气动比例系统的动态特性与控制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
气动系统以其结构简单、无污染、性价比高、维修方便以及抗干扰能力强等优点,被广泛应用于化工、医药、纺织、微电子、生物工程等工业自动化领域中。气动比例技术的出现,使气动系统从逻辑控制领域扩展到比例/伺服控制领域。但是由于气动系统固有的非线性、刚度小、阻尼比小以及固有频率低等缺点,使得气动比例系统定位技术进展缓慢,其控制精度和工作性能难以达到理想的效果,从而限制了气动系统在工业领域中的推广及应用。本文主要以提高气动比例系统的控制精度为目标,通过分析其摩擦力及动态特性,对系统的摩擦非线性补偿及智能控制策略进行研究。
     文中综述了气动比例系统的特点及发展状况,分析气动系统的摩擦补偿技术,阐述智能控制技术在该领域中的研究与应用。在深入分析气动比例系统的工作性能及特点的基础上,研究系统的摩擦机理,并且通过叠加高频低幅颤振信号补偿系统的摩擦力,结合气动比例系统的非线性特征,研究了智能混合控制器,获得系统良好的控制精度。
     首先,研究叠加高频低幅颤振信号补偿摩擦力的理论。为克服摩擦力给系统带来的稳态误差和低速爬行问题,通常是通过提高运动部件的加工精度和改进系统的润滑条件来减少系统的摩擦力。在气动比例系统中,可以通过改进气缸的机械结构,或者采用高精度新型气缸等措施来减少非线性摩擦对系统运动性能的影响,但是由于这种方法会使成本显著增加,也不可能最终消除非线性摩擦,从而影响系统的定位精度和轨迹跟踪精度。因此,必须从根本上对其进行研究,采用现代控制理论与摩擦补偿来减小非线性对系统运动精度的影响。
     基于粘弹性理论发展气动比例系统的摩擦数学模型。将该摩擦模型引入阀控缸系统的动态模型中,对系统的模态参数进行识别,建立系统完整的运动模型。通过研究系统的摩擦机理并对系统进行叠加颤振信号后的稳定性理论分析,系统部分静摩擦力转化为动摩擦力,最大静摩擦力减小,响应速度提高,从而将系统的粘滑运动转换为一种平稳运动。当颤振频率近似等于系统固有频率时,系统产生共振现象,当颤振频率为固有频率的3.3倍时,系统在不同的幅值下的定位精度均有提高。信号幅值与负载关系为A=0.005F+1.0333时,系统的滞后时间由原来的0.17s缩短为0.02s。
     其次,研究气动比例系统的智能混合控制策略,有效克服系统的非线性。智能控制采用各种智能化技术实现复杂系统和其它系统的控制目标,是一种具有强大生命力的新型自动控制技术。控制的目的就是根据控制对象的特性开发出适合系统特征的控制器,从而可以得到良好的控制性能。由于系统在运动过程中受工作负载、气源压力、气体流量和静态工作点等各因素的影响,气动比例系统属于典型的时变非线性系统。因此,严格地来讲,没有任何一种控制方法能够适用于被控对象的整个控制过程,控制策略单纯采用常规控制,很难取得令人满意的效果,必须根据不同的控制对象寻找最适合的控制策略。
     针对气动比例系统的非线性特点,将神经模糊控制引入到专家控制中,形成一种综合的实时智能混合控制策略。该控制器既具有专家控制的逻辑推理、模拟人的高级智能行为的能力,又具有神经模糊控制的直觉推理能力,将两种控制策略结合实现了并行控制与知识共享。研究发现,该混合控制结构响应快,控制性能高,兼顾快速性和灵活性,对于系统的任意轨迹跟踪具有较高的控制性能,对外干扰的鲁棒性较强。
     再次,研究气动比例阀控缸系统动态模型,描述系统的气源压力、气体流量及工作负载等工作参数对系统定位精度的影响规律。对影响系统动态特性的主要影响因素进行理论分析与实验研究发现,系统的控制性能受气源压力的影响最大,气体流量次之,工作负载最小。对不同的气源压力、气体流量及工作负载下的定位精度进行多元非线性回归分析,建立系统的定位精度与动态参数之间的关系方程,通过该方程可以近似计算出系统在不同状态下的定位精度。
     再次,对气动比例系统的数学模型进行系统辨识与稳定性分析。通过系统辨识,消除数学模型在机理建模及线性化过程中造成的误差,得到气动比例系统较为精确的数学模型。基于该模型进行稳定性分析,根据奈奎斯特稳定判据判定该气动比例系统属于稳定系统。
     最后,研制二自由度气动比例系统的控制程序及控制界面,实现气动比例系统在平面内的高精度轨迹跟踪研究。系统的“点-点”定位精度控制在±0.100mm以内,连续轨迹跟踪精度控制在±0.274mm以内,可以替代价格昂贵的伺服系统。
Pneumatic systems have been used widely in industrial automation field such as chemical industry, medicine, textile, micro-electric and bioengineering for its advantages of simple in structure, anti-pollution, high performance to cost, easy to maintenance and anti-jamming. With the development of the pneumatic proportional system, pneumatic system control is extended from logical control to proportional/servo control area. However, the pneumatic systems have the disadvantages of inherent strong nonlinearity, low natural frequency and nonlinear influence of friction, it is difficult to obtain the satisfactory control performance, and its uses in industry area are limited. In this dissertation, the study on improving the positioning precision for the pneumatic proportional system is presented. The system friction nonlinear compensation and intelligent control method are developed based on the study of its dynamic Behaviors.
     In the paper, the features and development of pneumatic proportional system are presented, the friction compensation and the use of intelligent control technology in pneumatic are analyzed. Based on the study on working performance and features of the system, the friction mechanism is developed, the friction is overcome by adding chatter signal to the system, the intelligent hybrid controller is presented according to its nonlinear, the system tracking trajectory is realized.
     Theory on friction compensation based on high frequency low amplitude chatter signal is presented. To overcome the system steady-state error and scrawl under low velocity caused by friction, we usually improve the machining accuracy and lubricating of the move parts to reduce the system friction. However, in pneumatic proportional system, the nonlinear friction influence on the motion performance is reduced by improving the mechanical structure of the cylinder, or using high precision new cylinder, these methods will lead to high price, the nonlinear friction is not eliminated thoroughly, and the system positioning precision and low-velocity tracking precision are not improved finally. So it is necessary to combine modern control method with friction compensation to reduce the influence on movement precision of system nonlinear.
     Friction model of the pneumatic proportional system is developed based on the viscoelasticity method. Study on the system friction mechanism is developed, it is found that a part of static friction is turned into dynamic friction, the maximum static friction is reduced, the response speed is raised, and the stick-slip motion is transformed into a steady one by adding proper chatter signal. Based on the stability theory on the chatter signal added, it is found when the chatter frequency is 3.3times of the natural one, the positioning precision is the highest. And when the chatter frequency is equal to the system natural one, resonance happens. When the relationship between amplitude and load is A = 0.005F +1.0333 the hysteresis time is shorten from 0.17s to 0.02s.
     Intelligent hybrid control method is advanced to overcome the nonlinear of system. Intelligent control is a new automation technique which uses various intelligentized technology to realize the control of complicated system. The control purpose is to obtain good control performance by developing a controller which is suitable for the system Behaviors according to the controlled object. Influenced by the factors such as working load, pressure, flow and quiescent point, the moving pneumatic proportion system is nonlinear typically. So speaking strictly, there is no a control method which is suitable for the whole process of the controlled object, it is difficult to obtain famous control effect by use of conventional control method, and it is necessary to develop the most suitable control method according to different controlled-object.
     Based on the non-linearization of pneumatic system, the neural-fuzzy control is embedded in the expert control, a compositive real-time intelligent hybrid control method is produced. Not only has the controller ability of logical reasoning and advanced intelligent behavior of the expert control, but the instinct reasoning ability of the neural-fuzzy, the coupled control method realizes the parallel control and knowledge sharing. The experiments prove that the hybrid controller have the advantages of quick response, high control performance, it embodies both rapidity and flexibility, a high trajectory tracking precision and good robustness are obtained when the system work.
     The dynamic Behavior model of the pneumatic proportional valve-controlled cylinder system is developed, which describes the rules between positioning precision and dynamic parameters. Study on the main factors such as the pressure, flow and load which influence the system dynamic Behaviors is developed. The equation between positioning precision and dynamic parameters is provided by use of multiple nonlinear regression analysis, which describes the system positioning error under different working conditions.
     The system identification and stability analysis of the pneumatic proportional system is presented. To eliminate the errors caused by linearization and obtaining an accurate system model, the system identification process is designed, and the stablity study on system is done based on the identified model. Based on the model, study on the reliability is developed, the system is steady judged by Nyquist steady judgement.
     Finally, the control program and interface two-freedom pneumatic proportional system is presented, its high precision tracking trajectory is realized. The system positioning precision of point-to-point is within±0.100mm, and the continuous tracking trajectory control precision is within±0.274mm, it is expected to replace the expensive servo system.
引文
1 徐炳辉.气动手册.上海:上海科学技术出版社,2005
    2 李小宁.气动技术发展的趋势.机械制造与自动化,2003,(2):5-7,12
    3 彭光正,陈萍,赵彤.带制动装置气缸的PWM位置控制系统.北京理工大学学报,1999,19(3):334-337
    4 袁胜发.气动比例,伺服技术.液压与气动,1996,(6):33-34
    5 韩建海,张河新.气动比例/伺服控制技术及应用.机床与液压,2001,(1):3-6
    6 王海江.气动系统的设计及其位置和速度伺服控制研究.西安交通大学博士学位论文,2004
    7 曹会发,陶国良,周洪.气动执行器伺服定位模糊PID控制.机床与液压,2006,(9):137-138
    8 FESTO, The Pneumatic Catalogue 98, 1998
    9 J.H.Lin, T.Kanya. Intelligent Control for Pneumatic Servo System. International Journal of Mechanical Systems, Machine Elements and Manufacturing, 2003, 46(2):699-704
    10 J.C.Renn, C.M.Liao. A Study on the Speed Control Performance ofa Servo-pneumatic Motor and the Application to Pneumatic Tools, 2004,23(7-8):572-576
    11 S.C.Jacobsen, J.E.Knutti, K.B. Biggers. The Utah/mit Dextrous Hand: Work in Progress, Int. J. Robot, 1984, 3(4): 21-50
    12 FESTO, Achilles the Six-legged Surveyor, Pneumatic tips 88, 1988
    13 FESTO, Luft zum leben, Pneumatic 88, 1995
    14 H.K.Lee, G.S.Choi, G.H.Choi. A Study on Tracking Position Control of Pneumatic Actuators. Mechatronics, 2002, (12):813-831
    15 T.Virvalo. Comparing Different Controllers of Electro-Pneumatic Position System. Proceedings of the Third JHPS International Symposium, Yokohama, Japan, November, 1996: 151-156
    16 T.Miyajima, F.J.Toshinori, K.Sakaki et al. Development of a Digital Control System for High-performance Pneumatic Servo Valve. Precision Engineering, 2006, (6): 1-6
    17 王易群,张伟.流体传动及控制技术的评述.机械工程学报,2003,39(10):95~99
    18 薛阳,彭光正,范萌等.气动位置伺服系统的带α因子的非对称模糊PID控制.北京理工大 学学报,2003,23(1):71-74
    19 孟宪超.气动爬壁机器人的位置伺服系统鲁棒控制策略研究.哈尔滨工业大学博士学位论文,2004
    20 刘晓东.电—气比例/伺服位置控制系统的研究.哈尔滨工业大学硕士学位论文,1994
    21 黄文梅.国外气动位置控制介绍.液压与气动,1998,(1):23-26
    22 王祖温.日本气动技术现状及发展(上).液压与气动,1993,(4):3-6
    23 赵彤.从SMC看世界气动技术发展(上).液压与气动,1993,(2):3-7
    24 赵彤.从SMC看世界气动技术发展(下).液压与气动,1993,(3):5-10
    25 B.Pascal. Pressure Control of Pneumatic System with a Non-negligible Connection Port Restriction. Control and Intelligent Systems, 2005,33(2): 111-118
    26 H.K.Lee, G.S.Choi, G.H.Choi. A Study on Tracking Position Control of Pneumatic Actuators. Mechatronics, 2002, 12(6):813-931
    27 X.Lin, F.Spettel. Modeling and Test of an Electro-pneumatic Servo-valve Controlled Long Rodless Actuator. Journal of Dynamic Systems, Measurement and Control, 1996,118: 457-462
    28 S.C.Fok, E.K.Ong. Positioning Control and Repeatability of a Pneumatic Rodless Cylinder System for Continuous Positioning. Robotics and Computer Integrated Manufacturing, 1999, 15(5): 365-371
    29 B.W.McDonell. Adaptive Tracking Control of an Air Powered Robot Actuator. Journal of Dynamic Systems, Measurement and Control, 1993, 115:427-433
    30 J.H.Ryu, J.Song, D.S.Kwon. A Nonlinear Friction Compensation Method Using Adaptive Control and Its Practical Application to an In-parallel Actuated 6-DOF Manipulator. Control Engineering Practice, 2001, 9(2): 159-167
    31 S.M.Xue, M.Tsutsumi, T.Tao et al. Study on the Compensation of Error by Stick-slip for High-precision Table. International Journal of Machine Tools and Manufacture, 2004, 44(5): 503-510
    32 K.Kawashima, T.Fujia, T.Kagawa. The Effect of Nonlinear on Pneumatic Servo System. Pro.4th JHPS International Symposium,Tokyo, 1999: 137-142
    33 J.Wang, J.Pu, P.Moore et al. Modeling Study and Servo-control of Air Motor Systems. International Journal of Control, 1998, 71 (3):459-476
    34 J.Wang, J.Pu, P.Moore. Accurate Postioning Control of Servo Pneumatic Actuator Systems: An Application to Food Packaging. Control Engineering Practice, 1999, (7):699-706
    35 王祖温,杨庆俊.气压位置控制系统研究现状及展望.机械工程学报,2003,39(12):10-16
    36 周洪.电-气比例/伺服系统及其控制策略研究.浙江大学博士学位论文,1988
    37 许宏光.电-气伺服控制系统的研究.哈尔滨工业大学博士学位论文,1992
    38 段运波,许耀铭.气动脉宽调制位置伺服系统工作原理的改进.液压与气动,1996,(1):3-5
    39 孔祥臻,刘延俊,王勇等.气动比例阀的死区补偿与仿真.山东大学学报(工学版),2006,36(1):99-102
    40 卢晋,周玉丰.比例方向流量阀气动位置力伺服控制系统实验研究.液压与气动,2006,(3):58-61
    41 P.Drazan, M.EJeffrey. Recent Development in the Design of a Novel Electro-pneumatic Robot. CIMS-IFTOMM, 1995, (10):143~150
    42 C.K.Chen, J..Hwang. Interative Learning Control for Position Tracking of a Pneumatic Actuated X-Y Table. Control Engineering Practice, 2005, 13(12):1455-1461
    43 丛爽.神经网络、模糊系统及其在运动控制中的应用.合肥:中国科学技术出版社,2001
    44 黄进,叶尚辉.基于CMAC网络的摩擦补偿研究.中国机械工程,1999,10(3):269-272
    45 B.Armstrong, D.Neel, T.Kusik. New Result in PID Control: Tracking, Integral Control, Friction Compensation and Experimental Results. IEEE Transactions on Control Systems Technology, 2001, 9(2):399-406
    46 M.R.Popovic, D.M.Gorinevsky, A.A.Goldenberg. High Precision Positioning of a Mechanism with Nonlinear Friction Using a Fuzzy Logic Pulse Controller. IEEE Transactions on Control Systems Technology, 2000, 8(1): 151-158
    47 K.C.Lin. Observer-based Tension Feedback Control with Friction and Inertia Compensation. IEEE Transactions on Control Systems Technology, 2003, 11(1):109-118
    48 刘强,尔联洁,刘金琨.参数不确定机械伺服系统的鲁棒非线性摩擦补偿控制.自动化学报,2003,29(4):628-632
    49 王晓东,华清,焦宗夏等.负载模拟器中的摩擦力及其补偿控制.中国机械工程,2003,14(6):511-514
    50 B.A.Helouvry, P.Dupont, C.De.Wit. A Survey of Models, Analysis Tools and Compensation Methods for the Control of Machines with Friction. Automatica. 1994, 30(7): 1083-1138
    51 B.Armstrong. Control of Machines with Friction. Boston, USA: Kluwer Academic Publishers, 1991
    52 M.R.Popovic. Friction Modeling and Control, The University of Toronto, Canada. Ph.D thesis, 1996:1-20
    53 B.Armstrong, P.E.Dupont. Friction Modeling for Control. Proc. of the American Control Conference, San Francisco, California, 1993:1905-1909
    54 W.B.Dunbar, R.A..Callafon., J.B. Kosmatka. Coulomb and Viscous Friction Fault Detection with Application to a Pneumatic Actuator. IEEE/ASME International Conference on Advanced Intelligent Mechatronics, AIM, 2001, 2: 1239-1244
    55 D.W.Canudas, H.Olsson. K.J.Astrom et al. A New Model for Control of Systems with Friction. IEEE Transactions on Automatic Control, 1995, 40(3), 419-425
    56 D.Karnopp. Computer Simulation of Stick-slip Friction in Mechnical Dynamic Systems. ASME Journal of Dynamic Systems, Measurement and Control, 1985, 107(1):100-103
    57 L.Cai, G.Song. A Smooth Nonlinear Controller for Robot Manipulators with Joint Stick-slip Friction. Proceedings of IEEE International Conference on Robotics and Automation. 1993, 449-454
    58 D.S.Necsulecu, J.D.Carufel, C.C.De, Investigation on the Efficiency of Acceleration Feedback in Servomechanism with Friction. Dynamics and Control, 1997, (7):377-397
    59 陈娟,乔彦峰.伺服系统低速摩擦力矩特定及补偿研究概况.光机电信息,2002,(11):30-34
    60 李庆雷,王先逵,石忠东.永磁直线电动机加速度反馈位置控制系统研究.制造技术与机床,2000,(6):27-29
    61 M.Feemater, EVedagarbha, D.M.Dawson et al. Adaptive Control Techniques for Friction Compensation. Mechatronics,1999, 9(2): 125-145
    62 M.R.Popovic, A.A.Goldenberg, K.B.Shimoga, et al. Model-based Compensation of Friction in Direct-drive Robotic Arms. Stud Informa Control, 1994, 3(1):75-86
    63 G.Liu. Decompostion-based Friction Compensation of Mechanical Systems. Mechatronics, 2002, 12(5):755-769
    64 C.Radclittle, S.Southward. A Property of Stick-slip Friction Models which Promotes Limit Cycle Generation. Proceedings of the American Control Conference, USA. 1990:1198-1203
    65 S.W.Town, J.K.Salisbury. The Effect of Coulomb Friction and Stiction on Force Control. Proceedings of IEEE International Conference on Robotics and Automation, USA, 1987:883-889
    66 D.P.Atherton. Nonlinear Control Engineering. London: Van Nostrand Reinhold Co, 1975
    67 J.Bentsman. Oscillations-induced Transitions and Their Applications in Control of Dynamics Systems. Journal of Dynamic Systems, Measurement and Control, 1990, 112(3):313-319
    68 王顺晃,舒迪前.智能控制系统及其应用.北京:机械工业出版社,1998
    69 张洪涛,安瑞生.智能控制在电液伺服控制中的应用.液压与气动,1998,(6):6-7
    70 韦巍.智能控制技术的研究现状和展望.机电工程,2000,17(6):1-4
    71 T.H.Lee, S.S.Ge. Intelligent Control of Mechatronic Systems. Proceedings of the 2003 IEEE International Symposium on Intelligent Control, Houston, Texas, 2003:646-660
    72 史维祥.流体控制发展的一些动向.液压气动与密封,2001,(2):10-12
    73 张永杲.液压控制系统中智能控制的应用.液压气动与密封,1994,(3):42-45
    74 K.Araki, A.Yamamoto. Model Reference Adaptive Control of Pneumatic Servo with a Constant Trace. Algorithm Journal of Fluid Control, 1999, 20(4):30-48
    75 M.E.Ishimoto, T..M..Matsiui. Learning Position Control on a Pneumatic Cylinder Using Fuzzy Reasoning. Journal of Fluid Control, 1995, 20(3):7-29
    76 J.Tang, G.Walker. Variable Structure Control of a Pneumatic Actuator. Transaction of the ASME. Journal of Dynamic Systems, Measurement and Control, 1995, 117(3):88-92
    77 C.L.Chen, P.C.Chen, C.K.Chen. A Pneumatic Model-following Control System Using a Fuzzy Adaptive Controller. Automaica, 1993, 4:1101-1105
    78 谢庆生,尹建,罗延科.机械工程中的神经网络方法.北京:机械工业出版社,2003
    79 杨行峻,郑里君.人工神经网络.北京:高等教育出版社,1992
    80 王永骥,涂健.神经网络控制.北京:机械工业出版社,1998
    81 蔡自兴.智能控制.北京:电子工业出版社,2004
    82 T.Matsukurma, A.Fujiwara, M.Namba, et al. Nonlinear PID Controller Using Neural Networks. Neural Networks. 1997, (2): 811-814
    83 G.J.Yang, T.Zhao. Improvement of Dynamic and Steady Characteristics of Pneumatic Position Servo with Fuzzy-PI Control. Journal of Beijing Insitute ofThechnology. 1995, 4(1):53-57
    84 吕强.神经网络学习控制的研究及其在气动伺服系统中的应用.哈尔滨工业大学博士论文,1994
    85 王崎.气动机器人电-气位置伺服系统的研究.哈尔滨工业大学博士论文,1998
    86 李人厚.智能控制理论和方法.陕西:西安电子科技大学出版社,1999
    87 G.Noureddine, G.Amar, A.Lbtissem. Takagi-seguno Fuzzy Systems Based on Nonlinear Adaptive Control. International Journal of Fuzzy Systems, 2006,8(2): 106-112
    88 S.C.Tong, B.Chen, Y.F.Wang. Fuzzy Adaptive Output Feedback Control for MIMO Nonlinear System. Fuzzy Sets and Systems, 2005,156(2):285-299
    89 Y.Touati, Y.Amirat. Fuzzy Logic Controller Design Methodology for Cartesian Robot Control. International Journal of Computer Applications in Technology, 2006, 27(2/3):85-96
    90 L.Huang, S.S.Ge, T.H.Lee. Fuzzy Unidirectional Force Control of Constrained Robotic Manipulators. Fuzzy Sets and Systems, 2003, 134(1):135-146
    91 R.J. Lian, B.F.Lin, W.T.Sie. Self-organizing Fuzzy Control of Active Suspension Systems. Iternational Journal of Systems Science, 2005, 36(3): 119-135
    92 王振雷,顾树生.基于实值遗传算法的模糊神经网络辨识器.东北大学学报,2000,21(4):354-356
    93 马义方,蔡际令,汪雄海.伺服系统的自适应模糊滑模最优控制研究.浙江大学学报.2006,40(6):1032-1035
    94 王保华,王伟明,张建武等.并联混合动力汽车控制策略比较研究.系统仿真学报,2006,18(2):401-404
    95 张友安,吕凤林,孙富春.双连杆柔性机械手负载自适应模糊滑模控制.微计算机信息,2005,20(10-2):168-170
    96 戴学丰,孙立宁,蔡鹤皋.自组织模糊控制及在机器人中的应用.电机与控制学报,2005,9(6):495-498
    97 王源,胡寿松,吴庆宪.一类非线性系统的自组织模糊CMAC神经网络自适应重构跟踪控制.控制理论与应用,2003,20(1):70-73
    98 潘海鹏,柯挺,高金凤.基于规则的自组织模糊控制算法研究.机电工程,2003,20(5):53-55
    99 张明君,张化光.一种新的模糊自适应控制方法.东北大学学报,2004,25(7):634-636
    100 王文庆,佟明安.基于模糊逻辑的复杂控制系统自适应鲁棒控制器设计.西北工业大学学报,2003,21(1):6-9
    101 顾伟军,彭亦功.智能控制技术及其应用.自动化仪表,2006,27:101-104(增刊)
    102 刘繁茂,彭佑多.模糊专家控制技术在液压提升机电液集成系统中的应用.机床与液压,2006,(8):92-93
    103 何艳丽,吴敏,曹卫华等.焦炉火道温度的模糊专家控制策略及其应用.山东大学学报,2005,35(3):13-18
    104 王婵娟,傅承毓,刑辉等.实时变焦跟踪控制系统的研究.光电工程,2006,33(9):10-14
    105 尹新权,吴蓉.大滞后系统的分层递阶智能控制研究.信息技术,2005,(10):22-25
    106 L.Baokuan. Fluid Flow and Mixing Process in a Bottow Stirring Electrical Arc Furnace with Multi-plug. ISIJ International, 2000, 40(9):863-869
    107 W.M.Haddad, T.Hayakawa, S.G.Nersesov et al. Hybrid Adaptive Control for Non-linear Uncertain Impulsive Dynamical Systems. International Journal of Adaptive Control and Signal Processing, 2005, 19(6):445-469
    108 郝培锋,陈勃红,张薇.电极升降智能复合控制技术研究.系统仿真学报,2003,15(2):271-273
    109 M.M.Fateh. Hybrid Fuzzy-Pi Slip Control of an Effector for Grasping Objects. WSEAS Transactions on Circuits and Systems, 2006, 5(11): 1669-1676
    110 A.B.Sharkawy. A Hybrid Adaptive Fuzzy Tracking Control for Robotic Systems. Alexandria Engineering Journal. 2006, 44(3):361-373
    111 R.Choomuang, N.Afzulpurkar. Hybrid Kalman Filter/Fuzzy Logic Based Position Control of Autonomous Mobile Robot. International Journal of Advanced Robotic Systems. 2005, 2(3): 197-208
    112 M.Pamichkun, C.Nqaecharoenkul. Hybrid of Fuzzy and PID in Kinematics Control of a Pneumatic System. Industrial Electronics Conference. 2000, 2:1485-1491
    113 孙建平.时滞及非最小相位系统智能复合控制策略研究.华北电力大学博士论文,2001
    114 陶国良.电-气比例/伺服连续轨迹控制及其在多自由度机械手中的应用研究.浙江大学博士学位论文,2000
    115 陶国良,王宣银,路甬祥.3自由度气动比例/伺服机械手连续轨迹控制研究.机械工程学报,2001,37(3):65-69
    116 郑洪生.气压传动与控制.北京:机械工业出版社,1988
    117 F.E.Sanville. A New Method of Specifying the Flow Capacity of Pneumatic Fluid Power Valves. Second Fluid Power Symposium, BHRA, England, Paper D3, 1971:37-47
    118 陆鑫盛,周洪.气动自动化系统的优化设计.上海:上海科学技术文献出版社,2000
    119 B.Elizabeth, E.Matthew, Reinhard Stolle. Reasoning about Nonlinear System Identification. Artificial Intelligence. 2001, 133(2):139-188
    120 汤笑笑,李介谷.基于小波神经网络的系统辨识方法.信息与控制,1998,27(4):277-288
    121 王宣银,陶国良.开关阀控气动伺服系统的辨识建模.液压气动与密封,1997,(3):9-11
    122 潘立登,潘仰东.系统辨识与建模.北京:化学工业出版社,2004
    123 朱春波.基于压力比例阀的气动位置伺服系统控制策略研究.哈尔滨工业大学博士学位论文,2001
    124 B.M.Y. Nouri, EAI-Bender, J. Swevers et al. Modeling a Pneumatic Servo Positioning System with Friction. Proc. 2000 American Control Conf., 2000:1067-1071
    125 J.Wang, D.J.D. Wang, P.R.Moore et al. Modeling Study, Analysis and Robust Servo Control of Pneumatic cylinder Actuator Systems. IEE Proc. Control Theory Appli., 2001, 148:35-42
    126 N.Shu, M..B.Gary. Development of a Nonlinear Dynamic Model for a Servo Penumatic Positioning System. Proceeding of the IEEE International Conference on Mechatronics & Automation. Niagara Falls, Canada. July 2005: 43-48
    127 F.Xiang, J.Wikander. Block-oriented Approximate Feedback Linearization for Control of Pneumatic Actuator System. Control Engineering Practice, 2004, 12:387-399
    128 H.Schulte, H.Hahn, Fuzzy State Feedback Gain Scheduling Control of Servo-pneumatic Actuators, Control Engineering Practice, 2004,12:639-650
    129 C.R.柏劳斯著.Van Nostrand Reinhold Company, London.黄明慎译.液压气动伺服机构.北京:国防工业出版社,1978
    130 曲以义.气压伺服系统.上海:上海交通大学出版社,1987
    131 雷振山.LabVIEW 7 Express实用技术教程.北京:中国铁道出版社,2004
    132 郑少华,姜奉华.实验设计与数据处理.北京:中国建材工业出版社,2004
    133 何晓群,刘文卿.应用回归分析.中国人民大学出版社,2002
    134 陈久宇,林见.观测数据的处理方法.上海:上海交通大学出版社,1987
    135 C.A.De, S.Cong. Strategies for Dynamic Friction Compensation, European Control Conference 95, Rome, Sept.5-8,1995.
    136 丛爽.神经网络、模糊控制系统及其在运动控制中的应用.合肥:中国科技大学出版社,2001
    137 B.Amstrong, P.Dupont, D.W.Canudas. A Survey of Model, Analysis Tools and Compensation Methods for the Control of Machines with Friction. A utomatica, 1994, 30(7): 1083-1138
    138 T.Hagglund. A Control-loop Performance Monitor. Control Engineering Practice, 1995:1543-1551
    139 D.W.Canudas, H. Olsson, Lischinsky, P. Comments on a New Model for Control of Systems with Friction. IEEE Transactions on Automatic Control, 1998, 43(8), 1189-1190
    140 F.Al-Bender, V.Lampaert, J.Swevers. Modeling of dry Sliding Friction Dynamics: From Heuristic Model to Physically Motivated Models and Back. Chaos. 2004, 14:446-460
    141 D.Haessig, B.Fridland. On the Modeling and Simulation of Friction. ASME Journal of Dynamic Systems, Measurement and Control. 1991, 113(3):354-362
    142 郭大智,任瑞波.层状粘弹性体系力学.哈尔滨:哈尔滨工业大学出版社,2001
    143 周光泉,刘孝敏.粘弹性理论.合肥:中国科学技术大学出版社,1996
    144 李德葆,张元润.振动测量与实验分析.北京:机械工业出版社,1992
    145 刘金琨.智能控制.北京:电子工业出版社,2005
    146 王耀南.智能控制系统——模糊逻辑·专家系统·神经网络控制.湖南:华南大学出版社,1996
    147 黄文梅,周友行.智能复合控制在电液伺服系统中的应用.湖南大学学报,1998,25(5):51-54
    148 邓焱,王磊等.LabVIEW 7.1测试技术与仪器应用.北京:机械工业出版社,2004
    149 S.Moorthy. Measuring of Rotor Angle Using Position Encoder and LabVIEW Software, Royal Melbourne Institute of Technology University, October 6,2000.
    150 J.P.Basart.Radio Telescope, Department of Electrical and Computer Engineering, Iowa State University, December,1998
    151 熊秀,石秀华,许晖等.用LabVIEW实现神经网络控制.测控技术,2004,24(4):51-54
    152 于润伟.MATLAB基础及应用.北京:机械工业出版,2003
    153 胡海生,李升亮.Visual C++ 6.0编程.北京:清华大学出版社,2003
    [1] S. C. Fok, E. KOng,. Position Control and Repeatability of a Pneumatic Rodless Cylinder System for Continuous Positioning[J]. Robotics and Computer Integrated Manufacturing. 1999, 25(15): 365-371.
    [2] X. Z. Kong, Y. J. Liu, Y. Wang et al. Compensation and Simulation for the Deadband of the Pneumatic Proportional Valve[J]. Journal of Shandong University. 2006, 36(1): 99-102.
    [3] F. P. Da, W. Z. Song. Adaptive Control for a Class of Nonlinear Systems Based on FNNSMC[J]. Proceedings of the CSEE, 2002, 22(5): 78-83.
    [4] S. Drakunov, G. D. Hanchin, W. C. Su et al. Nonlinear Control of a Rodless Pneumatic Servo Actuators, Sliding Modes Versus Coulomb Friction[J]. Automatica 1997, 33(7): 1401-1408.
    [5] X. H. Yu, J. X. Xu. Advances in Variable Structure Systems[M]. Singapore: World Scientific Publishing, 2002, 2: 86-91.
    [6] J. K. Li. MATLAB Simulation for Sliding Mode Control[M]. Beijing: Tsinghua University Press, 2005.
    [7] R. M. Sanner, J. E. Slotine. Stable Adaptive Control and Recursive Identification Using Radial Gaussian Networks[J]. Proceedings of IEEE Conference on Decision and Control, 1991, 2116-2123.
    [8] F. C. Sun, Z. Q. Sun, B. Zhang. Theory and Approaches for Stable Adaptive Control of Robotic Manipulators Using Neural Networks[M]. Beijing: Higher Education Press, 2005.
    [9] S. J. Huang, K. S. Huang, K. C. Chiou. Development and Application of a Novel Radial Basis Function Sliding Mode Controller[J]. Mechatronics. 2003, 13: 313-329.
    [1] S.C.Fok, E.KOng. Position Control and Repeatability of a Pneumatic Rodless Cylinder System for Continuous Positioning. Robotics and Computer Integrated Manufacturing[J]. 1999,25(15):365-371
    [2] Y.F.Wang, T.Y.Chai. Adaptive Fuzzy Control for Dynamic Friction Compensation. Proceedings of the CSEE[C], 2005,25(2):139-143
    [3] X.D.Wang, Q.Hua, Z.X.Jiao. Friction and Its Compensation Method in Load Simulator. China Mechanical Engineering[J]. 2003, 14(6):511-514
    [4] X.Z.Kong, Y.J.Liu, Y.Wang ct al. Compensation and Simulation for the Deadband of the Pneumatic Proportional Valve[J]. Journal of Shandong University. 2006,36(1):99-102
    [5] R.TokashikiL, T.Fujita, T.Kagawa. Stick-slip Motion in Pneumatic Cylinders Driven by Meter Out Circuit. Transactions of the Japan Hydraulics&Pneumatics Society[J], 1999,30(4):22-29.
    [6] A.P.Anatoli, Carlos D W. Asymptotic Analysis of the Dither Effect in Systems with Friction[J]. Automatica. 2002,38(1):105-113
    [7] H.B.Amstrong, P.Dupont, D.W.Canudas. A Survey of Model, Analysis Tools and Compensation Methods for the Control of Machines with Friction[J]. Automatica, 1994, 30(7): 1083-1138
    [8] T.Hagglund. A Control-loop Performance Monitor. Control Engineering Practice [J]. 1995:1543-1551
    [9] D.Kostic, B.D.Jager, M.Steinbuch. Modeling and identification for High-performance Robot Control: an RRR-Robotic Arm Case Study. IEEE Transactions on Control Systems Technology. 2004,12(6):904-919
    [10] B.Bona, M.Indri. Friction Compensation in Robotics: an Overview. Proceedings of the 44th IEEE Conference on Decion and Control and the European Control Conference, Seille, Spain, 2005:4360-4367
    [11] D.P.Atherton. Nonlinear control energeering[M]. London: Van Nostrand Reinhold Co. 1975
    [12] K.Miyata. Control of Pneumatic Drive Systems by Using PCM Valves[C]. In: Flueome '91, 1991:373-378
    [13] G.Denis, S.Krishnaswamy. Adaptive Friction Compensation for Precision Machine Tool Drive[J]. Control Engineering Practice. 2004,12(11):1451-1464
    [14] T.Nortisugu, M.Takaiwa. Robust Position Control of Pneumatic Servo System with Pressure Control Loop[J]. IEEE Trans Robotics Automation 1995,11:2613-2618
    [15] Z.Y.Xi, C.H.Lu, J.C.Zhang et al. Study on Feature Extraction of Friction Influence from Servo Current[J]. Chinese Journal of Mechanical Engineering. 2005,41(6):39-44

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700