三轴条件下钙质砂颗粒破碎力学性质与本构模型研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
钙质砂是分布于热带海洋中的一种特殊岩土介质,由于其成因和组构上的特点导致其物理力学性质与常规的陆源砂有所区别。实践证明,颗粒破碎是影响钙质砂力学性质的主要因素。目前对于钙质砂的力学性质已经取得了很多的研究成果,但是能够准确模拟钙质砂颗粒破碎的本构模型不多见。本文通过大量力学试验对钙质砂在三轴条件下的剪切特性进行了阐述;对钙质砂颗粒破碎的影响因素和破碎机理进行了研究;在此基础上建立了钙质砂考虑颗粒破碎的本构模型,并对模型的模拟效果进行验证。具体的内容和结论如下:
     1、进行围压0.1至3.2MPa三轴条件下钙质砂的固结排水和固结不排水试验,对钙质砂三轴条件下的剪切特性进行分析。
     2、在介绍土体颗粒破碎分类和各种度量方法的基础上,分析了矿物成分、粒径大小、颗粒级配、应力水平和剪切应变等因素对颗粒破碎的影响;通过不同形状钙质砂颗粒在不同类型和应力水平试验前后的形态变化,分析不同形状钙质砂颗粒的破碎类型;给出了三轴试样中钙质砂的单个颗粒所受特征应力的公式。
     3、对钙质砂的颗粒破碎机理进行分析,给出了关于破碎消耗能量、摩擦角、剪胀与偏应力比的关系式。此公式有利于区别颗粒破碎、剪胀和滑动摩擦各部分对钙质砂或者其他无粘性土抗剪强度的影响。
     4、本文提出的考虑颗粒破碎的本构模型中,基于剪切变形中颗粒破碎的能量消耗提出了一种塑性流动准则。模型采用非关联流动准则和运动强化模型,考虑了颗粒破碎对塑性剪切变形与塑性体积变形的影响。在极限平衡条件下提出了应力-应变公式。模型能够准确模拟钙质砂在各围压下的应力-应变-体变特性,并且能够描述钙质砂的应力硬化和峰值后的应力软化特性。模型的特点是能够模拟各剪切应变阶段的颗粒破碎。
Calcareous sand is a special marine geotechnical medium, which has unexpected physical and mechanical property due to its origin and fabric. It is demonstrated that the particle crushing is a main factor affecting the property of calcareous sand. Currently, the study on the mechanical behavior of calcareous sand has made great achievement, while the research on the constitutive model for calcareous sand incorporating particle breakage is not so much. In this study, serials of shear laboratory tests were carried out and the shear mechanical behavior of calcareous sand was presented thoroughly. Many parameters influencing particle breakage and the mechanics of grain rupture were analyzed. The constitutive model for calcareous sand incorporating particle degradation was developed and the verification of the model was also presented. The main work can be concluded as follows.
     1、Axisymmetric specimens of calcareous sand were tested in drained and un drained triaxial compression tests between confining pressures of 0.1 and 3.2MPa. The triaxial shear mechanical behavior of calcareous sand was presented.
     2、Based on the overview of the different modes of grain breakage and different definitions of existing particle breakage factors, many parameters influencing grain breakage were analyzed, such as mineral component, grain size, grain composition, stress level, and shear strain. The characteristic particle stress acting on a particle in a sample was calculated by a simple formulation.
     3、The grain rupture mechanics of calcareous sand was analyzed. A relationship between the energy consumption due to particle breakage, angle of friction, dilatancy, and deviator stress ratio was derived. It may be helpful to distinguish the effect of particle breakage, dilatancy, and the basic friction component of shear strength for calcareous sand and other cohesionless soils.
     4、In the current model, a plastic flow rule has been developed incorporating the energy consumption due to grain crushing during shear deformation. A non-associated flow and a kinematic type yield locus have been adopted in the model. The effects of grain breakage on the plastic distortional and volumetric deformations are incorporated in the current model. The stress-strain formulations are developed within the general critical state framework. The model can accurately predict the stress-strain and volume change behavior of coarse granular aggregates. The plastic dilation and contraction features of coarse aggregates at various confining pressures are well captured, and the strain-hardening and post-peak strain-softening behavior of calcareous sand adequately represented. A particular feature of the model is its capability to predict the degree of particle breakage at any stage of shear deformation.
引文
[1] 张家铭,汪稔,张阳明,陈复兵.土体颗粒破碎研究进展. 岩土力学,2004,24(增):661~665
    [2] Terzaghi K and Peck R B. Soil Mechanics in engineering practice. New York: Wiley, 1948
    [3] DeBeer E E. The scale effect in the transposition of the results of deep sounding tests on the ultimate bearing capacity of piles and caisson foundations. Geotechnique, 1963,13(1):39~75
    [4] Kjaernsli B. and Sande A. Compressibility of some coarse-grained materials. Proc. European Conf. Soil Mech. & Found. Engrg. Weisbaden, German, 1963,245~251
    [5] Hall E B. and Gordon B B. Triaxial testing with large-scale high pressure equipment. Laboratory shear testing of soils, ASTM STP 361, ASTP Philadephia, 1963:315-328
    [6] Marsal R J. Large scale testing of rockfill materials. Journal of the Soil Mechanics and Foundations Division,1967,93(SM2):27~43
    [7] Lee K L. and Farhoomand I. Compressibility and crushing of granular soils in anisotropic triaxial compression. Can. Geotech.1967, 4(1):68~86
    [8] Vesic and Clough. Behavior of granular materials under high stresses. J. Soil Mech. and Found. Engrg. Div., ASCE, 1968, 94(SM3):661~688
    [9] Norihiko M and Sukeo O. Particle crushing of a decomposed granite soil under shear stresses. Soils and Foundations, JSSMFE, 1979,19(3):1~14
    [10] Hardin B O. Crushing of Soil Particles. Journal of Geotechnical Engineering, 1985, 111(10): 1177~1192
    [11] McDowell G R. Bolton M.D. and Robertson D. The fractal crushing of granular materials. J. Mech. Solids, 1996, 44(12):2079~2102
    [12] 蒙进、屈智炯.高压下冰碛土的颗粒破碎及应力应变关系.成都科技大学学报,1989,43(1):17~22
    [13] 马巍、吴紫汪、常小晓、王家澄.围压作用下冻结砂土微结构变化的电镜分析.冰川冻土,1995,17(2):152~158
    [14] 郭熙灵、胡辉等.堆石料颗粒破碎对剪胀性及抗剪强度的影响.岩土工程学报,1997,19(3):83~88
    [15] 温彦锋、蔡红、边京红.强风化岩防渗土料的压实及渗透特性.水力发电学报,2002,69(2):17~24
    [16] 孙吉主,汪稔.围压对钙质砂变形特性和声发射模式的影响.岩石力学与工程学报, 2001,20(增刊):1173~1176
    [17] 汪稔,孙吉主.钙质砂不排水性状的损伤-滑移耦全作用分析.水利学报,2002 第 7期:75~78
    [18] Verdug O R and Ishihara K. The steady state of sandy soils. Soils and Foundations, 1996, 36 (2): 81–91
    [19] Roscoe K H. Schofield A N. and WROTH C P. On the yielding of soils. Geotechnique, 1958, 8(1):22–53
    [20] Rowe P W. The stress-dilatancy relation for static equilibrium of an assembly of particles in contact. Proc Royal Society, London, 1962, A269:500–527
    [21] Lade P V. Elasto-plastic stress-strain theory for cohesionless soil with cured yield surfaces, International Journal Of Solids and Structures.1977, 13:1019-1035
    [22] Akiyoshi T. Matsumoto H. Fuchida K. and Fang H L. Cyclic mobility behavior of sand by the three-dimensional strain space multimechanism model, International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts. 1995, 32(4):155-174
    [23] Katti D R and Desai C S. Modeling and testing of cohesive soil using disturbed-state concept, International Journal of Rock Mechanics and Mining Sciences and Geomechanics Abstracts .1996, 33(3):114-130
    [24] Manzari M T and Dafalias Y F. A critical state two-surface plasticity model for sands, Geomechanics Abstracts .1997, 276 (5):294-305
    [25] Cubrinoyski M. and Ishihara K. Modeling of sand behavior based on state concept. Soils and Foundations, 1998, 38(3):115–127
    [26] Krogsbill Anette. Constitutive model with time-dependent deformations, Engineering Geology. 1998, 49(3):285-292
    [27] Gajo A. and Wood D M. Severn-trent sand: a kinematic-hardening constitutive model: the q-p formulation. Geotechnique, 1999, 49(5):595–614
    [28] Van R G and Guo P J. A simple constitutive model for granular soils: modifiedstress-dilatancy approach. Computers and Geotechnics, 1998, 22(2):109–133
    [29] Pestana J M. and Whittle A J. Formulation of a unified constitutive model for clays and sands, International Journal for Numerical and Analytical Methods in Geomechanics. 1999, 23(12):1215-1243
    [30] Li X S and Dafalias Y F. Dilatancy for cohesionless soils. Geotechnique, 2000, 50(4): 449–460
    [31] Woodward P K. and Berenji A P. Advanced numerical investigation of Terzaghi's superposition theory, Advances in Engineering Software. 2001, 32(10):797-804
    [32] Li J A. and Ding D W. Nonlinear elastic behavior of fiber-reinforced soil under cyclic loading, Soil Dynamics and Earthquake Engineering. 2002, 22(4):977-983
    [33] Yannis F Dafalias and Majid T Manzari. Simple Plasticity Sand Model Accounting for Fabric Change Effects, Journal of Engineering. Mechanics. 2004, 130(6):622-634
    [34] Coop M R. The mechanics of uncemented carbonate sands. Geotechnique.1990,40(4):607~626
    [35] Datta M. Gulhati S K. Rao G V. Crushing of calcareous sands during shear. 1979, OTC 3525:1459~1467
    [36] Poulos H G. and Davis E H. Pile foundation analysis and design. New York, Wiley & Sons,150~163
    [37] Coop M R. and Atkinson J H. The mechanics of cemented carbonate sands. Geotechnique, 1993, 43(1):53~67
    [38] 吴京平,楼志刚. 钙质土的基本特性. 第七届土力学及基础工程学术会议论文集. 中国建筑工业出版社,1994.10,267~271
    [39] 刘崇权,杨志强,汪稔. 钙质土力学性质研究现状与进展. 岩土力学,1995,16(4):74~83
    [40] 汪稔等. 南砂群岛珊瑚礁工程地质调查研究. 中国科学院武汉岩土力学研究所地基室,1995
    [41] 吴京平,楼志刚. 海洋桩基工程中的钙质土. 海洋工程,1996,14(3):74~81
    [42] 刘崇权,汪稔. 钙质砂物理力学性质初探. 岩土力学,1998,19(3):32~37
    [43] 吴京平,褚瑶,楼志刚.颗粒破碎对钙质砂变形及强度特性的影响.岩土工程学报.1997,19(5):49~55
    [44] 吕海波,汪稔,孔令伟.钙质土破碎原因的细观分析初探.岩石力学与工程学报,2001,20(增刊):890~892
    [45] 单华刚,珊瑚礁钙质土中桩基工程承载性状研究. 武汉:中国科学院博士学位论文.2000
    [46] 张家铭,钙质砂基本力学性质及颗粒破碎影响研究. 武汉:中国科学院博士学位论文.2004
    [47] 刘崇权、汪稔.钙质砂在三轴剪切颗粒破碎评价及其能量公式.工程地质学报,1999,7(4):366~371
    [48] 章根德编著.土的本构模型及其工程应用.科学出版社,1995
    [49] 屈智炯编著.土的塑性力学.成都科技大学出版社,1987
    [50] 龚晓南编著.土塑性力学.浙江大学出版社,1999
    [51] 王振山,李跃明.应用于岩石强度的双剪准则.岩土工程学报,1990,12(1):68-72
    [52] 郑颖人,沈珠江.岩土塑性力学原理.中国建筑工业出版社,2002
    [53] 鲁祖统,龚晓南. 关于稳定材料屈服条件在二平面内的屈服曲线俘在内外包络线 的证明. 岩土工程学报,1997,19(5):1-5
    [54] 余茂宏,刘凤羽.一个新的普遍形式的强度理论.土木工程学报,1990,23(1):34-40
    [55] 殷宗泽. 一个土体的双屈服面应力-应变模型.岩土工程学报,1988,10(4): 64-71
    [56] Simpson. B 0. Riordan N J. and Croft D D. A computer model for the analyses of ground movements in London clay, Geotechnique.1979,29(2):149-173
    [57] 李广信.高等土力学.清华大学出版社,2004
    [58] Provest J H. Plasticity theory for soil stress-strain behavior. JGED, 1978, 104(8):1075-1090
    [59] Mroz Z. Norris V A. and Zienkiewicz O C. Application of an anisotropic hardening model in the analysis of elasto-plastic deformation of soils.Geotechnique.1979, 29(1):1-34
    [60] Mroz M. Norris V A. and Zienkiewicz O C. An anisotropic critical state model for soils subjected to cyclic loading. Geotechnique.1981, 31(4):451-469
    [61] Iwan W D. On a class of models for the yielding behavior of continuous and composite system.ASME, 1967, 34(3):21-33
    [62] Pender M.J. A model for the behavior of overconsolidated soil, Geotechnique.1978, 28(1):1-25
    [63] Dafalias Y F. A model of soil behavior under monotonic and cyclic loading conditions. Trans.5th Inter. conf. on Structure Mechanics in Reactor Technology, 1979
    [64] Dafalias Y F. Popov E P. A Model of Non-Linearly Hardening Materials for complex loadings. Acta Mechanica, 1975,21(3):173-192
    [65] Norris V A. Numerical modeling of soil response to cyclic loading "stress-reversal surfaces". International symposium numerical models in geomechanics, Zurich, 1982:38-49
    [66] 孙吉主,周键. 土的边界面本构模型研究进展. 岩土力学,1997, 18(2):91-95
    [67] 刘汉龙,余湘娟. 土动力学与岩土地震工程研究进展, 河海大学学报,1999,27(1):7-15
    [68] Valanis K C. Theory of Viscoplasticity without a yield surface, Archives of Mechanics, Warszaw, 1971, Vol. 23 (4):517-551
    [69] Valanis K C. Fundamental consequences of a new intrinsic time measure plasticity, as limit of the endochronic theory, Archives of Mechanics, Warszaw, 1980, Vol. 32:67-91
    [70] 中国科学院南沙综合科学考察队著.南沙群岛永暑礁第四纪珊瑚礁地质.北京:海洋出版社,1992
    [71] 孙岳菘,濮家骝,李广信.不同应力路径对砂土应力-应变关系影响. 岩土工程学报,1987,9(6):78~87
    [72] 黄文熙.土的工程性质.北京:水利水电出版社,1983
    [73] Fukumoto T. Particle breakage characteristics in granular soils. Soils and Foundations, 1992,32(1):26~40
    [74] Roberts J E. De Souza J M. The compressibility of sand. Proceedings of American Society Testing Materials. ASTM. Philadelphia.1958:1269–1277
    [75] Lee K L. Seed H B. Drained strength characteristics of sands. Journal of the Soil Mechanics and Foundations Division. 1967, 93 (SM6):117–141
    [76] Fukumoto T. A grading equation for decomposite granite soil. Soils and Foundations. 1990, 30(1):27–34
    [77] Hagerty M M. Hite D R. Ullrich C R. Hagerty D J. One-dimensional high-pressure compression of granular media. Journal of Geotechnical Engineering, 1993, 119 (1):1–18
    [78] Coop M R. The behaviors of granular soils at elevated stresses. Predictive Soil Mechanics. Thomas Telford, London. 1993.
    [79] Yamamuro J. and Lade P V. Drained sand behavior in axisymmetric tests at high pressures. Journal of Geotechnical Engineering, 1996, 122(2):109–119
    [80] Yamamuro J. and Lade P V. One-dimensional compression of sands at high pressures. Journal of Geotechnical Engineering, 1996,122 (2):147–154
    [81] Lade P V. and Yamamuro J. Significance of particle crushing in granular materials. Journal of Geotechnical Engineering,1996,122(4):309~316
    [82] Leung C F. Lee F H. Yet N S. The role of particle breakage in pile creep in sand. Canadian Geotechnical Journal, 1996, 33(6):888–898
    [83] McDowell G R. Bolton M D. On the micromechanics of crushable aggregates. Geotechnique, 1998, 48(5):667–679
    [84] Guyon E. Troadec J P. Du sac de billes au tas de sable, Editions Odile JACOB Sciences, 1994
    [85] Indraratna B. Ionescu D. Christie H D. Shear behavior of railway ballast based on large-scale triaxial tests. Journal of Geotechnical and Geoenvironmental Engineering, ASCE, 1998, 124 (5):439–449
    [86] Ueng T S. and Chen T J. Energy aspects of particle breakage in drained shear of sands. Geotechnique, 2000, 50(1):65–72
    [87] Bolton M D. The strength and dilatancy of sands. Geotechnique, 1986,36(1):65~78
    [88] Charles J A. and Watts K S. The influence of confining pressure on the shear strength of compacted rockfill. Geotechnique, 1980, 30(4):353-367
    [89] Hill R. The mathematical theory of plasticity. Oxford University Press, 1950
    [90] Schofield A N. and Wroth C P. Critical state soil mechanics. McGraw Hill. London UK
    [91] Hibbt,Karlsson and Sorensen Inc. ABAQUS/Standard User’s Manual. Version6.3, vol2
    [93] Yukio Nakata.Yoshinori Kato. Masayuki Hyodo. Adrian F L Hyde and Hidekazu Murata. One dimensional compression behavior of uniformly graded sand related to single particle crushing strength. Soils and Foundations, 2001,41(2):39~51
    [94] Nakata Y. Hyde A F L. Hyodo M. and Murata H. A probabilistic approach to sand particle crushing in the triaxial test. Geotechnique,1999, 49(5):567~583
    [95] Ashby M F. and Jones D R H. Engineering Materials2, An Introduction to Microstructures, Processing and Design. Pergmon Press, Oxford, 1986
    [96] McDowell G R. Micromechanics of clastic soil. Proc. International workshop on soil crushability, Yamaguchi, Japan, 1999
    [97] Masataka Takei. Osamu Kusakabe and Taketo Hayashi. Time-dependent behavior of crushable materials in one-dimensional compression tests. Soils and Foundations, 2001, 41 (1):97~121
    [98] Yukio Nakata, Masayuki Hyodo, Adrian F.L. Hyde, Yoshinori Kato & Hidekazu Murata. Microscopic particle crushing of sand subjected to high pressure one-dimensional compression. Soils and Foundations, 2001,41(1):69~82
    [99] McDowell, G. R. Nakata, Y. & Hyodo, M. On the plastic hardening of sand. Geotechnique, 2002, 52(5):349-358.
    [100] Cheng Y P. Nakata. Y and Bolton M D. Discrete element simulation of crushable soil. Geotechnique, 2003, 53(7):633-641.
    [101] Lo K Y. Roy M. Response of particulate materials at high pressures. Soils and Foundations, 1973, 13(1):1-14.
    [102] Yasufuku N. Murata H. and Hyodo M. Yield characteristics of anisotropically consolidated sand under low and high stresses. Soils Found.1991, 31(1):95-109.
    [103] Miura N. Murata H. and Yasufuku N. Stress-strain characteristics of sand in a particle crushing region. Soils and Foundations, 1984, 24(1):77-89
    [104] McDowell G R. and Amon A. The application of weibull statistics to fracture of soil particles. Soils and Foundations, 2000, 40(5):133-141
    [105] Luzzani L. and Coop M R. On the relationship between particle breakage and the critical state of sands. Soils and Foundations, 2002, 42(2):71-82

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700