油菜杂种优势分子标记剖析及菌核病抗性相关基因筛选
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究采用单向方差分析的方法鉴定了一批对杂种优势有显著贡献的分子标记,在0.01水平上1999年和2000分别检测到126和215个阳性标记,其中93个具有很好的重复性。研究表明该种间F_1杂种优势的产生不仅受杂合位点的影响,受纯合位点的影响也很大,而且杂合位点和纯合位点对杂种优势的贡献都有两面性,即都存在有利或不利的杂合位点和有利或不利的纯合位点。在杂种中,一般有利纯合位点的比例和不利纯合位点的比例差不多,而有利杂合位点的比例往往比不利杂合位点的比例高得多。因此,现有杂种优势的产生多数是由于杂合位点的贡献,而纯合位点的效应尚未得到有效利用。根据这一结果,本研究首次提出将杂种优势在有利杂合位点、不利杂合位点、有利纯合位点和不利纯合位点进行分解的数学模型,显著提高了所解释杂种优势的表现型方差,更合理的揭示了杂种优势复杂的遗传基础的部分内容。而且,研究还表明采用该模型能显著提高杂种优势预测的准确性,为杂种优势的预测和利用提供了新的思路。另外本研究还筛选了30个对杂种优势有“超级”贡献的分子标记,可能对在育种中进行分子标记辅助选择有重要意义。
     另外,本研究还在菌核病抗性相关基因的筛选和鉴定方面进行了展开,利用拟南芥cDNA芯片在油菜中筛选了一批与菌核病抗性有关的基因,并采用生物信息学的手段对这些基因的功能和特点进行了分析,推测了其在抵御菌核病入侵的作用机理。
     其次,本研究在数据分析过程中还根据需要设计了一批计算机软件,包括遗传连锁图绘制软件、单标记分析软件、分子标记偏分离检测程序、两位点分析软件、AFLP计算机模拟软件等。
Laboratory screening with DNA-based markers and field measurements of biomass production were carried out on mach of the 120 trigenomic hybrids, obtained by interspecific hybridization between Brassica napus (AACC) and B. campestris (A'A'). The objective of this study was to elucidate the relationship between molecular markers and biomass heterosis of the interspecific hybrid between B. napus and B. campestris, which has been explored practically in rapeseed production for many years. The experiment was first carried out on sixty-five trigenomic hybrids in 1999. The average over-mid-parent heterosis of biomass production was around 30%, and the highest value was 175.4%. In the following year, the observation was expanded to 120 trigenomic hybrids and the best average over-mid-parent heterosis was 93%. A total of 1477 DNA fragments, generated by Southern hybridization with 50 Brassica cDNA clones and 25 Arabidopsis EST clones, was scored across their parental lines. One hundred twenty-six and 215 fragments we
    re identified as significantly associated with biomass production respectively in the two successive years. Using these active markers, a statistical model to resolve the heterosis is proposed and a new way to make use of the subgenomic heterosis is also discussed.
    In another experiment, we screened a set of Sclerotinia stem rot resistance related genes in Brassica napus using Arabidopsis cDNA microarray and designed a set of computer software for data analysis.
引文
1.刘后利.《油菜的遗传和育种》.上海:上海科技出版社,1985
    2.刘后利.《油菜遗传和育种学》.上海:上海科技出版社,2002
    3.刘春林,官春云,李栒,阮颖,廖晓兰,熊兴华,周小云,王国槐,陈社员.油菜分子标记图谱构建及抗菌核病性状的QTL定位.遗传学报.2000,27(10):918-924
    4.刘澄请,杜德志,黄有菊,王春华.甘蓝型油菜的抗耐病性及其遗传效应研究.中国农业科学,1991,24(3):43-49
    5.华金平.籼优63“永久F2”群体构建及其杂种优势的遗传基础研究.[博士学位论文],武汉:华中农业大学图书馆,2001
    6.余四斌.优良杂交水稻籼优63杂种优势遗传学基础的分子剖析.[博士学位论文],武汉:华中农业大学图书馆,1998
    7.吴纯仁,刘后利.油菜茵核病致病机理的研究Ⅰ.植物毒素的产生及毒素晶体扫描电镜观察.中国油料,1989,1:22-24
    8.吴纯仁.油菜菌核病抗(耐)性筛选方法研究.[博士学位论文],武汉:华中农业大学图书馆,1989
    9.李建雄.一个优良杂交组合的杂种优势遗传成因的分子标记剖析.[博士学位论文],武汉:华中农业大学图书馆,1998
    10.杨谦.核盘菌侵入油菜超微结构及侵染机制的研究.植物病理学报,1994,24(3):245-249
    11.沈利爽,郑先武,朱立煌.Mapplotter——一个输出遗传图谱、图示基因型和QTL曲线图形的软件.遗传,2000,22:172~174
    12.陈爱武.对甘监型油菜抗(耐)菌核病材料的初步研究.[硕士学位论文].武汉,华中农业大学图书馆,1998
    13.金冬雁,黎需枫等译,侯云德等校,Sambrook J 等著.《分子克隆实验指南》(第二版),Molecular clone:A laboratory manual(2~(nd) Ed.).NY:Cold Spring Harbor Laboratory Press,1999
    14.胡宝成,朱洪涛.油菜菌核病抗(耐)避病遗传育种研究进展.安徽农业大学学报,1995,22(增刊):55-58
    15.赵建伟.甘蓝型油菜抗菌核病QTL的定位和分析.[博士学位论文],武汉:华中农业大学图书馆,2001
    16.章元寿主编.植物病理生理学.南京:江苏科学技术出版社,1994
    17.鲍文奎.机会与风险——40年育种研究的思考.植物杂志.,1990,4:4-5
    18. Abawi G S, Polach F J, Molin W T. Infection of bean by ascospores of Whetzlinia sclerotiorum. Phytopathology, 1975, 65:673-678
    19. Ali M, Copeland L O, Elias S G, Kelly J D. Relationship between genetic distance and heterosis for yield and morphological traits in winter canola(Brassica napus L.). Theor Appl Genet, 1995,
    
    91:118-121
    20. Allocati N, Favaloro B, Masulli M, Alexeyev M F, Dillio C. Proteus mirabilis Glutathione S-transferase Bl-1 is involved in the protective mechanisms against oxidative and chemical stresses. Biochem J, 2003, [epub ahead of print]
    21. Arahana V S, Graef G L, Specht J E, Steadman J R. Identification of QTLs for Sclerotinia stem rot resistance in soybean using SSR markers. APS North Central Division Abstracts, Phytopathology, 1999, 89:S104
    22. Bak S, Olsen C E, Halkier B A, Moller B L. Transgenic tobacco and Arabidopsis plants expressing the two multifunctional sorghum cytochrome P450 enzymes, CYP79A1 and CYP71E1, are cyanogenic and accumulate metabolites derived from intermediates in Dhurrin biosynthesis. Plant Physiol, 2000, 123:1437-1448
    23. Bancroft I, O'Neill C. Comparative physical mapping of segments of the genome of Brassica oleracea vat. alboglabra that are homoelogous to sequenced regions of chromosome 4 and 5 of Arabidopsis thaliana. Pant & Animal genome Ⅷ conference, 2000, January 9-12, Town & Country Hotel, San Diego, CA
    24. Baswana K S, Rastogi K B, Sharma P P. Inheritance of stalk rot resistance in cauliflower (Brassica oleraciea Vat. Botrytis L.). Euphytica, 1991, 57:93-96
    25. Bateman D F, Beer S V. Simultaneous production and synergistic action of oxalic acid and polygalacturonase during pathogenesis by Sclerotiorum rolfsii. Phytopathology, 1965, 55:204-211
    26. Bauman L F. Evidence of non-allelic gene action in determining yield ear height and kernel row number in corn. Agron J, 1959, 57:531-534
    27. Berger E. Heterosis and the maintenance of enzyine polymorphism. Am Nat, 1976, 110:823-839
    28. Bernardo R. Relationship between single-cross performance and molecular marker heterozygosity. Theor Appl Genet, 1992, 83:628-634
    29. Bert P F, Jouan I, De Labrouhe D T, Serre F, Nicolas P, Vear F. Comparative genetic analysis of quantitative traits in sunflower(Helianthus annuus L.) 1. QTL involved in resistance to Sclerotinia sclerotiorum and Diaporthe helianthi. Theor Appl Genet, 2002, 105:985-993
    30. Boland G J, Hall R. Evaluating soybean cultivars for resistance to Sclerotinia sclerotiorum under field conditions. Plant Dis, 1987, 71:934-936
    31. Briviba K, Fraser G, Sies H, Ketterer B. Distribution of the monochlorobimane-glutathione conjugate between nucleus and cytosol in isolated hepatocytes. Biochern J, 1993, 294:631-633
    32. Broglie K, Chet I, Holliday M, Cressmam R, Biddle P, Knowlton S, Mauvais C J, Broglie R. Transgenic plants with enhanced resistance to the fungal pathogen Rhizoctonia solani. Science, 1991, 254:1194-1197
    
    
    33. Bruce A B. The Mendelian theory of heredity and augmentation of vigor. Science, 1910, 32:627-628
    34. Butruille D, Guries R, Osborn T. Linkage analysis of molecular markers and quantitative trait loci in populations of inbred backcross lines of Brassica napus L. Genetics, 1999, 153:949-964
    35. Cabelguenne M, Debaeke P, Bouniols A. EPICphase, a version of the EPIC model simulating the effects of water and nitrogen stress on biomass and yield, taking account of developmental stages:validation on maize, sunflower, sorghum, soybean and winter wheat. Agri Syst, 1999, 60:175-196
    36. Castro G M, Gardner C O, Linguist J H. Cumulative gene effects and the nature of heterosis in maize crosses. Crop Sci, 1968, 8:97-101
    37. Cavell A C, Lydiate D J, Parkin I A P, Dean C, Trick M. Conllinearity between a 30-centimorgan segment of Arabidopsis thaliana chromosome 4 and duplicated regions within the Brassica napus genome. Genome, 1998, 41:62-69
    38. Cessna S G, Sears V E, Dickman M B, Low P S. Oxalic acid, a pathogenicity factor for Sclerotinia sclerotiorum, suppresses the oxidative burst of the host plant. Plant Cell, 2000, 12:2191-2200
    39. Comstock R E, Robinson H F. (1952) Estimation of average dominance of genes. In:Gowen JW (ed) Heterosis. The Iowa State College Press, pp 494-516
    40. Coon M J, Ding X X, Pernecky S J, Vaz A D. Cytochrome P450:progress and predictions. FASEB J, 1992, 6:669-673
    41. Cooper R M. The role of cell-wall-degrading enzymes in infection and damage, In:Wood RKS, Jellis GJ(eds) Plant disease:infection, damage, and loss, Blackwell Scienti(?)c Publications, Oxford, 1984, pp 13-27
    42. Davenport C B. Degeneration albinism and inbreeding. Science, 1908, 28:454-455
    43. De Bary A. In Comparative Morphology and Biology of the Fungi [M], Oxford:Mycetozoa and Bacteria Clarenclon Press, 1887, 380-382
    44. De Bary A. Ueber einige Sclerotinia and Sclerotienkrankheiten. Botan. Z, 1886, 44:377-387
    45. De La Cruz J, Hidalgo-Gallego A, Lora J M, Benitez T, Pintor-Toro J, Llobell A. Isolation and characterization of three chitinases from Trichoderma harzianum. Eur J Biochem, 1992, 206:859-867
    46. Defago F, Kern H. Induction of Fusariurn solani mutants insensitive to tomatine, their pathogenicity and aggressiveness to tomato fruits and pea plants. Physiol plant path, 1983, 22:29-37
    47. Desikan R, A-H-Mackerness S, Hancock J T, Neill S J. Regulation of the Arabidopsis transcriptome by oxidative stress. Plant Physiol, 2001, 127:159-172.
    
    
    48. Dickman M B, Podila G K and Kolattukudy P E. Insertion of cutinase gene into a wound pathogen enables it to infect intact host. Nature, 1989, 342:446-448
    49. Dickman M, Mitra A. Arabidopsis thaliana as a model for studying Sclerotinia sclerotiorum pathogeniesis. Physiol Mol Plant Path, 1992, 41:255-263
    50. Dickson M H, Petzoldt R. White mold or Sclerotinia sclerotiorum resistance in B. oleracea. Cruciferae Newslett, 1994, 16:120-121
    51. Diers B W, McVetty P B E, Osborn T C. Relationship between heterosis and genetic distance based on restriction fragment length polymorphism markers in oilseed rape (B. napus L.). Crop Sci, 1996, 36:79-83
    52. Dudler R, Hertig C, Rebmann G, Bull J, Mauch F. A pathogen-induced wheat gene encodes a protein homologous to glutathione-S-transferases. Mol Plant Microbe Interact, 1991, 4:14-18
    53. Dudley J W, Saghai Maroof M A, Rufener G K. Molecular marker and grouping of parents in maize breeding programs. Crop Sci, 1991, 31:718-723
    54. Dutton M V, Evans C S. Oxalate production by fungi:Its role in pathogenicity and ecology in the soil environment. Can J Microbiol, 1996, 42:881-895
    55. East E M. Heterosis. Genetics, 1936, 21:375-397
    56. East E M. Inbreeding in corn. Reports of the Connecticut Agricultural Experiment Station for Years 1907-1908, 1908, pp. 419-428
    57. Eberhart S A, Hallauer A R. Genetic effects for yield in single, three way and double cross maize hybrids. Crop Sci, 1968, 8:377-379
    58. Emanuelsson O, Nielsen H, Brunak S, Heijne G V. Predicting subcellular localization of proteins based on their N-terminal amino acid sequence. J Mol Biol, 2000, 300:1005-1016
    59. Fields S, Kohara Y, Lockhart D J. Functional genomics. Proc Natl Acad Sci USA, 1999, 96:8825-8826
    60. Fraissinet-Tachet L, Reymond Cotton P, Fèvre M. Characterization of a multigene family encoding polygalacturonase in Sclerotonia sclerotiorum. Curr Genet, 1995, 29:96-99
    61. Fraissinet-Tachet L, Reymond Cotton P, Fèvre M. Polygalacturonases and pathogenesis of Sclerotonia sclerotiorum. J Trace Microprobe Technol, 1994, 4:239-246
    62. Friemert C, Erfle V, Strauss G. Preparation of radiolabeled cDNA probes with high specific activity for rapid screening of gene expression. Methods Mol Cell Biol, 1989, 1:143-153
    63. Girke T, Todd J, Ruuska S, White J, Benning C, Ohlrogge J. Microarray analysis of developing Arabidopsis seeds. Plant Physiol, 2000, 124:1570-1581
    64. Godoy G, Steadman R, Dickman M B, Dam R. Use of mutants to demonstrate the role of oxalic acid in pathogenicity of Sclerotinia sclerotiorum on Phaseolus vulgaris. Physiol and Mol Plant Path, 1990, 37:179-191
    
    
    65. Gress T M, Hoheisel J D, Lennon G G, Zehetner G, Lehrach H. Hybridization fingerprinting of high-density cDNA-library arrays with cDNA pools derived from whole tissues. Mamm Genome, 1992, 3:609-619.
    66. Guengerich F P. Molecular advances for the cytochrome P-450 superfamily. Trends Pharmacol Sci, 1991, 12:281-283
    67. Horn P, Rafalski A. Non-destructive RAPD genetic diagnostics of microspore-derived Brassica embryos. Plant Mol Bio Reporter, 1992, 10:285-293
    68. Hua J, Xing Y, Wu W, Xu C, Sun X, Yu S, Zhang Q. Single-locus heterotic effects and dominance by dominance interactions can adequately explain the genetic basis of heterosis in an elite rice hybrid. Proc Natl Acad Sci USA, 2003, 100:2574-2579
    69. Huang X, Rad U V, Durner J. Nitric oxide induces transcriptional activation of the nitric oxide-tolerant alternative oxidase in Arabidopsis suspension cells. Planta, 2002, 215:914-923
    70. Jones D F. Dominance of linked factors as a means of accounting for heterosis. Proc Natl Acid Sci USA, 1917, 3:310-312
    71. Joris B, Englebert S, Chu C P, Kariyama R, Daneo-Moore L, Shockman G D, Ghuysen J M. Modular design of the Enterococcus hirae muramidase-2 and Streptococcus faecalis autolysin. FEMS Microbiol Lett, 1992, 70:257-264
    72. Kim H S, Aneller C H, Diers B W. Evaluation of soybean cultivars for resistance to Sclerotinia stem rot in field environments. Crop Sci, 1999, 39:64-68
    73. Kim H S, Diers B W. Inheritance of partial resistance to Sclerotinia stem rot in soybean. Crop Sci, 2000, 40:55-61
    74. Lagercrantz U, Putterill J, Coupland G, Lydiate D. Comparative mapping in Arabidopsis and Brassica, fine scale genome collinearity and congruence of genes controlling flowering time. Plant J, 1996, 9:13-20
    75. Lander ES, Green P, Abrahamson J, Barlow A, Daly MJ, Lincoln SE, Newburg L. MAPMAKER:an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics, 1987, 1, 174-181
    76. Largercraztz U, Lydiate D J. Comparative genome mapping in Brassica. Genetics, 1996, 144:1903-1910
    77. Lee M, Godshalk E B, Lamkey K R, Wookman W W. Association of restriction fragment length polymorphisms among maize inbreeds with agronomic performance of their crosses. Crop Sci, 1989, 29:1067-1071
    78. Legrand M, Kauffman S, Geoffroy P, Fritig B. Biological function of pathogenesis-related proteins:four tobacco pathogenesis-related proteins are chitinases. Proc Natl Acad Sci USA, 1987, 84:6750-6754
    
    
    79. Lin W, Anuratha C S, Datta K, Potrykus I, Muthukrishnan S, Datta S K. Genetic engineering of rice for resistance to sheath blight. Bio Technology, 1995, 13:686-691
    80. Liu R, Qian W, Meng J, Association of RFLP markers and biomass heterosis in trigenomic hybrids of oilseed rape(Brassica napus×B. campestris). Theor Appl Genel, 2002, 105:1050-1057
    81. Liu X C, Wu J L. SSR heterogenic patterns of parents for marking and predicling heterosis in rice breeding. Mol Breed, 1998, 4:263-268
    82. Ma L, Li J, Qu L, Hager J, Chen Z, Zhao H, Deng X W. Light control of Arabidopsis development entails coordinated regulation of genome expression and cellular pathways. Plant Cell, 2001, 13:2589-2607
    83. Ma L, Zhao H, Deng X W. Analysis of the mutational effects of the COP/DET/FUS loci on genome expression profiles reveals their overlapping yet not identical roles in regulating Arabidopsis seedling development. Development, 2003, 130:969-981
    84. Maleck K, Levine A, Eulgem T, Morgan A, Schmid J, Lawton K A, Dangl J L, Dietrich R A. The transcriptome of Arabidopsis thaliana during systemic acquired resistance. Nat Genet, 2000, 26:403-410
    85. Marciano P, Di Lenna P, and Magro P. Oxalic acid, cell wall degrading enzymes and pⅡ in pathogenesis and their significance in the virulence of two Sclerotinia sclerotiorum isolates on sunflower. Physiol Plant Path, 1983, 22:339-345
    86. Maxwell D P, Lumsden R D. Oxalic acid production by Sclerotinia sclerotiorum in infected bean and in culture. Phytopathology, 1970, 60:1395-1398
    87. McCartney H A, Doughty K J, Norton G, Booth E J, Kightley S P. A study of the effect of disease on seed quality parameters of oilseed rape. 1999, 10th international conference of oilseed, p 132
    88. Melchinger A E, Lee M, Lamkey K R. Genetic diversity for restriction fragments length polymorphism relation to estimated genetic effect in maize inbreeds. Crop Sci, 1990, 30:1033-1040
    89. Mestries E, Gentzittel L, Labrouhe T D, Nicolas P, Vear F. Analysis of quantitative trait loci associated with resistance to Sclerotinia sclerotiorum in sunflowers(Helianthus annuus L.) using molecular markers. Mol Breed, 1998, 4:215-226
    90. Nebert D W, Gonzalez F J. P450 genes:structure, evolution, and regulation. Annu Rev Biochem, 1987, 56:945-993
    91. Nelson B D, Helms T C, Olson M A. Comparison of laboratory and field evaluation of resistance in soybean to Sclerotinia sclerotiorum. Plant Dis, 1991, 75:662-665
    92. Neuefeind T, Reinemer P, Bieseler B. Plant glutathione S-transferases and herbicide detoxification. Biol Chem, 1997, 378:199-205
    
    
    93. Nishizawa Y, Hibi T. Rice chitinase gene:cDNA cloning and stress-induced expression. Plant Sci, 1991, 76:211-218
    94. Nishizawa Y, Kishimoto N, Saito A, Hibi T. Sequence varia-tion, differential expression and chromosomal location of rice chitinase genes. Mol Gen Genet, 1993, 241:1-10
    95. Noyes R D, Hancock J G. Role of oxalic acid in the Sclerotinia wilt of sunflower. Physiol Plant Path, 1981, 18:123-132
    96. Oberley L W, Oberley T D. Role of antioxidant enzymes in cell immortalization and transformation. Mol Cell Biochem, 1988, 84:147-53
    97. Osborn T C, Kole C, Parkin I A, Sharpe A G, Kuiper M, Lydiate D J, Trick M. Comparison of flowering time genes in Brassica rapa, B. napus and Arabidopsis thaliana. Genetics, 1997, 146:1123-1129
    98. Overdijk B, Van Steijn G J, Odds F C. Distribution ofchitinase in guinea pig tissues and increases in levels of this enzyme after systemic infection with Aspergillusfumigatus. Microbiology, 1999, 145:259-269
    99. Purdy L H. Sclerotinia sclerotiorum:history, diseases and symptomatology, host range, geographic distribution, and impact. Phytopathology, 1979, 69:875-890
    100. Purdy L H. Some factors affecting penetration and infection by Sclerotinia sclerotiorum. Phytopathology, 1958, 48:605-609
    101. Riou C, Freyssinet G, Feure M. Production of cell degrading enzymes by the phytopathogenic fungus Sclerotinia sclerotiorum. Appl and Env Microbiol, 1991, 57:1478-1484
    102. Ryang S H, Chung S Y, Lee S H, Cha J S, Yong Kim H, Cho T J. Isolation of pathogen-induced Chinese cabbage genes by subtractive hybridization employing selective adaptor ligation. Biochem Biophys Res Commun, 2002, 299:352-359
    103. Saghai Maroof M A, Yang G P, Zhang Q, Gravois K A. Correlation between molecular marker distance and hybrid performance in U.S. southern long grain rice. Crop Sci, 1997, 37:145-150
    104. Saghai Maroof M A, Zhang Q, Biyashev R M. Molecular marker analysis of powdery mildew resistance in barley. Theor Appl Genet, 1994, 88:733-740
    105. Schena M, Shalon D, Davis R, Brown P. Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science, 1995, 270:467-470
    106. Sharpe A G, Parkin 1 A P, Keith D J, Lydiate D J. Frequent nonreciprocal translocations in the amphidiploid genome of oilseedrape (Brassica napus). Genome, 1995, 38:1112-1121
    107. Shull G H. The composition of a field of maize. Am BreedAssoc Rep, 1908, 4:296-301
    108. Sillito D, Parkin I A P, Mayerhofer R, Lydiate D J, Good A G. Arabidopsis thaliana:a source of candidate disease-resistance genes for Brassica napus. Genome, 2000, 43:452-460
    109. Smith O S, Smith J S C, Bowen S L, Tenborg R A, Wall S J. Similarities among a group of elite
    
    maize inbreeds as measured by pedigree, F_1 grain yield, grain yield heterosis and RFLPs. Theor Appl Genet, 1990, 80:833-840
    110. Sprague G E, Russel W A, Penny L H et al. Effect of epistasis on grain yield on maize. Crop. Sci, 1962, 2:205-208
    111. Srivastava H K. Heterosis and intergenomic complementation mitochondria, chloroplast and nucleus. In:Frankel R (ed). Heterosis, reappraisal of theory and practice. Springer Berlin Heidelberg, New York, 1983, 260-286
    112. Sun V G. Heterosis between Brassica species. Zhong Guo Nong Xue Hui Bao, 1943, 175:35-38 (in Chinese).
    113. Swidzinski J A, Sweetlove L J, Leaver C J. A custom microarray analysis of gene expression during programmed cell death in Arabidopsis thaliana. Plant J, 2002, 30:431-446
    114. Tabei Y, Kitade S, Nishizawa Y, Kikuchi N, Kayano T, Hibi T, Akutsu K. Transgenic cucumber plants harboring a rice chitinase gene exhibit enhanced resistance to gray mold (Botrytis cinerea). Plant Cell Reports, 1998, 17:159-164
    115. Takemoto D, Hayashi M, Doke N, Nishimura M, Kawakita K. Molecular cloning of a defenseresponse-related cytochrome P450 gene from tobacco. Plant Cell Physiol, 1999, 40:1232-1242
    116. Teutonico R A, Osborn T C. Mapping of RFLP and quantative trait loci in Brassica rapa and comparison to the linkage maps of B. napus, B. oleracea, and Arabidopsis thaliana. Theor Appl Genet, 1994, 89:885-894
    117. The Arabidopsis Genome Initiative. Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature, 2000, 408:796-815
    118. Turbin N Y. Genetic principles of plant breeding. (in Russian). Nauka, 1971, 112-155
    119. Turbin N Y. Sbornik "Aktualnie voprisi sovremennoy genetiki". Mosk Univ. 1966, 434-466
    120. Wang E, Wang R, DeParasis J, Loughrin J H, Gan S, Wagner G J. Suppression of a P450 hydroxylase gene in plant trichome glands enhances natural-product-based aphid resistance. Nat Biotechnol, 2001, 19:371-374
    121. Wang H, Ma L, Habashi J, Li J, Zhao H, Deng X W. Analysis of far-red light-regulated genome expression profiles of phytochrome A pathway mutan(?)s in Arabidopsis. Plant J, 2002, 32:723-733
    122. Wang J X, Yang G S, Fu T D, Meng J L. Development of PCR-based markers linked to the fertility restorer gene for the polima cytoplasmic male sterility in rapeseed (Brassica napus L.).Yi Chuan Xue Bao, 2000, 27:1012-1016.
    123. Wang S, Liu N, Peng K, Zhang Q. The distribution and copy number of copia-like retrotransposons in rice (Oryza sativa L.) and their implications in the organization and evolution of the rice genome. Proc Natl Acad Sci USA, 1999, 96:6824-6828
    124. Xu Z C, Zhu J. An approach for predicting heterosis based on an additive, dominance and additive
    
    × additive model with environment interaction. Heredity, 1999, 82:510-517
    125. Yanai K, Tanaka N, Kojima N, Horiuchi H, Ohta A, Takagi M. Purification of two chitinases from Rhizopus obligosporus and isolation and sequencing of the encoding genes. J Bacteriol, 1992, 174:7398-7406
    126. Yu S B, Li J X, Xu C G, Tan Y F, Gao Y J, Li X H, Zhang Q, Saghai Maroof M A. Importance of epistasis as the genetic basis of heterosis in an elite rice hybrids. Proc Natl Acad Sci USA, 1997, 94:9226-9231
    127. Zhang Q, Gao Y J, Saghai Maroof M A, Yang S H, Li J X. Molecular divergence and hybrid performance in rice. Mol Breed, 1995, 1:133-142
    128. Zhang Q, Gao Y J, Yang S H, Ragab R A, Saghai Maroof M A, Li Z B. A half-diallel analysis of heterosis in elite hybrid rice based on RFLP and microsatellites. Theor Appl Genet, 1994, 89:185-192
    129. Zhang Q, Zhou Z Q, Yang G P, Xu C G, Liu K D, Saghai Maroof M A. Molecular marker heterozygosity and hybrid performance in indica and japonica rice. Theor Appl Genet, 1996, 93:1218-1224
    130. Zhao J, Meng J. Genetic analysis of loci associated with partial resistance to Sclerotinia sclerotiorum in rapeseed (Brassica napus L.). Theor Appl Genet, 2003, 106:759-764

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700