新型仿人机器人关节用永磁球形步进电机控制算法及驱动器研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着现代工业技术的不断发展,电机设计研究领域的不断深入,国内外学者相继开发研究了各种新型的多自由度三维电机。三自由度球形电机设计概念及样机的出现,使得机器人关节的空间三维运动可以在一个较小的工作空间中完成,简化了系统结构,减小了机构体积,有利于提高系统的动、静态性能和定位精度。然而,各类球形电机的控制相关问题的研究较为匮乏,始终是限制其发展和实用化的瓶颈。永磁球形步进电机作为一种新型的三自由度步进式结构球形电机,与其它结构模式的球形电机相比,无需叠片结构,具有力能指标高、运行原理相对简单、便于制造实现等优点。本文针对永磁球形步进电机的控制,就电机转矩建模,转子动力学建模,控制方式和算法,控制驱动器设计等方面展开了探讨。
     本文的主要工作具体包括:
     1.在简要介绍永磁球形步进电机结构特点及磁场转矩计算的基础上,将电机矩角特性细分为三类加以计算并作拟合,总结出简化的电机转矩模型与表达式。
     2.简化了电机的整体模型,用瞎子爬山法针对永磁球形步进电机单步步进运动时,单个或两个定子线圈通电,转子球可能运行的稳定位置进行了计算,为继电器控制模式下的电机转子位置提供了参考。
     3.在永磁球形步进电机继电器控制模式下,基于四元数旋转,提出了一种运动轨迹分段绕定轴旋转的开环控制算法,解决了电机做定点运动时可完成的运动轨迹有限的问题。
     4.运用卡尔丹角旋转结合拉格朗日第二类方程,建立了转子固连坐标系下电机转子动力学模型,解决了长期以来永磁球形步进电机转子运动没有一个精确的数学模型,无法在运动力学上结合电机转矩进行定量分析的问题。
     5.把电流控制方案应用在永磁球形步进电机的控制中,提出闭环控制。针对空载状态下电机转子作定点(PTP)运动的情况应用了PD控制算法。针对空载状态下电机转子作连续轨迹(CP)运动的情况引入了具有偏置的PD控制算法。使永磁球形步进电机不仅可以完成简单的PTP运动任务,也可以做到复杂的CP运动。
     6.提出了一种基于输入—输出稳定性理论的控制算法,以完成空载状态下CP运动的控制任务,该算法无需转子各轴向的加速度反馈信号,减轻了转子位置检测系统的压力。在该算法的基础上,提出了自适应控制算法和变结构控制算法。以适应电机负载运行时,转子各轴向转动惯量发生变化,电机仍需完成CP运动的控制要求。解决了一直以来,各控制算法及方案均要假设电机空载运行的问题,拓展了永磁球形步进电机的应用范围。
     7.完成了各类控制算法的仿真实例,分别针对继电器控制方案和电流控制方案提供了控制系统的完整解决方案,设计了永磁球形步进电机控制驱动器。
With the continuous development of the technology and the expansion of the research on the motor, all kinds of novel multi-degree-of-freedom motors were designed one after the other by the scholars all of the world. While the idea and the prototype of the three-degree-of-freedom (three DOF) motor came into being, it is more convenient to realize the motion of the robot joint where the demand on workspace is low but three DOF is required. It also combines the merits of simplified system construction, minimized machine volume, improved dynamic and static performance with high position accuracy. However, control relative problems have seldom been discussed which becomes the bottleneck of the development and practicability of the three DOF motors. The permanent magnet spherical stepper motor (PMSSM) is a novel three DOF stepping configuration spherical motor that laminations are not required, so the realization of a prototype is much easier. It has higher energy and simple working principle with respect to other spherical motors. In view of control problems of the PMSSM, this dissertation is devoted to an in-depth study on the torque model, dynamic model of the rotor, control strategy and algorithm, design of the driver and the controller and so on.
     The main contribution of this dissertation includes:
     1. Based on the simple presentation of the configuration characteristic and the calculation of the magnetic field and torque of the PMSSM, the torque-angle characteristic is divided into three kinds to calculate. Then the curves of the torque are approximated with different functions. The simplified torque model and the expressions are concluded.
     2. The whole model of the motor was simplified to a system using active solenoids. The possible stable positions of the rotor with one or a pair of active stator coils are discussed using Hill-Climbing method while the motor is in stepping mode. It affords the reference of the rotor position for the relay control mode.
     3. One open loop control algorithm based on quaternion rotation for the PMSSM in relay control mode is proposed. It divides the kinetic trajectory into sections. Thus each segment corresponds one arc and circles around one fixed axis individually, and the continuous movement of the rotor is feasible. This solves the problem of the limited motion trajectory while in point-to-point motion.
     4. The dynamic model of the rotor expressed with Cardan angle rotation was set up in rotor-fixed coordinates frame using Lagrange equation of second kind. The problem that the PMSSM has no exact mathematical description leading to the trouble of quantitative analysis combined with the torque model and the dynamic model is then resolved.
     5. The current control method is applied in the controller to construct the closed loop control of the PMSSM. Later the PD control algorithm for the point-to-point (PTP) motion and the adjusted PD control algorithm for the continuous path (CP) motion in unloaded mode are presented. So the PMSSM can accomplish not only the PTP motion but also the CP motion.
     6. One control algorithm is designed based on input-output stability theory for the CP motion in unloaded mode. It can drive the motor without the angular accelerations feedback, which reduces the pressure on the position measuring system. Inheriting the advantage of this algorithm, the adaptive control algorithm and the switching control algorithm applied in the situation that the load affected the rotation inertia of the axes are developed to satisfy the requirements of the CP motion. It resolves the problem of assuming the unloaded mode for all the existent control algorithms. It has extended the applications of the PMSSM significantly.
     7. The simulation examples of all the control algorithms are accomplished. The entire solvent of the control system based on the relay control and the current control are presented, also the driver and controller for the permanent magnet spherical stepper motor is developed.
引文
[1]黄声华。三维电动机及其控制系统[M]。武汉:华中理工大学出版社,1998。
    [2]程树康,蔡鹤皋等。新型电驱动控制系统及其相关技术[M]。北京:机械工业出版社,2005。
    [3][M], 1956。
    [4]F. Williams, E. laithwaite and G. F. Eastham, "Development of Design of Spherical Induction Motors,"[J]Proc. IEE, Vol. 106A, pp.471-484, December 1959.
    [5]Kok-Meng Lee, George Vachtsevanos and ChiKong Kwan, "Development of a Spherical Stepper Wrist Motor,"[C]IEEE Int. Conf. on Robotics and Automation, pp.267-272, April 1988.
    [6]苏仲飞,刘昌旭,韦平顺等。机器人关节用三自由度球形直流伺服电机[J]。高技术通讯,1994,4(8):16-18。
    [7]Gregory S. Chirikjian and David Stein, "Kinematic Design and Commutation of a Spherical Stepper Motor,"[J]IEEE/ASME Trans. on Mechatronics, Vol. 4, No. 4, pp. 342-353, December 1999.
    [8]Purczynski J., Calculation of Power Losses and Driving Torque in Spherical Symmetry Induction Motor, Archiv fur Elektrotechnic, 1986.
    [9]Davey, K., Vachtsevanos, G. and Powers, R, "The Analysis of Fields and Torques in Spherical Induction Motors,"[J]IEEE Trans. on Mag., Vol. 23, No. 1, pp. 273-282, 1987.
    [10]http://www.me.gatech.edu/aimrl/
    [11]Kok-Meng Lee and Chi-kong Kwan, "Design Concept Development of a Spherical Stepper For Robotic Applications,"[J]IEEE Trans. on Robotics and Automation, Vol. 7, No. 1, pp. 175-181, February 1991.
    [12]Kok-Meng Lee and Jianfa Pei, "Kinematic Analysis of a Three Degree-of-Freedom Spherical Wrist Actuator, [C]the 5th Int. Conf. on advanced Robotics, Pisa, Italy, pp. 72-77, June 1991.
    [13]Zhi Zhou and Kok-Meng Lee, "Real-Time Motion Control of a Multi-Degree-of-Freedom Variable Reluctance Spherical Motor,"[C]IEEE Int. Conf. on Robotics and Automation, Minneapolis, Minnesota, USA, pp. 2859-2864, April 1996.
    [14]Dan E. Ezenekwe and Kok-Meng Lee, "Design of Air Bearing System for Fine Motion Application of Multi-DOF Spherical Actuators,"[C]IEEE/ASME Int. Conf. on Advanced Intelligent Mechatronics, Atlanta, USA, pp. 812-818, September 1999.
    [15]Harry Garner, Martin Klement and Kok-Meng Lee, "Design and Analysis of an Absolute Non-Contact Orientation Sensor for Wrist Motion Control,"[C]IEEE/ASME Int. Conf. on Advanced Intelligent Mechatronics Proceedings, Como, Italy, pp. 69-74, July 2001.
    [16]Kok-Meng Lee and Raye A. Sosseh, "Effects of Fixture Dynamics on Back-Stepping Control of a VR Spherical Motor,"[C]the 7th Int. Conf. on Control, Automation and Robotics and Vision, Singapore, pp. 384-389, December 2002.
    [17]Raye A. Sosseh and Kok-Meng Lee, "Finite Element Torque Modeling For the Design of a Spherical Motor,"[C]the 7th Int. Conf. on Control, Automation and Robotics and Vision, Singapore, pp. 390-395, December 2002.
    [18]Kok-Meng Lee and Debao Zhou, "A Spherical Encoder for Real-Time Measurements of Three-DOF Wrist Odentations,"[C]Proceedings of the 2003 IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, Las Vegas, USA, pp. 1596-1601, October 2003.
    [19]Kok-Meng Lee and Debao Zhou, "A Real-Time Optical Sensor for Simultaneous Measurement of Three-DOF Motions,"[J]IEEE/ASME Trans. on Mechatronics, Vol. 9, No. 3, pp. 499-507, September 2004.
    [20]Kok-Meng Lee, Jeffry Joni and Hungsun Son, "Design Method for Prototyping a Cost-Effective VR Spherical Motor,"[C]IEEE Conf. on Robotics, Automation and Mechatronics, Singapore, pp. 542-547, December 2004.
    [21]Kok-Meng Lee, Zhiyong Wei and Jeffry Joni, "Parametric Study on Pole Geometry and Thermal Effects of a VRSM,"[C]IEEE Conf. on Robotics, Automation Mechatronics, Singapore, pp. 548-553, December 2004.
    [22]Kok-Meng Lee, Hungsun Son and Jeffry Joni, "Concept Development and Design of Spherical Wheel Motor (SWM),"[C]Proceedings of the 2005 IEEE Int. Conf. on Robotics and Automation, Barcelona, Spain, pp. 3652-3657, April 2005.
    [23]Kok-Meng Lee and Hungsun Son, "Torque Model for Design and Control of a Spherical Wheel Motor,"[C]Proceedings of the 2005 IEEE/ASME Int. Conf. on Advanced Intelligent Mechatronics, Monterey, USA, pp. 335-340, July 2005.
    [24]J. Wang, G. W. Jewell and D. Howe, "Modeling of a Novel Spherical Permanent Magnet Actuator,"[C]Proceedings of the 1997 IEEE Int. Conf. on Robotics and Automation, Albuquerque, USA, pp. 1190-1195, April 1997.
    [25]Jiabin Wang, Geraint W. Jewell and David Howe, "A Novel Spherical Actuator: Design and Control,"[J]IEEE Trans. on Magnetics, Vol. 33, No. 5, pp. 4209-4211, September 1997.
    [26]J. Wang, G. W. Jewell and D. Howe, "Analysis, Design and Control of a Novel Spherical Permanent-Magnet Actuator,"[J]IEE Proc.-Electr. Power Appl., Vol. 145, No. 1, pp. 61-71 January 1998..
    [27]Jiabin Wang, Weiya Wang, Geraint W. Jewell and David Howe, "A Novel Spherical Permanent Magnetic Actuator with Three Degrees-of-Freedom,"[J]IEEE Trans. on Magnetics, Vol. 34, No. 4, pp. 2078-2080, July 1998.
    [28]J. Wang, K. Mitchell, G. W. Jewell and D. Howe, "Multi-Degree-of-Freedom Spherical Permanent Magnet Motors,"[C]Proceedings of the 2001 IEEE Int. Conf. on Robotics and Automation, Seoul, Korea, pp. 1798-1805, May 2001.
    [29]W. Wang, J. Wang, G. W. Jewell and D. Howe, "Design and Control of a Novel Spherical Permanent Magnet Actuator with Three Degrees of Freedom,"[J]IEEE/ASME Trans. on Mechatronics, Vol. 8, No. 4, pp. 457-468, December 2003.
    [30]http://www.shef.ac.uk/eee/emd/brochure2004.pdf
    [31]K. Kahlen and R. W. De Doncker, "Current Regulators for Multi-Phase Permanent Magnet Spherical Machines,"[C]Proceedings of IEEE Conf. on Industry Applications, 35th IAS Annual Meeting, pp. 2011-2016, October 2000.
    [32]Klemens Kahlen, Ingo Voβ and Rik W. De Doncker, "Control of Multi-Dimensional Drives with Variable Pole Pitch,"[C]Proceedings of IEEE Conf. on Industry Applications, 37th IAS Annual Meeting, pp. 2366-2370, October 2002.
    [33]Klemens Kahlen, Ingo Voss, Christian Priebe and Rik W. De Doncker, "Torque control of a spherical machine with variable pole pitch,"[J]IEEE Trans. on Power Electronics, Vol. 19, No. 6, pp. 1628-1634, November 2004.
    [34]诸静。球形电机及其运动轨迹控制[J]。中国电机工程学报,1993,13(5):51-56。
    [35]诸静。机器人球关节电机及其控制器研究[J]。中国电机工程学报,1994,14(5):27-32。
    [36]黄声华,陶醒世,林金铭。三维电动机的电磁模型[J]。电工技术学报,1994,9(4):17-20。
    [37]黄声华,陶醒世,林金铭。三维电动机的矢量控制[J]。电工技术学报,1995,10(4):20-24。
    [38]黄声华,陶醒世,林金铭。三维电动机力学模型及解耦控制[J]。电工技术学报,1996,11(1):12-16。
    [39]万山明,黄声华,傅光洁,马志云。三维电动机的矢量控制及驱动电路[J]。华中理工大学学报,1997,25(1):44-46。
    [40]黄声华,万山明,傅光洁,马志云。三自由度电动机自适应控制[J]。电工技术学报,1998,13(1):1-4。
    [41]黄声华,万山明。三维电动机的能量回馈控制[J]。电力电子技术,1998,(1):37-39。
    [42]万山明,黄声华,傅光洁,马志云。空间坐标系中的三维电动机[J]。中国电机工程学报,1998,18(5):305-309。
    [43]阮江军,黄声华。球形电动机磁场和电磁转矩计算[J]。武汉水利电力大学学报。1998,31(6):43-46。
    [44]蔡炜,黄声华。三维电动机位置辨识研究[J]。船电技术,2000,(1):22-29。
    [45]程树康、崔淑梅,刘宝廷等。正交圆柱结构双气隙共磁钢三自由度电动机初探[J]。中国电机工程学报,1997,17(5):294-298。
    [46]崔淑梅,柴凤,程树康。正交圆柱结构三维电动机磁系统分析[J]。微特电机,1999,27(6):26-28。
    [47]邹继明,崔淑梅,宋凯,程树康。非球形正交圆柱结构两自由度电动机[J]。高技术通讯,2000,10(5):63-64。
    [48]邹继明,崔淑梅,程树康。多自由度(旋转)电动机的发展[J]。高技术通讯,2000,10(10):102-105。
    [49]邹继明,杨世彦,程树康,郝燕玲。两自由度电动机速度雅可比矩阵[J]。微电机,2003,36(3):21-23。
    [50]邹继明,尚静,郝燕玲,程树康。两自由度电动机速度雅可比矩阵的伪逆阵[J]。微电机,2006,39(4):1-3。
    [51]邹继明。多自由度电动机及其运动控制的基础研究[D]。哈尔滨工业大学博士学位论文,2000。
    [52]David Stein, "Design of a Spherical Stepper Motor System,"[D]Johns Hopkins University Ph. D. dissertation, Baltimore, USA, August 2001.
    [53]David Stein and Gregory S. Chirikjian, "Experiments in the Commutation and Motion Planning of a Spherical Stepper Motor,"[C]ASME 2000 Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Baltimore, USA, September 2000.
    [54]Raye Abdoulie Sosseh, "Finite Element Torque Modeling and Backstepping Control of a Spherical Motor,"[D]Gerogia Institute of Technology Ph.D. dissertation, USA, 2001.
    [55]Liang Yan, I-Ming Chert, Chee Kian Lim, Guilin Yang, Wei Lin and Kok-Meng Lee, "Torque Modeling of a Spherical Actuator Based on Lorentz Force Law,"[C]Proceedings of the 2005 IEEE Int. Conf. on Robotics and Automation, Barcelona, Spain, pp. 3646-3651, April 2005.
    [56]Liang Yan, I-Ming Chen, Chee Klan Lim, Guilin Yang, Wei Lin and Kok-Meng Lee, "Experimental Investigation on the Magnetic Field of a Permanent Magnet Spherical Actuator,"[C]Proceedings of the 2005 IEEE/ASME Int. Conf. on Advanced Intelligent Mechatronics, Monterey, USA, pp. 347-352, July 2005.
    [57]Liang Yah, I-Ming Chen, Ouilin Yang, and Kok-Meng Lee, "Analytical and Experimental Investigation on the Magnetic Field and Torque of a Permanent Magnet Spherical Actuator," [J]IEEE/ASME Trans. on Mechatronics, Vol. 11, No. 4, pp. 409-419, August 2006.
    [58]http://www.jhu.edu/news_info/news/home01/jan01/sphere2.html
    [59]David Stein, Gregory S. Chirikjian and Edward R. Scheinerman, "Theory, Design, and Implementation of a Spherical Encoder,"[C]Proceedings of the 2001 IEEE Int. Conf. on Robotics and Automation, Seoul, Korea, pp. 1773-1779, May 2001.
    [60]David Stein, Edward R. Scheinerman and Gregory S. Chirikjian, "Mathematical Models of Binary Spherical-Motion Encoders,"[J]IEEE/ASME Conf. on mechatronics, Vol. 8, No. 2, pp. 234-244, June 2003.
    [61]吴立建,王群京,杜世俊,倪有源。磁场积分法在永磁步进球形电动机场分析中的应用[J]。中国电机工程学报[J].2004,24(9):192-197。
    [62]吴立建。稀土永磁球形电动机的研究[D]。合肥工业大学硕士学位论文,2004。
    [63]Qungjing Wang, Zheng Li et al, "Calculation of Torque in a Permanent Magnet Spherical Stepper Motor Using Maxwell Stress Tensor Method,"[C]Proceedings of the 15th Conf. on the Computation of Electromagnetic Fields, pp. 108-109, June, 2005.
    [64]Qunjing Wang, Zheng Li, Youyuan Ni and Kun Xia, "3D Magnetic Field Analysis and Torque Calculation of a PM Spherical Motor,"[C]The 8th Int. Conf. on Electrical Machines and Systems, pp. 2116-2120, September 2005.
    [65]Qunjing Wang, Zheng Li, Youyuan Ni and Weidong Jiang, "Magnetic Field Computation of a PM Spherical Stepper Motor Using Integral Equation Method,"[J]IEEE Trans. on Magnetics, Vol. 42, No. 4, pp. 731-734, April 2006.
    [66]王群京,李争,夏鲲,姜卫东,赵涛。新型永磁球形步进电动机结构参数及转矩特性的计算与分析[J]。中国电机工程学报,2006,26(10):158-165。
    [67]李争。仿人机器人关节用永磁球形步进电机的基础研究[D]。合肥工业大学博士学位论文,2006。
    [68]Kok-Meng Lee, Qiang Li and Hungson Sun, "Effects of Numerical Formulation on Magnetic Field Computation Using Meshless Methods,"[J]IEEE/ASME Trans. on Magnetics, Vol. 42, No. 9, pp. 2164-2171, September 2006.
    [69]张志涌等编著。精通MATLAB6.5版[M]。北京:北京航空航天大学出版社,2003。
    [70]William H.Hayt,Jr.,John A.Buck著,徐安士,周乐柱译。工程电磁学[M]。北京:电子工业出版社,2000。
    [71]樊明武,颜威利。电磁场积分方程法[M]。北京:机械工业出版社,1988。
    [72]郑崇友等。几何学引论[M]。北京:高等教育出版社,2000。
    [73]王群京,陈丽霞,李争,倪有源。永磁球形步进电动机运动控制方法[J]。微特电机,2005,33(12):5-7。
    [74]王群京,陈丽霞,吴立建,倪有源。基于加权无向图的永磁球形步进电机运动控制[J]。中国电机工程学报,2005,25(9):130-134。
    [75]王群京.陈丽霞,李争,姜卫东。基于光电传感器编码的永磁球形步进电机运动控制[J]。中国电机工程学报,2005,25(7):113-117。
    [76]Qunjing Wang, Zheng Li, Lixia Chen and Kun Xia, "The Motion Control Algorithm and Orientation Detection Methodology of a Spherical Stepper Motor,"[C]Proceedings of the 2005 IEEE Int. Conf. on Information Acquisition, Hong Kong and Macau, China, pp. 65-71, June 2005.
    [77]王群京,李争,夏鲲,陈丽霞,张学。一种新型永磁球形步进电动机的研究[J]。高技术通讯,2005,15(12):41-46。
    [78]Zheng Li, Qunjing Wang, Xiaohua Bao and Kun Xia, "Motion Control Algorithm and Kinematic Analysis of a Spherical Stepper Motor,"[C]The 8th Int. Conf. on Electrical Machines and Systems, pp. 1659-1664, September 2005.
    [79]陈丽霞。稀土永磁球形步进电机的控制方式研究[D]。合肥工业大学硕士学位论文,2005。
    [80]刘延柱,高等动力学[M]。北京:高等教育出版社,2001。
    [81]夏平畴。永磁机构[M]。北京:北京工业大学出版社,2000。
    [82]《数学手册》编写组编。数学手册[M]。北京:高等教育出版社,1979。
    [83]B.H.勃拉涅茨,什梅格列夫斯基。四元数在刚体定位问题中的应用[M]。梁振和译。北京:国防工业出版社,1977。
    [84]王宗培等著。步进电动机及其控制系统[M]。哈尔滨:哈尔滨工业大学出版社.1984。
    [85]陈理璧编著。步进电动机及其应用[M]。上海:上海科学技术出版社,1985。
    [86]刘宝廷等编。步进电动机及其驱动控制系统[M]。哈尔滨:哈尔滨工业大学出版社,1997。
    [87]霍伟。机器人动力学与控制[M]。北京:高等教育出版社,2005。
    [88]郑大钟编著。线性系统理论[M]。北京:清华大学出版社,1990。
    [89]Derek P. Atherton, "Stability of Nonlinear Systems,"[M]England: Research Studies Press, 1981.
    [90]Jean-Jacques E. Slotine and Weiping Li, "Applied Nonlinear Control,"[M]USA: Pearson Education, Inc., Prentice-Hall, Inc., 1991.
    [91]C.A. Desoer and M. Vidyasagar, "Feedback Systems: Input-Output Properties,"[M]New York: Academic Press, 1975.
    [92]J. P. Lasalle, "The Stability of Dynamical Systems,"[M]England: Society for Industrial and Applied Mathematics, 1976.
    [93]叶敏,肖龙翔编著。分析力学[M]。天津:天津大学出版社,2001。
    [94]李颖,朱伯立,张威编。Simulink动态系统建模与仿真基础[M]。西安:西安电子科技大学出版社,2004。
    [95]王庭树著。机器人运动学及动力学[M]。西安:西安电子科技大学出版社,1990。
    [96]李言俊,张科编著.自适应控制理论及应用[M]。西安:西北工业大学出版社,2005。
    [97]高为炳著。变结构控制的理论及设计方法[M]。北京:科学出版社,1990。
    [98]刘金琨著。滑模变结构控制MATLAB仿真[M]。北京:清华大学出版社,2005。
    [99]王灏,毛宗源著.机器人的智能控制方法[M]。北京:国防工业出版社,2002.
    [100]申铁龙著。机器人鲁棒控制基础[M]。北京:清华大学出版社,2000。
    [101]王耀南著。机器人智能控制工程[M]。北京:科学出版社,2004。
    [102]吴秀清,周荷琴编著。微型计算机原理与接口技术[M]。合肥:中国科学技术大学出版社,2001。
    [103]寇金桥,陈伟海,于守谦.球形电机电流控制器设计[J]。计算机测量与控制,2005,13(8):790-792。
    [104]周立功,夏宇闻等编著。单片机与CPLD综合应用技术[M]。北京:北京航空航天大学出版社,2003。
    [105]粱龙学。一种新型高精度数控直流电流源[J]。兰州交通大学学报,2005.24(6):100-102。
    [106]http://focus.ti.com.cn/cn/docs/prod/folders/print/xtr110.html
    [107]周杏鹏。XTR110单片精密电压—电流转换器的原理与应用[J]。自动化仪表,1996,17(9):38-40。
    [108]马忠梅,籍顺心,张凯,马岩编著。单片机的C语言应用程序设计[M]。北京:北京航空航天大学出版社,1999。
    [109]黄俊,王兆安编。电力电子变流技术[M]。北京:机械工业出版社,2001。
    [110]刘和平,严利平,张学锋,卓清锋编著。TMS320LF240xDSP结构、原理及应用[M]。北京:北京航空航天大学出版社,2002。
    [111]王晓明,王玲编著。电动机的DSP控制——TI公司DSP应用[M]。北京:北京航空航天大学出版社,2004。
    [112]周渊深。电力电子技术与MATLAB仿真[M]。北京:中国电力出版社,2005。

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700