飞轮电池及其混合磁悬浮控制系统的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
飞轮电池是一种以旋转动能的形式存储电能的储能装置。其工作原理是将多余的电能转变为高速旋转的飞轮转子的动能存储下来;在需要电能的时候,再将飞轮转子的动能转变为电能释放出来。和传统的化学电池相比,飞轮电池具有高能量密度,充放电时间短和长寿命等优点,所以满足了当今世界对环保,高效能源的需求。飞轮电池在混合动力车、电力系统调峰等等领域都有十分广阔的应用前景。
     在综合分析了与飞轮电池设计相关的关键技术的基础上,提出了一种拟设计作为混合动力轨道交通工具的辅助动力的飞轮电池设计方案,其中,重点介绍了一种用于本文设计的飞轮电池的电磁和永磁混合磁悬浮轴承方案,即:飞轮转子的轴向位移由电磁铁主动控制,其余自由度由永磁铁以吸力方式给以约束,同时由永磁铁提供电磁控制的偏置磁场。
     介绍了电磁轴承和永磁轴承的相关基础理论知识,推导出了电磁铁和永磁铁的磁力大小和刚度的解析计算公式。在此基础上,给出了本文设计的混合磁悬浮轴承的具体机械和电气设计参数。
     采用有限元分析方法,对比了两种永磁轴承构型的径向磁力和刚度特性,为永磁轴承的尺寸设计提供了参考。分析了电磁力和永磁力的轴向和径向的磁力和刚度特性,最后分别得出了电磁力和永磁力的位移和刚度特性曲线。
     对本文设计的磁悬浮轴承进行了受力分析,得出了磁轴承的数学模型。并在此基础上,对磁轴承在PD以及PID控制器下对阶跃扰动力的位移响应进行了仿真,分析了各种控制器参数下系统的响应变化情况,为实际控制器的设计提供了理论上的参考。并且还分析了各种延迟因素对系统稳定性的影响。最后,设计了模糊—PID复合控制器,并且对模糊—PID复合控制器和PID控制器作用下的位移响应进行了对比。仿真结果表明模糊控制器的加入使得磁悬浮系统抗扰动的能力增强。
     最后,设计了一个永磁—电磁混合磁悬浮实验装置,并采用盘式永磁无刷电机作为旋转驱动装置,分别采用模拟控制器和DSP数字控制器,成功实现了转子的稳定悬浮。实验结果证实了本文设计的飞轮电池磁悬浮方案的可行性。
Flywheel Battery is a type of energy storage device which stores electricity in the form of kinetic energy of fast spinning flywheel rotor.The principle of flywheel battery is storing the surplus electricity by motoring the flywheel rotor,then retrieving the kinetic energy by decreasing the speed of flywheel rotor when electricity is required. Compared with the traditional chemical battery,flywheel battery has the merits of higher energy storage density,shorter charging and discharging period and longer life span etc.,which meet the demands for efficient energy resource as well as the environmental protection.The application of flywheel battery is promising in the field such as Hybrid Electric Vehicle(HEV),load leveling of electric power.
     A flywheel battery designed as the assisted power for the hybrid electric rail vehicle is proposed after an overall investigation on the key techniques about the flywheel battery design,wherein,a hybrid magnetic bearing for the above proposed flywheel battery is presented which incorporates both the electromagnetic control and permanent magnets,namely,the flywheel's axial freedom is actively controlled by electromagnet while the other DOFs are restricted by the permanent magnets in attractive mode,simultaneously,the permanent magnets also provide the bias flux for electromagnetic control.
     The formulae of magnetic force and it's stiffness are derived based on the fundamental theory about the permanent and electric magnetic bearing.The mechanical and electrical specifications are presented accordingly.
     The properties of magnetic force and it's stiffness of two types of permanent magnetic bearing configurations are compared using the Finite Element Analysis. Eventually,the curves for relationship between magnetic force vs.displacement & current are obtained.
     The magnetic bearing system is modeled through analyzing the force exerted on the designed magnetic bearing.Thereafter,the response of magnetic bearing to a step disturbance force is simulated under PD and PID controller,which provides some references for design of the actual controller.Finally,a controller combining both the fuzzy and PID control is presented and simulated.The simulation result shows that fuzzy-PID combined control is more robust to the disturbance force than the pure PID control.
     Eventually,a hybrid maglev(magnetic levitation) experiment is conducted respectively using the analog controller and DSP controller,in which,a pancake motor is used as the rotating driven device.The flywheel rotor is levitated stably under the said controller,which verifies the feasibility of the proposed maglev scheme.
引文
[1]R.F.Post.A New Look at an Old Idea:The Electromechanical Battery.Science & Technology Review,April,1996:13-17.
    [2]Hebner R,Beno J,Walls A.Flywheel batteries come around again.Spectrum,IEEE,Vol.39(4):46-51.
    [3]Genta G Kinetic Energy Storage:Theory and Practice of Advanced Flywheel Systems.London:Cambridge University Press,1985.
    [4]蒋书运,卫海岗,沈祖培.飞轮储能技术研究的发展现状.太阳能学报,2000,21(4):427-433.
    [5]李松松.碳纤维复合材料高速转子的力学特性研究及其储能密度优化[博士学位论文].长春兴学精密和械与物理研究所,2000.
    [6]Post R,Fowler T K,Post,S F.A High-Efficiency Electromechanical Battery.Proceedings of the IEEE,1993,81(3):462-474.
    [7]Nagy G,Rosenwasser S.The Evaluation of Advanced Composite Material Performance in High Speed Pulsed Power Rotor Applications.IEEE Transactions on Magnetics,2001,37(1):314-317.
    [8]Homer R E,Proud N J.Key factors in the design and construction of advanced flywheel energy storage systems and their application to improve telecommunication power back-up.Proceedings of the 1996,18th International Telecommunications Energy Conference,Boston,MA,USA,1996,668-675.
    [9]Kressl G R.Shape optimization of a flywheel.Structural and Multidisciplinary Optimization,2000,19(1):74-81.
    [10]Gabrys C W.Design,fabrication and testing of advanced composite energy storage flywheels[Dissertation].The Pennsylvania State University,1996.
    [11]Curtiss D,Mongeau P P,Puterbaugh R L.Advanced composite flywheel structural design for a pulsed disk alternator.IEEE Transactions on Magnetics,1995,31(1):26-31.
    [12]Ha S K,Tsai S W.Structural analysis of a composite multi-ring flywheel for energy storage system.Lectures on Composites Design,1996:82-109.
    [13]Ha S K,Jeong H M,Cho Y S.Optimum design of thick-walled composite rings for an energy storage system.Journal of Composite Materials,1998,32(9):851-873.
    [14]Widmer J.Woven ribbon composite flywheel with self centering hub.Society of Automotive Engineers,1985,164(2):538-543.
    [15]Puterbaugh R L,Mongeau P P.Pulsed disk alternators as energy storage devices for electrothermal chemical guns.IEEE Transactions on Magnetics,1995,31(1):73-77.
    [16]Roger Dettmer.Revolutionary energy-A wind diesel generator with flywheel storage.IEE Review,1990.
    [17]Driga M D,Sang J O.Electromagnetically levitated flywheel energy storage system with very low internal impedance.Proceedings of the 11th International Pulsed Power Conference,1997,Vol.2:1560-1565.
    [18]Heath fred hofmann.High-speed synchronous reluctance machine for flywheel applications[Disseration].Universtiy of California at Berkley,1998.
    [19]Niemeyer W L.A high efficiency motor/generator for magnetically suspended flywheel energy storage system.Proceedings of the 24th Intersociety Energy conversion Engineering Conference,Piscataway,1989:1511-1516.
    [20]解亚飞,程三海,王雪帆,等.飞轮储能系统中的能量转换环节及其实现.电机电器技术,2001,(1):26-30.
    [21]程三海,书忠朝,王雪帆.飞轮储能技术及其应用电机电器技术.电机电器技术,2000,(6):31-33.
    [22]Marko L,Igor K,Hector G,et al.Predictive Functional Control Based on Fuzzy Model:Comparison with inear Predictive Functional Control and PID Control.Journal of Intelligent and Robotic Systems,2003(36):467-480.
    [23]Bose B K,Kim M H,Kankam M D.Power and energy storage devices for next generation hybrid electric vehicle.Energy Conversion Engineering Conference,1996.IECEC 96.Proceedings of the 31st Intersociety,1996,Vol.3:1893-1898.
    [24]Hoolboom G J,Szabados B.Nonpolluting automobiles.IEEE Transactions on Vehicular Technology,1994,43(4):1136-1144.
    [25]李宏志.应用于电动汽车的新型动力电池.世界汽车,1997,(3):25-26.
    [26]Anerdi G,Bmsaglino G.Technology potential of flywheel storage and application impact on electric vehicles.Proceedings of the 12th International Electric Vehicles Conference,1994,37-45.
    [27]Hardan F,Bleijs J A M,Bromley P,et al.Fast-response bi-directional power electronic converter for a flywheel energy storage system.Proceedings of the 1997 32nd Universities Power Engineering Conference,Manchester,UK,1997,419-422.
    [28]Leung Ka Kit.Investigations into the use of energy storage in power system applications[Dissertation].Hongkong Polytechnical Universtiy,2001.
    [29]Bornemann H J,Sander M.Conceptual system design of a 5MWh/100 MW superconducting flywheel energy storage plant for power utility application.IEEE Transactions on Applied Superconductivity,1997,7(2):398-401.
    [30]Mggins M A.Flywheel energy storage for electric utility load leveling.Proceedings of the 26th Intersociety Energy Conversion Engineering Conference,La Grange Park,1991,209-214.
    [31]Pieronek T J,Decker D K,Spector A.Spacecraft flywheel systems-benefits and issues.Proceedings of the National Aerospace and Electronics Conference,Piscataway,1997,589-593.
    [32]韩邦成.单轴飞轮储能/姿态控制系统的仿真及其实验研究[博士学位论文].中国科学院长春光学精密机械与物理研究所,2004.
    [33]Davies T S.Use of flywheel storage for wind diesel systems.Journal of Wind Engineering.and Industrial aerodynamics,1988,27:137-165.
    [34]Edwards J,Aldrich J W,Christopher D A,et al.Flight test demonstration of a flywheel energy storage system on the international space station.Proceedings of the National Aerospace and Electronics Conference,Piscataway,1997,617-621.
    [35]Davies T S,Larsen N.A regenerative drive for incorporating flywheel energy storage into wind generation systems.Proceedings of the 24th Intersociety Energy Conversion Engineering Conference,Piscataway,1989,2065-2069.
    [36]Mark William Marasch.Applying Flywheel Energy Storage To Solar Electric Orbital Transfers[Master Thesis].US:Air University,1997.
    [37]Robert S W.A combined uninterruptible power supply using a flywheel energy[Dissertation].Arizona State University,1998.
    [38]Pichot M A,Kajs J P,Murphy B R,et al.Active Magnetic Bearings For Energy Storage Systems For Combat Vehicles.IEEE Transactions On Magnetics,2001,VOL.37(l):318-323.
    [39]Christopher D A,Beach R.Flywheel technology development program for aerospace applications.Aerospace and Electronics Systems Magazine,1998,13(6):9-14.
    [40]Edwards J,Aldrich J W,Christopher D A,et al.Flight test demonstration of a flywheel energy storage system on the international space station.Proceedings of the National Aerospace and Electronics Conference,Piscataway,1997,617-621.
    [41]Beno J,Thompson R,Hebrier R.Flywheel batteries for vehicles.Autonomous Underwater Vehicles,2002:99-101.
    [42]张力,张恒.复合材料飞轮研究进展.兵器材料科学与工程,2001,24(5):63-65.
    [43]詹三一,唐跃进,李敬东.超导磁悬浮飞轮储能的基本原理和发展现状.电力系统自动化,2001,25:67-72.
    [44]王嵘,吴晓波.复合材料飞轮转子的发展概述.玻璃钢/复合材料,2000:51-54.
    [45]G.施韦策,H.布鲁勒,A.特拉克斯勒.主动磁轴承-基础、性能及应用.北京,新时代出版社,1997:8-14.
    [46]Earnshaw S.On the nature of the molecular forces which regulate the constitution of the lumiferous ether.Tran.Camb.Phil.Soc.7(1842):97-112.
    [47]Braunbeck W.Electrically or magnetically freely suspended bodies.Unschau,1953,53(3):68-70.
    [48]Boerdijk AH.Technical aspects of levitation,Philips Res.Rpts,1956,11:45-56.
    [49]Boerdijk A H.Levitation by static magnetic fields,Philips Tech.Rev.1956,18:125-127.
    [50]方家光.Meissner效应与磁悬浮.物理与工程,2000,10(6):27-29.
    [51]Simon I.Forces acting on superconduction in magnetic fields.J.Appl.Phys,1953,24:19-24.
    [52]Culver W H,Davis M H.An application of superconductivity to inertial navigation.Report R363.1957,Rand Corp.Santa Monica CA.
    [53]Guderjahn C A et al.Magnetic suspension and guidance for high speed rockets by superconducting magnets.J.Appl.Phys,1969,40:2133-2140.
    [54]Pang Da-Chen.Magnetic bearing system design for enhanced stability[Dissertation].University of Maryland College Park,1994.
    [55]Stienmier J D.Contributions to the development of a flywheel energy storage system[dissertation].University of Washington,1997.
    [56]杨志轶.飞轮电池储能关键技术研究[博士论文].合肥工业大学,2002.
    [57]张晓友,金水德.五轴控制型磁轴承控制系统设计.哈尔滨工业大学学报,1994,26(2):
    [58]虞烈,刘恒.轴承-转子动力学.西安:西安交通大学出版社,2001.
    [59]Prohl M A.A general method for calculation ciritical speed of flexible rotors. Journal of applied Mechanics,Trans.ASME,1945,12(3):142-148.
    [60]Plant D P,Kirk J A,Anand D K.Prototype of a magnetically suspended flywheel energy storage system.Energy Conversion Engineering Conference,1989.IECEC-89.Proceedings of the 24th Intersociety 6-11 Aug 1989 vol.3:1485-1490.
    [61]曾励,朱晃秋,曾学明,等.永磁偏置的混合磁悬浮轴承的研究.中国机械工程,1999.10(4):387-389.
    [62]Coombs T A,Campbell A M,Storey R,Weller R.Superconducting Magnetic Bearings for Energy Storage Flywheels.IEEE Transactions on Applied Superconductivity,1999,9:968.
    [63]Selim Sivrioglu,Kenzo Nonami.Active Permanent Magnet Support for a Superconducting Magnetic-Bearing Flywheel Rotor.IEEE transactions on applied superconductivity,2000,Vol.10(4).
    [64]Driga M D,Sang J O.Electromagnetically levitated flywheel energy storage system with very low internal impedance.proceedings of the 1997 11th International Pulsed Power Conference.1997,1560-1565.
    [65]Schwetzer G Critical speeds of Gyroscopes.Coures No.55,Centre Internatinal of Sciences Mechanics(CISM),Springer-Verlag,Wien,1972.
    [66]沈钺,孙岩桦,王世琥,虞烈.磁悬浮飞轮系统陀螺效应的抑制.西安交通大学学报,2003,37(11):1105-1109.
    [67]马信山,张济世,王平.电磁场基础.北京:清华大学出版社,1995.
    [68]Yonnet J P,Lemarquand G,Hernmerlin S,et.al.Stacked structures of passive magnetic bearings.J.Appl.Phys.1991,70(10):6633-6635.
    [69]Yonnet J P.Passive magnetic bearing with permanent magnets.IEEE Transactions on magnetics,Vol.MAG-14(5):803-805.
    [70]Yonnet J P.Permanent Magnetic Bearing and Couplings.IEEE Transactions on magnetics,Vol.MAG-17(1):1169-1173.
    [71]刘国强,赵凌志,蒋继娅.Ansoft工程电磁场有限元分析.北京:电子工业出版社,2005.
    [72]薛定宇.反馈控制系统设计与分析.北京:清华大学出版社,2000.虞烈.可控磁悬浮转子系统.北京:科学出版社,2003:39-40.
    [73]虞烈.可控磁悬浮转子系统.北京:科学出版社,2003:39-40.
    [74]Zi- JiangYang,Michitaka Tateishi.Adaptive robust nonlinear control of a magnetic levitation system.Automatica,2001(37):1125-1131.
    [75]Sung kyung hong,An LMI-based fuzzy control system design with application to nonlinear magnetic bearings[Dissertation].Texas A & M University,1998.
    [76]Ikbal M.M.Hassan,Abdelfatah M.Mohamed.Variable Structure Control Of A Magnetic Levitation System.Proceedings of the American Control Conference,Arlington,VA,2001:25-27.
    [77]李士勇.模糊控制、神经控制和智能控制论.哈尔滨:哈尔滨工业大学出版社,1996.
    [78]窦振中.模糊逻辑控制技术及其应用.北京:北京航空航天大学出版社,1995.
    [79]孙增析.智能控制理论与技术.北京:清华大学出版社,1997.
    [80]Zadeh L A.Fuzzy Sets.Information and Control,1965(8):338-353.
    [81]Zadeh L A.A Rationale for Fuzzy Control.Journal of Dynamic Systems,Measurement and Control,1972,3-4.
    [82]Norbert S,Helmut S.Some Nonlinear Effects Of Magnetic Bearing.Proceedings of the 1999 ASME Design Engineering Technical Conferences,Nevada,USA:l-9.
    [83]Peng Yang,Qiang Zhang,Lianbing Li.Design of Fuzzy Weight Controller in Single-Axis Magnetic Suspension System.Proceedings of the 4th World Congress on Intelligent Control and Automation,Shanghai,2002:10-14.
    [84]Hung J Y.Magnetic bearing control using fuzzy logic.IEEE Transactions on Industry Applications.Vol.31(6):1492-1497.
    [85]Chao-Lin Kuo,Tzuu-Hseng S Li,Nairen Guo.Design of a Novel Fuzzy Sliding-Mode Control for Magnetic Ball Levitation System.Journal of Intelligent and Robotic Systems,2005,42:295-316.
    [86]李国勇.智能控制及其Matlab实现.北京:电子工业出版社,2005.
    [87]张冈,周祖德,陈幼平.有源磁悬浮中的位移传感器研究.机械与电子,2003(2):6-8.
    [88]汪希平,崔卫东.电磁轴承用非接触式位移传感器的研究.上海大学学报(自然科学版),1998,4(1):54-60.
    [89]董宏涛.磁力轴承功率放大器的设计与仿真[硕士学位论文].武汉理工大学,2006.
    [90]Johann Wassermann,Helmut Springer.A linear Power Amplifier with Current Injection(LACI) for Magnetic Bearings.Proc.Of the 4th Int.Symp.On Magnetic Bearings.ETH Zurich,1994.
    [91]蔡晓峰.电磁轴承开关功率放大器的设计与研究[硕士学位论文].浙江大 学,2005.
    [92]陈立群,谢友柏.电磁轴承开关功放设计.机电工程,1998,15(2):50-52.
    [93]Ketih F J,Maslen E H,et al.Switching Amplifier Design for Magnetic Bearings.2nd International Symposium on Magnetic Bearing.Tokyo,Japan:1990:211-218.
    [94]刘祖军.基于DSP技术的电磁轴承数字控制研究[硕士学位论文].西安交通大学,2001.
    [95]彭春山.基于DSP的磁悬浮轴承控制系统及其控制算法的研究[硕士学位论文].武汉理工大学,2003.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700