mesa geothermal field, California, observed using SAR interferometry, Geophys. Res. Lett. 24: 901-4, 1997
    52. Massonnet D and Rabaute T, Radar interferometry: limits and potential, IEEE Trans. Geosci. Remote Sens. 31: 455-64, 1993
    53. Massonnet D, Rossi M and et al, The displacement field of the Landers earthquake mapped by radar intefferometry, Nature 364:138-42, 1993
    54. Massonnet D, Thatcher W and Vadon H, Detection of postseismic fault zone collapse following the Landers earthquake, Nature 382:612-16, 1996
    55. Massonnet D, Vadon H and Rossi, Reduction the need for phase unwrapping in radar interferometry, IEEE Trans. Geosci. Remote Sens. 34: 489-97, 1996
    56. Massonnet D and Feigl K, Radar interferometry and its application to changes in the earth's surface, Review of Geophysics, 36(4): 441-550, 1998
    57. Mora O, Linear and nonlinear terrain deformation maps from a reduced set of interferometric SAR images, IEEE Trans. Geosci. Remote Sens. 41: 2243-2253, 2003
    58. Prati C and Rocca F, Improving slant-range resolution with multiple SAR surveys, IEEE Trans. Aerosp. Electron. Syst. 29:135-44, 1993
    59. Prati C, Rocca F and Guanieri A M, Effects of speckle and additive noise on the altimetric resolution of interferometric SAR(ISAR) surveys, Int. Geoscience and remote sensing. IGARSS'89(Vancouver): 2469-72, 1989
    60. Pritt M D, Phase unwrapping by means of multigrid techniques for intefferometric SAR, IEEE Trans. Geosci. Remote Sens. 34: 728-38, 1996
    61. Pritt M D, Congruence in least-squares unwrapping, Int. Geoscience and remote sensing. IGARSS'97(Singapore): 875-7, 1997
    62. Pritt M D and Shipman J S, Least-squares two-dimensional phase unwrapping using FFT's, IEEE Trans. Geosci. Remote Sens. 32: 706-8, 1994
    63. Raney R K, SAR processing of partially coherent phenomena, Int. J. Remote Sens. 1: 29-51, 1980
    64. Raney R K, Processing synthetic aperture radar data, Int. J. Remote Sens. 3: 243-57, 1982
    65. Raney R K, Runge H, Bamler R, Cumming I G and Wong F H, Precision SAR processing using chirp scaling, IEEE Trans. Geosci. Remote Sens. 32: 786-99, 1994
    66. Raney R K and Vachon P W, A phase preserving SAR processor, Int. Geoscience and remote sensing. IGARSS'89(Vancouver): 2588-91, 1989
    67. Reigber A and Moreira J, Phase unwrapping by fusion of local and global methods, Int. Geoscience and remote sensing. IGARSS'97(Singapore): 869-71, 1997
    68. Rosen P A, Hensley S, Joughin I R, Madsen S N, Rodriguez E and Goldstein R M, Synthetic aperture radar interferometry, Proceedings of the IEEE, 88(3): 333-381, 2000
    69. Runge H and Bamler R, A novel high precision SAR focusing algorithm based on chirp scaling, Int. Geoscience and remote sensing. IGARSS'92(Houston): 372-5, 1992
    70. Spagnolini U, 2-D phase unwrapping and phase aliasing, Geophysics 58:1324-34, 1993
    71. Spagnolini U, 2-D phase unwrapping and instantaneous frequency estimation, IEEE Trans. Geosci. Remote Sens. 33: 579-89, 1995
    72. Takajo H and Massonnet D, Least-squares phase estimation from the phase difference, J. Opt. Soc. Am. A 5: 416-25, 1988
    73. Tarayre H and Massonnet D, Effects of a refractive atmosphere on interferometric processing, Int. Geoscience and remote sensing. IGARSS'94(Pasadena): 717-19, 1994
    74. Tomiyasu K, Tutorial review of synthetic-aperture radar(SAR) with applications to imaging of the ocean surface, Proceedings of the IEEE, 66: 563-83, 1978
    75. Walker, Range-Doppler imaging of rotating objects, IEEE Trans. Aerosp. Electron. Syst. 16: 23-52, 1980
    76. Wegmuller U and Werner C L, Retrieval of vegetation parameters with SAR interferometry, IEEE Trans. Geosci. Remote Sens. 35:18-24, 1997
    77. Worawattanamateekul J, Hoffmann J, Adam N, Kampes B, and Altermann W, Radar Interferometry Technique for Urban Subsidence Monitoring: A Case Study in Bangkok and its Vicinity, ENVISAT/ERS Symposium, Salzburg, Austria, 2004
    78. Xu W and Cumming I, A region growing algorithm for InSAR phase unwrapping, Int. Geoscience and remote sensing. IGARSS'96(Lincoln): 2044-6, 1996
    79. Zebker H A and Goldstein R M, Topographic mapping from interferometric synthetic aperture radar observations, J. Geophys. Res. 91: 4993-9, 1986
    80. Zebker H A and Rosen P, On the derivation of coseismic displacement fields using differential radar interferometry: the Launders earthquake, Int. Geoscience and remote sensing. IGARSS'94(Pasadena): 286-8, 1994
    81. Zebker H A and Villasenor J, Decorrelation in interferometric radar echoes, IEEE Trans. Geosci. Remote Sens. 30: 950-9, 1992
    82.梁昆淼,1978,数学物理方法:人民教育出版社
    83.钱伟长,1992,微分方程的理论及其解法:国防工业出版社
    84.李德仁,廖明生,王艳,永久散射体雷达干涉测量技术,武汉大学学报(信息科学版),VOL.29,No.8,2004:664~668
    85.王超,张红,刘智,星载合成孔径雷达干涉测量,科学出版社,2002
    86.张阿根,魏子新,中国地面沉降,上海科学技术出版社,2005
    87.崔希民,陈立武,沉陷大变形动态监测与力学分析,煤炭工业出版社,2005
    88.王志勇,黄国满,InSAR干涉条纹图去噪方法的研究.测绘科学,2004
    89.张继贤,黄国满等.机载合成孔径雷达技术在地形测绘中的应用及其进展.测绘科学,2004
    90.黄国满,SAR影像多项式正射纠正方法与实验.测绘科学,2004
    91.张进德,我国矿山地质环境治理工作的若干问题探讨,地质环境保护与地质灾害防治论文集,大地出版社,2005
    92.刘艳华,D-InSAR:地壳构造变形测量的新工具,力学学会2005年学术大会,2005,8
    93.刘艳华,解释偏移速度分析及应用研究,中国矿业大学(北京)博士后出站报告,2003,12
    94.刘艳华,一种新的速度分析在河口地区一条二维地震测线上的应用,第二届地学博士后会议,2002,9
    95.刘艳华,高精度地震信号叠加成像的理论及应用研究,中国矿业大学(北京)博士学位论文,2001,5
    96.刘艳华,安里千,杜云,有限变形激光频谱图像的计算机自动分析,中国矿业大学学报,2001,6
    97.姜耀东,刘艳华,变形的激光频谱测量技术,中国矿业大学出版社,1999,11
    98.刘艳华,有限变形激光频谱图像的计算机处理与识别,中国矿业大学(北京)硕士学位论文,1998,5
    99.刘艳华,赵争,黄国满,机载InSAR数据自动生成DEM技术及其在内蒙古丰镇地区的应用,第三届地学博士后会议,2005,10
    100.何旭初,1981,简明计算数学教程:人民教育出版社

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700