混沌与超混沌系统生成及控制若干问题
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
自从1963年Lorenz在数值实验中发现第一个混沌模型以来,混沌在许多科学领域得到了巨大的发展,并导致了其后关于复杂非线性现实世界的革命性的再思考。混沌与超混沌系统的生成与控制是混沌理论与应用研究的两个重要组成部分。
     本文给出了几类具有新的动力学特性的混沌和超混沌系统,研究了永磁同步电动机系统的混沌控制,研究了一类混沌与超混沌系统的输入输出稳定性控制问题,对超混沌系统的广义追踪控制进行了进一步的研究。主要工作归纳如下:
     1.基于Lorenz系统,构建了一个新的三维混沌系统。讨论了平衡点的性质,给出了系统的功率谱图、Poincare截面图,并利用分岔图和Lyapunov指数谱详细分析了各参数变化对系统动力学行为的影响。进一步的理论分析发现,交叉乘积项参数d和平方项参数e变化时,系统的Lyapunov指数谱保持恒定,且参数d具有全局非线性调幅功能,参数e具有局部非线性调幅功能。并且根据乘法器调幅模型,采用乘法运算来实现混沌信号(状态变量)对余弦周期信号的振幅调制,研究发现在参数d和e的变化(增加)过程中,调幅系数也随之变化(增加),且信息信号幅值取较大值时,调幅系数也较大,从而信噪比和功率利用率都较高。同时,基于拓扑马蹄理论,理论上证明了系统的混沌性,设计出的模拟电路进一步验证了混沌吸引子的存在性。
     2.通过在一个三维混沌系统中加入状态反馈控制器,构造出一个新的四维超混沌系统。分析表明,随着不同参数变化该系统呈现周期、复杂周期、准周期、混沌及超混沌运动。同时设计出模拟电子电路对该超混沌系统进行了实验验证。
     3.提出了一个新的超混沌系统,此系统具有一个平衡点,却表现出四翼超混沌行为。仔细分析了其动力学特性,包括平衡点稳定性、分叉图、李氏指数。同时设计出对应的模拟电路,实验验证了超混沌系统吸引子的存在性。
     4.基于对称群理论,提出了一类环状Chua系统。详细分析了其形成机制和参数选取范围,给出了DSP实现。
     5.基于LaSalle不变集定理,设计了一种自适应控制器,实现了永磁同步电动机的混沌控制,并对该控制方案的改进形式进行了研究。研究了分数阶永磁同步电动机的动力学行为,并给出了其混沌控制方案。
     6.研究了一类存在不确定参数和外界噪声干扰的混沌与超混沌系统的输入输出稳定性控制问题。基于Lyapunov稳定性理论,设计了一个线性状态反馈控制器,该控制器对于任何给定的有界干扰,都能保证系统渐近稳定并获得有界的状态变量。通过求解线性矩阵不等式(linear matrix inequality, LMI),能够方便地获得控制器的控制强度矩阵。而且,基于动力学方程的非奇异坐标变换,得到了一个简化的线性状态反馈控制器。以控制Lorenz系统和超混沌Lorenz-Stenflo系统为例,数值验证了该控制方案的有效性。
     7.对超混沌系统的广义追踪控制进行了研究。具体包括:(1)设计一种统一形式的非线性状态反馈控制器,实现一类五阶超混沌电路系统的状态变量与任意给定参考信号的追踪广义投影同步。通过取不同的比例因子和加速因子,可以快速获得与超混沌系统和多个不同维混沌系统之间的异结构广义投影同步、周期信号的广义投影同步,以及将五阶超混沌系统快速控制到周期态和期望的平衡点。(2)通过构造新的Lyapunov函数,设计一个自适应追踪控制器,实现了一个超混沌系统对各种不同参考信号的单变量追踪控制。(3)对一类存在未知参数和外界随机干扰的超混沌系统的函数投影同步和追踪控制进行了研究。通过设计适当的自适应鲁棒控制器,按一定比例函数将超混沌系统驱动到期望的任意参考信号,同时辨识出此超混沌系统的未知参数。
In1963, Lorenz discovered the first chaotic system when studying the atmospheric convection. The Lorenz system is the first chaotic model, which has become a touchstone for the developing of chaos theory, and led to further think about the complexity of nonlinear phenomena in the real world. In the pursuit of theory and application research on chaos, the generation and control for chaotic and hyperchaotic systems became two important research directions.
     This paper presented several chaotic and hyperchaotic systems, discussed stable control for the permanent magnet synchronous motor, investigated the issue of input-to-state stable control for a class of chaotic and hyperchaotic systems with undeterministic parameters and external interference, and investigated the tracking control of several hyperchaotic systems.
     The main research works of this dissertation are as follows.
     1. Based on the construction pattern of Chen and Liu chaotic systems, a new chaotic system is proposed by developing Lorenz chaotic system. The essential features of chaotic system are analyzed via equilibrium and stability, continuous spectrum, Poincare mapping. The different dynamic behaviors of the system are analyzed especially when changing each system parameter. It's found that when the parameters d and e vary, the Lyapunov exponent spectrum keeps invariable, and there exist the functions of global nonlinear amplitude adjuster for d and partial nonlinear amplitude adjuster for e. Then, based on the model of multiplier modulation, we realize the amplitude modulation of the sinusoidal signal via the chaotic singals. Finally, by picking a suitable cross-section with respect to the attractor carefully, a topological horseshoe of the corresponding first-returned Poincare map is found, thus giving a rigorous confirmation of the existence of chaos in this system, and a practical circuit is designed to implement this new chaotic system, which confirms that the chaotic system can be achieved physically.
     2. A four-dimensional hyperchaotic system is proposed by adding a state feedback controller to a chaotic system. Numerical simulations and theoretical analysis show that this four-dimensional system will take on periodic, complex periodic, quasi-periodic, chaotic and hyperchaotic dynamical behaviours as parameters vary. Moreover, an electronic circuit diagram is designed for demonstrating the existence of the hyperchaos.
     3. A novel four-dimensional smooth autonomous system is proposed, which is special since it has only one equilibrium, but it can generate a four-wing chaotic or hyperchaotic attractor. By applying either analytical or numerical methods, some basic properties of the4D system, such as phase diagrams, bifurcation diagram and Lyapunov exponents are investigated to observe chaotic motions.
     4. A ring-scroll Chua chaotic system is proposed by introducing a generalized ring transformation. Some basic dynamical properties of this generalized ring transformation are discussed. The parameter regions and the periodic orbits, which are embedded in Chua chaotic attractor mapping to those in ring-scroll Chua chaotic attractor, are investigated, too. Finally, the ring-scroll Chua chaotic attractor is physically implemented by using digital signal processors.
     5. Based on the LaSalle's invariant set theorem, an adaptive controller is developed to acquire chaos control for the permanent magnet synchronous motor. And then an extended adaptive controller is developed by introducing a control strength factor. The chaotic behaviour of the fractional-order permanent magnet synchronous motor is investigated, and an adaptive controller is developed based on the stability theory for fractional systems.
     6. The issue of input-to-state stable control for a class of chaotic and hyperchaotic systems with undeterministic parameters and external interference is investigated. Based on the Lyapunov stable theory, a linear state feedback controller is presented to guarantee the asymptotic stability and achieve the bounded state variable for any bounded disturbance. The control strength matrix can be obtained by solving the linear matrix inequality (LMI). Furthermore, with a nonsingular coordinate transformation of the dynamics equation, a simplified linear state feedback controller is obtained. Finally, the illustration is given by using two different chaotic and hyperchaotic systems with numerical simulations to verify the proposed ISS control scheme.
     7. The generalized tracking control is investigated. First, a nonlinear controller is proposed to acquire generalized projective synchronization of full states of a fifth-order circuit's hyperchaotic system based on adjusting the scaling factor and the accelerated factor. It allows one to drive the fifth-order system to arbitrary periodic orbits or fixed point rapidly. Based on this, hyperchaotic systems, chaotic systems, periodic signal, and constant signal are taken as examples respectively. Second, based on constructing a new Lyapunov function, an adaptive controller is proposed to acquire adaptive tracking control for a hyperchaotic system. Finally, the function projective synchronization and tracking control of a class of hyperchaotic systems with unknown parameters and disturbance are investigated. Based on the Lyapunov's stability theory, a robust controller is designed to drive the hyperchaotic system to any desired reference signals up to the scaling function factor, and a parameter update law for identifying the unknown parameters of the hyperchaotic system is gained simultaneously.
引文
[1]苗东升,刘华杰.混沌学纵横论[M].北京中国人民大学出版社,1993.
    [2]方锦清.驾驭混沌与发展高新技术[M].北京:原子能出版社,2002.
    [3]Kolmogorov A. N. The general theory of dynamical systems and classical mechanics [J]. International Congress of Mathematicians.1954,315-333.
    [4]Moser J. On invariant curves of area-preserving mappings of an annulus [J]. Naehr. Akad. Wiss. Gottingen Math.Phys.1962,,KI:1-20.
    [5]Arnold V. Proof of a theorem of A. N. Kolmogorov on the invariance of quasi-periodic motions under small perturbations of the Hamiltonian [J]. Russ. Math. Sury.1963,18:9-36.
    [6]Lorenz E. N. Deterministic nonperiodic flow [J]. J Atmos Sci.1963,20:130-41.
    [7]Henon M. A two-dimensional mapping with a strange attractor [J]. Communications in Mathematical Physics.1976,50:69-77.
    [8]May R. M. Biological Populations with nonoverlapping generations:stable points, stable cycles and chaos [J]. Science.1974,186:645-647.
    [9]Li T.Y., Yorke J.A. Period Three Implies Chaos [J]. The American Mathematical Monthly.1975,82:985-992.
    [10]Feigenbaum M.J. Quantitative universality for a class of nonlinear transformations [J]. Journal of Statistical Physics.1978,19:25-52.
    [11]Mandelbrot B. B. Fractal aspects of the iteration of z→Az(l-z) for complex A and z [J]. Annals New York Academy of Sciences.1980,357:249-259.
    [12]Genfen Y, Mandelbrot B. B. and Aharony A. Critical phenomena on fractal lattices [J]. Physics Review Letters.1980,45:855-858.
    [13]Packard N. H., Crutchifield J. P., Farmer J D. Geometry from a time series [J]. Physics Review Letters.1980,45:712-716.
    [14]Takens F., Mane. Detecting strange attractors in fluid turbulence [M]. In:Rand D A, Young L S, eds. Dynamical Systems and Turbulence. Vol.898 of Lecture Notes in Mathematics. Berlin:Springer,1986,366.
    [15]Ott E., Grebogi C. and Yorke J. A. Controlling chaos [J]. Phys. Rev. Lett.1990,64: 1196-1199.
    [16]Pecora L. M., Carroll T. L. Synchronization in chaotic systems [J]. Phys. Rev. Lett. 1990,64:821-824.
    [17]陈关荣,吕金虎.Lorenz系统族的动力学分析、控制与同步[M].北京:科学出版社,2003.
    [18]王兴元.复杂非线性系统中的混沌[M].北京:电子工业出版社,2003.
    [19]关新平,范正平,陈彩莲,华长春.混沌控制及其在保密通信中的应用[M].北京:国防工业出版社,2002.
    [20]禹思敏.混沌系统与混沌电路:原理、设计及其在通信中的应用[M].西安:西安电子科技大学出版社,2011.
    [21]张化光,王智良,黄玮.混沌系统的控制论[M].沈阳:东北大学出版社,2003
    [22]Melnikov V. K. On the stability of the center for time periodic perturbations [J]. Trans. Moscow Math. Soc.1963,12:1-56.
    [23]Wiggins S. Introduction to applied nonlinear dynamical systems and chaos [M]. New York:Springer-Verlag.1990.
    [24]Devaney R L. An introduction to chaotic dynamical systems [M]. New York: Addison-Wesley,1989.
    [25]Chua L. O., Komuro M., Matsumoto T. The double scroll family [J]. IEEE Transactions on Circuits and Systems I.1986; 33:1072-1118.
    [26]Sprott J.C. A new class of chaotic circuits [J]. Phys.Lett.A.2000,266:19-23.
    [27]Kraft R. L. Chaos, Cantor Sets, and Hyperbolicity for the Logistic Maps [J]. Amer. Math.1999,106:400-408.
    [28]Gordon W. B. Period Three Trajectories of the Logistic Map [J]. Math. Mag.1996, 69:118-120.
    [29]Chen G. R., Ueta T. Yet another chaotic attractor [J]. Int J Bifurcat Chaos.1999,9: 1465-1466.
    [30]Lu J. H., Chen G. R. A new chaotic attractor coined [J]. Int J Bifurcat Chaos. 2002,12:659-661.
    [31]Liu C. X., Liu T., Liu L., Liu K. A new chaotic attractor [J]. Chaos Solitons Fract. 2004,22:1031-1038.
    [32]Qi G. Y., Chen G. R., Wyk M. A four-wing chaotic attractor generated from a new 3-D quadratic autonomous system [J]. Chaos Solitons Fract.2008,38:705-721.
    [33]Lu J., Yu S., Leung H., Chen G. Experimental verification of multi-directional multi-scroll chaotic attractors [J]. IEEE Trans. Circuits Syst. Ⅰ.2006,53:149-165.
    [34]Yu S., Lu J., Leung H., Chen G. Design and implementation of n-scroll chaotic attractors from a general Jerk circuit [J]. IEEE Trans. Circuits Syst. Ⅰ.2005,52: 1459-1476.
    [35]Yu S., Lu J., Leung H., Chen G. Theoretical Design and Circuit Implementation of Multi-Directional Multi-Torus Chaotic Attractors [J]. IEEE Trans. Circuits Syst. Ⅰ. 2007,54:2087-2098.
    [36]Yu S., Tang W.K.S., Lii J., Chen G. Generation of nxm-Wing Lorenz-like Attractors from a Modified Shimizu-Morioka Model [J]. IEEE Trans. Circuits Syst. Ⅱ,2008, 55:1168-1172.
    [37]Yu S., Lii J., Leung H., Chen G., Yu X. Design and implementation of grid multi-wing butterfly chaotic attractors from a piecewise Lorenz system [J]. IEEE Trans. Circuits Syst. Ⅱ.2010,57:803-807.
    [38]Yu S., Lu J., Leung H., Chen G, Yu X. Generating grid multi-wing chaotic attractors by constructing heteroclinic loops into switching systems [J]. IEEE Trans. Circuits Syst. Ⅱ.2011,58:314-318.
    [39]Kolcarev L., Parlitz U. General approach for chaotic synchronization with applications to communication [J]. Phys.Rev.Lett.1995,74:5028-5032.
    [40]Paragas K., Tamasevicius A. Experimental control of chaos by delayed self-controlling feedback [J]. Phys.Lett. A.1993,180:99-102.
    [41]Jolly K. J., Amritkar R. E. Synchronization of unstable orbits using adaptive control [J]. Phys.Rev.E.1994,49:4883-4888.
    [42]Neiman A. Synehronizationlike phenomena in coupled stochastic bistable systems [J]. Phys.Rev.E.1994,49:3484-3487.
    [43]Rosenblum M. G., Pikovsky A. S., Kurths J. Phase synchronization of chaotic oscillators [J]. Phys.Rev.Lett.1996,76:1804-1807.
    [44]Shallverdiev E. M., Sivaprakasam S., Shore K. A. Lag synchrohizationintion in time-delayed systems [J]. Phys.Lett A.2002,292:320-324.
    [45]Rulkov N F, Sushchik M M, Tsimring L S. Generalized synchronization of chaos in directionally coupled chaotic systems [J]. Phys.Rev.E.1995,51:980-994.
    [46]Yan Z. Y. Q-S (lag or anticipated) synchronization backstepping scheme in a class of continuous-time hyperchaotic systems-A symbolic-numeric computation approach [J].Chaos.2005,15:023902.
    [47]Xu D.L., Chee C.Y. Controlling the ultimate state of projective synchronization in chaotic systems of arbitrary dimension [J]. Phys.Rev.E.2002,66:6218-6225.
    [48]Peng Y. F. Robust intelligent backstepping tracking control for uncertain non-linear chaotic systems using H∞ control technique [J]. Chaos Soliton Fract.2009,41: 2081-2096.
    [49]Wang X.Y., Zhao Q. Tracking control and synchronization of two coupled neurons [J]. Nonlinear Analysis:RWA.2010,11:849-855.
    [50]Li W. L., Liu P. X. Tracking control of biomathematical model of muscular vessel [J].Electr Let.2008,44:31.
    [51]Wang X. Y, Wang M. J. Tracking control for a class of chaotic systems [J]. Int J Mod Phys B.2008,22:1977-1984.
    [52]Samuel B. Tracking control of nonlinear chaotic systems with dynamics uncertainties [J]. J Math Anal Appl.2007,328:842-859.
    [53]闵富红,王执铨.复杂Dynamos混沌系统的追踪控制与同步[J].物理学报.2008,57:31-36.
    [54]李春来,罗晓曙.一类五阶超混沌电路系统的加速追踪控制与投影同步[J].物理学报.2009,58:3759-3764.
    [55]李春来,禹思敏.一个新的超混沌系统及其自适应追踪控制[J].物理学报.2012,61:040504.
    [56]Lu J. H., Chen G. R., Cheng D. Z. Celikovsky'S. Bridge the gapbetween the Lorenz system and the Chen system [J]. Int J Bifurcat Chaos.2002,12:2917-2926.
    [57]Liu W. B., Chen G. R. A New Chaotic System and its Generation [J]. Int.J.Bifur.Chaos.2003,13:261-267.
    [58]刘宗华.混沌动力学基础及其应用[M].北京:高等教育出版社.2006.
    [59]Li Q.D., Yang X.S. A simple method for finding topological horseshoes [J]. Int J Bifurcat Chaos.2010,20:467-478.
    [60]张肃文.高频电子线路[M].北京:高等教育出版社.2009.
    [61]Kennedy J., York J.A. Topological horseshoes [J]. Trans Amer Math Soc.2001,353: 2513-2530.
    [62]Yang X.S. Topological horseshoes and computer assisted verification of chaotic dynamics[J]. Int J Bifurcat Chaos.2009,19:1127-1145.
    [63]Huang W.Z., Huang Y. Chaos, bifurcation and robustness of a class of Hopfield neural networks [J].Int J Bifurcat Chaos.2011,21:885-895.
    [64]Ma C., Wang X.Y. Hopf bifurcation and topological horseshoe of a novel finance chaotic system[J]. Commun Nonlinear Sci Numer Simulat.2012,17:721-730.
    [65]Lin F. Y, Liu J. M.Chaotic radar using nonlinear laser dynamics [J]. IEEE J.Quantum Electron.2004,40:815-820.
    [66]Liu Z, Zhu X. H., Hu W., Jiang F. Principles of chaotic signal radar [J]. Int. J. Bifur. Chaos.2007.17:1735-1739.
    [67]Rossler O. E. An equation for continuous chaos [J]. Phys Lett A.1976; 57:397-404.
    [68]Matsumoto T., Chua L. O., Kobayashi K. Hyperchaos:laboratory experiment and numerical confirmation [J]. IEEE Trans. Circuits Syst.1986,33:1143-1147.
    [69]Li Y. X., Tang W. K. S., Chen G. R.. Hyperchaos evolved from the generalized Lorenz equation [J]. International Journal of Circuit Theory and Applications.2005, 33:235-251.
    [70]Li Y. X., Tang W. K. S., Chen G. R. Generating hyperchaos via state feedback control [J]. Int.J.Bifur.Chaos.2005,15:3367-3375.
    [71]仓诗建.一个新四维非自治超混沌系统的分析与电路实现[J].物理学报.2008,57:1493-1501.
    [72]Barboza R. Hyperchaos in a Chua's circuit with two new added branches [J]. Int.J.Bifur.Chaos.2008,18:1151-1159.
    [73]Barboza R. Dynamics of a hyperchaotic Lorenz system [J]. Int.J.Bifur.Chaos.2007, 17:4285-4294.
    [74]Li Y., Chen G., Tang W.K.S. Controlling a unified chaotic system to hyperchaotic [J]. IEEE Trans Circuit Syst Ⅱ.2005; 52:204-210.
    [75]Gao T., Chen G, Chen Z., Cang S.The generation and circuit implementation of a new hyper-chaos based upon Lorenz system [J].Phys Lett A.2007; 361:78-86.
    [76]Chen A., Lu J., Lii J., Yu S. Generating hyperchaotic Lu attractor via state feedback control [J]. Physica A.2006; 364:103-10.
    [77]Dong E.Z., Chen Z.P., Chen Z.Q., Yusn Z.Z. A novel four-wing chaotic attractor generated from a three-dimensional quadratic autonomous system [J]. Chin. Phys. B. 2009; 18:2680-89.
    [78]Yang Q. G., Liu Y.J. A hyperchaotic system from a chaotic system with one saddle and two stable node-foci [J]. J. Math. Anal. Appl.2009,360:293-306.
    [79]Yang Q. G., Chen G. R. A chaotic system with one saddle and two stable node-foci [J]. Int.J.Bifur.Chaos.2008,18:1393-1414.
    [80]刘崇新.蔡氏对偶混沌电路分析[J].物理学报.2002,51(6):1198-1202.
    [81]Li G H. An active control synchronization for two modified Chua circuits[J]. Chin. Phys. B.2005,14:472-475.
    [82]Zhong G Q. Implementation of Chua's circuit with a cubic nonlinearity [J]. IEEE Trans. Circuits Syst. I.1994,41:934-941.
    [83]Tang K. S., Zhong G.Q., Chen G.R., Man K.F. Generation of n-scroll attractors via sine function[J]. IEEE Trans. Circuits Syst. I.2001,48:1369-1372.
    [84]Yalcin M.E., Suykens J.A.K., Vandewalle J. Experimental confirmation of 3- and 5-scroll attractors from a generalized Chua's circuit [J]. IEEE Trans. Circuits Syst. I. 2000,47:425-429.
    [85]Zhong G., Man K., Chen G A systematic approach to generating n-scroll attractors [J]. Int.J.Bifur.Chaos.2002,12:2907-2915.
    [86]Wang F. Q., Liu C. X. Generation of multi-scroll chaotic attractors via the saw-tooth function [J]. Int J Mod Phys B.2008,22:2399-2405.
    [87]Cafagna D., Grassi G. Hyperchaotic coupled Chua's circuits:An approach for generating new nxm-scroll attractors [J]. Int.J.Bifur.Chaos.2003,13:2537-2550.
    [88]Letellier C., Gilmore R. Covering dynamical systems:Twofold covers [J]. Physical Review E.2001,63:016206.
    [89]Letellier C., Dutertre P., Reizner J., Gouesbet G. Evolution of a multimodal map induced by an equivariant vector field [J]. Journal of Physics A-Mathematical and General.1996,29:5359-5373.
    [90]Gilmore R., Letellier C. Dressed symbolic dynamics [J]. Physical Review E.2003, 67:036205.
    [91]Kuroe Y., Hayashi S. Analysis of bifurcation in power electronic induction motor drive system[C]. IEEE Power Electronics Specialists Conference Rec. Milwaukee, WI, USA,1989:923-930.
    [92]Zeid S. M. An analysis of permanent magnet synchronous motor drive [D]. Newfoundland:Memorial University of Newfoundland,1998.
    [93]唐任远.现代永磁电机的理论与设计[M].北京:机械工业出版社,1997.
    [94]邹国棠.混沌电机驱动及其应用[M].北京:科学出版社,2009.
    [95]韦笃取.永磁同步电动机控制系统混沌行为分析及抑制和镇定[D].广州:华南理工大学,2011.
    [96]Hemati N., Leu M. C. A complete model characterization of brushless DC motors [J]. IEEE Transactions on Industry Applications.1992,28:172-180.
    [97]Hemati N. Strange attractors in brushless DC motor [J]. IEEE Transactions on Circuits and Systems-I.1994,41:40-45.
    [98]曹志彤,郑中胜.电机运动系统的混沌特性[J]中国电机工程学报.1998,18:318-322.
    [99]Zhang B, Li Z, Mao Z Y. Study on chaos and stability in permanent-magnet synchronous motors [J]. Journal of South China Universityof Technology.2000,28: 125-130.
    [100]张波,李忠,毛宗源.电机传动系统的不规则运动和混沌现象初探[J].中国电机工程学报.2001,21:40-45.
    [101]Li Z, Park J, Joo Y, Zhang B, Chen G. Bifurcations and chaos in a permanent-magnet synchronous motor[J]. IEEE Transactions on Circuits and Systems-I.2002,49:383-387.
    [102]张波,李忠,毛宗源.Poincare映射的数值算法及其在永磁同步电机混沌分析中的应[J].控制理论与应用.2001,18:796-800.
    [103]张波,李忠,毛宗源.利用Lyapunov指数和容量维分析永磁同步电动机仿真中混沌现象[J].控制理论与应用.2001,18:589-592.
    [104]Li Z, Zhang B, Mao Z Y. Bifurcations analyse of the permanent-magnet synchronous motors models based on the center manifold theorem [J]. Control theory and application.2001,17:317-320.
    [105]张波,李忠,毛宗源,庞敏熙.一类永磁同步电动机混沌模型与霍夫分叉[J].中国电机工程学报.2001,21:13-17.
    [106]张波,李忠,毛宗源.永磁同步电动机的混沌模型及其模糊建模[J].控制理论与应用.2002,19:841-844.
    [107]Wei D. Q., Zhang B., Qiu D. Y. Effects of current time-delayed feedback on the dynamics of a permanent-magnet synchronous motor [J]. IEEE Transactions on Circuits and Systems-II.2010,57:456-460.
    [108]Jing Z. J, Yu C. Y, Chen G. R. Complex dynamics in a permanent-magnet synchronous motor model [J]. Chaos, Solitons & Fractals.2004,22:831-848.
    [109]任海鹏,刘丁,李洁.永磁同步电动机中混沌运动的延迟反馈控制[J].中国电机工程学报.2003,23:175-178.
    [110]Ataei M., Kiyoumarsi A., Ghorbani B. Control of chaos in permanent magnet synchronous motor by using optimal Lyapunov exponents placement [J]. Physics Letters A.2010,374:4226-4230.
    [111]Zaher A. A. A nonlinear controller design for permanent magnet motors using a synchronization-based technique inspired from the Lorenz system [J]. Chaos.2008, 18:13111.
    [112]Zribi M., Oteafy A., Smaoui N. Controlling chaos in the permanent magnet synchronous motor [J]. Chaos, Solitons & Fractals.2009,41:1266-1276.
    [113]Loria A. Robust linear control of (Chaotic) permanent-magnet synchronous motors with uncertainties [J]. IEEE Transactions on Circuits and Systems-Ⅰ.2009,56: 2109-2122.
    [114]韦笃取,罗晓曙,方锦清,汪秉宏.基于微分几何方法的永磁同步电动机的混沌运动的控制[J].物理学报.2006,51:54-58.
    [115]韩建群,郑萍.永磁同步电动机中混沌运动的滑模控制[J].系统工程与电子技术.2009,31:723-725.
    [116]Harb A. Nonlinear chaos control in a permanent magnet reluctance machine [J]. Chaos, Solitons & Fractals.2004,19:1217-1224.
    [117]李春来.永磁同步电动机中基于冲洗滤波技术的混沌控制研究[J].物理学报.2009,58:8134-8138.
    [118]吴忠强,谭拂晓.永磁同步电动机混沌系统的无源化控制[J].中国电机工程学报.2006,18:159-163.
    [119]Poursamad A., Markazi A. H. D. Adaptive fuzzy sliding-mode control for multi-input multi-output chaotic systems [J]. Chaos, Solitons & Fractals.2009,42: 3100-3109.
    [120]李洁,任海鹏.永磁同步电动机中混沌运动的部分解耦控制[J].控制理论与应用.2005,22:637-640.
    [121]Belkhouche F., Singh B. N., Qidwai U. On the approximation of the state equations of nonlinear permanent magnet synchronous motors [C]. Industrial Electronics, 2006 IEEE International Symposium on, pp 2292-2296.
    [122]Belkhouche F., Qidwai U., Belkhouche B. Least squares linearization of a nonlinear permanent magnet synchronous motor [J]. Computers & Mathematics with Applications.1996,31:69-84.
    [123]Coria L. N., Starkov K. E. Bounding a domain containing all compact invariant sets of the permanent-magnet motor system [J]. Communications in Nonlinear Science and Numerical Simulation.2009,14:3879-3888.
    [124]Wei D. Q., Zhang B., Qiu D. Y. Effects of current time-delayed feedback on the dynamics of a permanent-magnet synchronous motor [J]. IEEE Transactions on Circuits and Systems-II.2010,57:456-460.
    [125]Podlubny I. Fractional differential equations [M]. San Diego:Academic Press; 1999.
    [126]Butzer P. L, Westphal U. An introduction to fractional calculus [M]. Singapore: World Scientific; 2000.
    [127]Mandelbort B. B. The fractal geometry of nature [M]. New York:Freeman; 1983.
    [128]Hilfer R. Applications of fractional calculus in physics [M]. New Jersey:World Scientific; 2001.
    [129]Das S. Functional fractional calculus for system identification and controls, first ed [M]. New York:Springer; 2008.
    [130]Hartley T., Lorenzo C., Qammer H. Chaos in a fractional order Chua's system [J]. IEEE Transactions on Circuits and Systems I.1995,42:485-490.
    [131]Gao X., Yu J.B. Chaos in The Fractional Order Periodically Forced Complex Duffing's Oscillators [J]. Chaos, Solitons & Fractals.2005,24:1097-1104.
    [132]Grigorenko I., Grigorenko E. Chaotic Dynamics of the Fractional Lorenz System [J]. Phys. Rev. Lett.2003,91:034101-4.
    [133]Lu J., Chen G. A Note on the Fractional-Order Chen System. Chaos, Solitons & Fractals.2006,27:685-688.
    [134]Lu J. G. Chaotic dynamics of the fractional order Lii system and its synchronization [J]. Phys Lett A.2006,354:305-311.
    [135]Li C., Chen G. Chaos and hyperchaos in the fractional order Rossler equations [J]. Phys A:Stat Mech Appl.2004,341:55-61.
    [136]Arena P., Caponetto R. Bifurcation and Chaos in Noninteger Order Cellular Neural Networks [J]. Int J. Bifurcat. & Chaos.1998,8:1527-1539.
    [137]Deng W. H., Lu J. H. Design of Multi-Directional Multi-Scroll Chaotic Attractors Based on Fractional Differential Systems [C]. IEEE International Symposium on Circuits and Systems. New Orleans, LA,2007,217-220.
    [138]Matignon D. Stability result on fractional differential equations with applications to control processing [M]. In:Imacs-Smc proceedings. Lille, France.1996,963-968.
    [139]Diethelm K., Ford N. J. Analysis of fractional differential equations [J]. J Math Anal Appl.2002,265:229-248.
    [140]Deng W., Li C. Chaos synchronization of the fractional Lu system [J]. Physica A. 2005,353:61-72.
    [141]Zhu H., Zhou S., He Z. Chaos, synchronization of the fractional-order Chen's system [J]. Chaos Soliton Fract.2009,41:2733-40.
    [142]Yang Q. G., Zeng C. B. Chaos in fractional conjugate Lorenz system and its scaling attractors[J]. Commun Nonlinear Sci Numer Simulat.2010,15:4041-4051.
    [143]Ahmed E., El-Sayed A.M.A., El-Saka H.A.A. On some Routh-Hurwitz conditions for fractional order differential equations and their applications in Lorenz, Rossler, Chua and Chen systems [J]. Phys Let A.2006,358:1-4.
    [144]Matouk A. E. Chaos, feedback control and synchronization of a fractional-order modified Autonomous Van der Pol-Duffing circuit [J]. Commun Nonlinear Sci Numer Simulat.2011,16:975-986.
    [145]Zhang K., Wang H., Fang H. Feedback control and hybrid projective synchronization of a fractional-order Newton-Leipnik system [J]. Commun Nonlinear Sci Numer Simulat.2012,17:317-328.
    [146]Diethelm K., Ford N. J., Freed A. D. A Predictor-Corrector Approach for the Numerical Solution of Fractional Differential Equations [J]. Nonlinear Dynamics. 2002,29:3-22.
    [147]Yang C., Tao C.H., Wang P. Comparison of feedback control methods for a hyperchaotic Lorenz system [J]. Phys. Lett. A.2010,374:729-735
    [148]Li C.D., Feng G, Liao X.F. Stabilization of Nonlinear Systems via Periodically Intermittent Control [J]. IEEE Trans. Circuits Syst. Ⅱ.2007,54:1019-1026.
    [149]Ma J., Wang Q.Y., Jin W.Y., Xia Y.F. Control Chaos in Hindmarsh-Rose Neuron by Using Intermittent Feedback with One Variable [J]. Chin.Phys.Lett.2008,25: 3582-3586.
    [150]Zheng J.L. A simple universal adaptive feedback controller for chaos and hyperchaos control [J]. Comput. Math. Appl.2011,61:2000-2006.
    [151]Sontag E. Smooth stabilization implies coprime factorization [J]. IEEE Trans. Autom. Control.1989,34:435-443.
    [152]Liu J., Liu X., Xie W. Input-to-state stability of impulsive and switching hybrid systems with time-delay [J]. Automatica.2011,47:899-908.
    [153]Sontag E. Comments on integral variants of ISS [J]. Syst.Control Lett.1998,34: 93-100.
    [154]Sontag E., Wang Y. On characterizations of the input-to-state stability property [J]. Syst. Control Lett.1995,24:351-359.
    [155]Stenflo L. Generalized Lorenz equations for acoustic-gravity waves in the atmosphere [J]. Phys Scr.1996,53:83-88.
    [156]陈菊芳,岳丽娟,彭建华.超混沌五阶自电路的设计及实验结果[J].东北师范大学学报(自然科学版).2000,32:26-29.
    [157]王光义,郑燕,刘敬彪.一个超混沌Lorenz吸引子及其电路实现[J].物理学报.2007,56:3113-3120.
    [158]虞文锦Bonhoeffer-van der Pol振子的自适应混沌控制分析[J].科技创新导报.2008.13:32-33.
    [159]刘扬正.超混沌Lu系统的电路实现[J].物理学报.2008,57:1439-1443.
    [160]王兴元,王明军.超混沌Lorenz系统[J].物理学报.2007,56:5136-5141.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700