一种根据指南针原理设计的排尿报警装置
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究背景
     尿意缺失不仅给患者带来生活上的诸多不便,而且给患者家庭及社会带来巨大的负担。定时排尿是目前处理尿意缺失的主要方法,具有许多不足之处。排尿报警装置(Micturition Alent Devices, MADs)是一类能够对膀胱容量或压力进行实时监测并适时报警从而提醒患者排尿的设备,有望成为治疗尿意缺失的一种方法。从20世纪70年代开始,提出了多种设计方案,但均存在一定的不足之处。
     研究目的
     一、介绍根据指南针原理设计的排尿报警装置及模型。
     二、验证根据指南针原理设计的排尿报警装置的可行性。
     三、研究地磁场对根据指南针原理设计的排尿报警装置的影响以及防护措施。
     四、研究根据指南针原理设计的排尿报警装置的各种参数。
     五、研究根据指南针原理设计的排尿报警装置的体内植入部件的生物安全性。
     六、测量根据指南针原理设计的排尿报警装置的一项重要参数即成人的下腹壁厚度。
     研究方法
     一、通过对根据指南针原理设计的排尿报警装置的设计原理、基本结构及模型的介绍,从理论上论证该设计方案的合理性和可行性。
     二、应用自制的根据指南针原理设计的排尿报警装置模型通过体外模拟试验和动物试验验证该方案的可行性。
     三、通过体外模拟试验研究地磁场对根据指南针原理设计的排尿报警装置的影响,探讨相应的防护措施。
     四、通过体外模拟试验研究根据指南针原理设计的排尿报警装置的重要参数的作用规律。
     五、通过细胞毒性试验、致敏试验、皮内刺激试验、急性全身毒性试验、肌间及膀胱前壁植入试验评价根据指南针原理设计的排尿报警装置的体内植入部件即硅胶包埋的永磁铁的生物安全性。
     六、应用B超测量100例成人的下腹壁厚度和MRI测量37例成人耻骨联合上缘及其上方1、2、3、4和5cm的下腹壁厚度。
     研究结果
     一、根据指南针原理设计的排尿报警装置已获得国家发明专利(专利号:ZL 2006 1 0119438.7)。该装置是由体内的永磁铁和体外的报警仪两部分组成。永磁铁以硅胶薄膜包埋;报警仪实质上是一个由特殊开关控制的报警器,该开关具有指南针的功能,故被称为指南针开关,能够显示报警仪所在处的磁场方向。将永磁铁和报警仪分别固定在膀胱前壁和下腹壁,膀胱容量的变化导致永磁铁位置的变化,永磁铁位置的变化使报警仪所在处的磁场发生变化,磁场的变化使报警仪的指针发生旋转。当膀胱内尿量达到预设值时,报警仪自动报警,提醒患者排尿。与其它方案相比,该方案具有结构简单、节能等特点。报警仪模型是由指南针开关、蜂鸣器、电源和电源开关通过导线串联而成,指南针开关是由中心支轴、磁针和旁支轴组成,磁针垂直固定于中心支轴上并可绕中心支轴的轴线旋转,中心支轴和旁支轴均是导电性能良好的非铁磁性金属。由于普通的磁针磁性较弱,灵敏度较低,因此我们采用直径3mm的钕铁硼永磁铁条代替磁针,并增设一个指针,指针和磁条平行,均固定在中心支轴上,三者构成一体从而能绕中心支轴的轴线同时旋转,中心支轴穿过磁条的重心,指针也是导电性能良好的非铁磁性金属。
     二、体外模拟试验表明:报警仪读数与永磁铁位置呈正相关(r>0.622,P<0.05),模拟的腹壁厚度在2cm到4cm之间,两者间呈一一对应关系。模拟的腹壁厚度分别为2cm、3cm、4cm和5cm时,永磁铁均能使报警仪报警,开始报警时的永磁铁位置分别为6.1cm、6.3cm、6.7cm和7.4cm。动物试验表明:膀胱充盈量为25、50、75、100、125、150、175及200mL时报警仪的读数分别为74.6±0.9、79.6±1.2、84.5±0.9、90.1±0.8、95.5±1.1、101.8±2.1、110.5±2.9和121.9±3.5度。膀胱容量与报警仪读数具有一一对应关系,两者间成正相关(r=1.0, P<0.01)。当膀胱充盈量预设为150mL时,那么使报警仪开始报警的膀胱实际充盈量为147.6±8.0,误差小于15mL(10%)。犬的膀胱从初始状态被充盈到200mL,永磁铁平均上移距离为32.8±1.1mm。
     三、当报警仪的中心支轴与地磁场平行时,地磁场对根据指南针原理设计的排尿报警装置的监测结果没有影响;当中心支轴与地磁场垂直时,地磁场对该装置的监测结果影响最大;而当中心支轴与地磁场处于平行和垂直之间时,地磁场对该装置的监测结果有中等程度的影响。这种影响还与人体所处的方位、永磁铁的位置和腹壁厚度相关。
     四、报警仪读数与铁氧体永磁铁位置仅在腹壁厚度为2cm时具有相关性(r=0.632,P=0.021),而在3cm到9cm时不具有相关性(r<0.5,P>0.05)。报警仪读数与钕铁硼永磁铁的位置均具有相关性(r>0.622,P<0.05),且随永磁铁直径的增大而增强,随腹壁的增厚而减小。4种永磁铁的曲线之间的吻合度随腹壁的增厚而减小。
     五、硅胶包埋的永磁铁具有轻微的细胞毒性作用,无致敏作用、无皮内刺激作用和急性全身毒性作用。8只兔子肌间植入样品后,切口愈合良好,1只术后19天因纳差消瘦死亡,其它7只耐受性好;1年后样品周围组织炎症反应和纤维囊级别均为1级。实验组8条犬中,1条术后10小时死于手术并发症,另1条术后3周因肠道内铁丝被永磁铁吸住而出现肠梗阻,其它6条犬和对照组4条犬术后一般情况良好,精神、食欲及二便无明显异常,切口愈合良好,未发生感染,术后1年被处死。在这10条犬中,大网膜与膀胱壁在样品周围发生粘连,样品周围的纤维囊壁薄,其下方的膀胱壁增厚,膀胱粘膜面正常。样品周围组织炎症反应和纤维囊级别均为2级。术前和术后尿常规无明显异常。
     六、B超测量的成人下腹壁厚度为2.34±0.66 cm,与体重指数、体重、测量点到脐部的距离正相关(P<0.05),与膀胱的上下径、左右径和膀胱容量负相关(P<0.05),而与性别、身高、年龄、膀胱的前后径无相关性(P>0.05)。在耻骨联合上缘及其上方1、2、3、4和5cm,MRI测量的成人下腹壁厚度分别为5.26±1.65、3.45±1.34、3.10±1.03、3.02±1.05、2.92±0.97和2.95±0.98 cm,与膀胱容量无相关(P>0.05)。
     研究结论
     一、根据指南针原理设计的排尿报警装置设计合理、结构简单、容易制作、节能。
     二、体外模拟试验及体内动物试验均表明根据指南针原理设计的排尿报警装置是可行的。
     三、地磁场对根据指南针原理设计的排尿报警装置监测结果的影响与体位有关,可以通过采用适当的措施来避免或减少地磁场的影响。
     四、下腹壁厚度、永磁铁的磁性和永磁铁的移动幅度是根据指南针原理设计的排尿报警装置的三个重要参数,它们相互作用、相互制约,合理配置参数可以优化该装置的性能。下腹壁厚度在2~6cm的患者,直径10mm、厚3mm的钕铁硼永磁铁能够满足要求;下腹壁厚于6cm的患者,需要更强的永磁铁;下腹壁薄于2cm的患者,更弱的永磁铁可能更合适。
     五、根据指南针原理设计的排尿报警装置的体内植入部件即永磁铁经硅胶包埋后具有良好的生物相容性,符合临床使用要求。
     六、B超测量的成人下腹壁厚度平均为2.34cm,95%可信区间为2. 21~2. 47cm。在耻骨联合上缘及其上方1、2、3、4和5cm,MRI测量的成人下腹壁厚度分别平均为5.26、3.45、3.10、3.02、2.92和2.95cm,95%可信区间分别为4.71~5.81、3.01~3.90、2.76~3.45、2.67~3.37、2.60~3.25和2.62~3.28 cm。
Background
     Patients with a loss of micturition desire have a lot of difficulty in daily life,which gives their families and society gigantic burden. They have to rely on scheduled urination, which has, of course, a lot of disadvantages. Micturition alent devices (MADs) that can continuously monitor urinary bladder volume or pressure and alert the patient to urinate at right time may hopefully become an alternative for the treatment of loss of micturition desire. Several design protocols have been reported in the literature from 1970s, but they have some serious defects and can not be used clinically.
     Objectives
     First To introduce design and manufacture of a new micturition alent device on the principle of a compass.
     Second To validate the feasibility of the micturition alert device on the principle of a compass.
     Third To study the effect of the geomagnetic field on a micturition alert device on the principle of a compass.
     Fourth To study the primary parameters of the micturition alert device on the principle of a compass for the product design and clinical application of the device.
     Fifth To investigate the biocompatibility of silicon membrane embedded permanent magnets which are internal part of the micturition alert device on the principle of a compass.
     Sixth To measure the lower abdominal wall thickness which is one of important parameters of the device in adults for the product design and clinical application of the device.
     Methods
     First The rationality and feasibility of the new micturition alent device on the principle of a compass was demonstrated by introducing the principle, elementary structure of the device.
     Second The feasibility of the micturition alert device on the principle of a compass was validated using home-made model of the device in vitro simulated test and vivo animal test.
     Third The effect of the geomagnetic field on a micturition alert device on the principle of a compass was studied in vitro simulated test and the possible protection measures were discussed.
     Fourth The primary parameters of the micturition alert device on the principle of a compass and their interaction rules were studied in vitro simulated test.
     Fifth The biocompatibility of silicon membrane embedded permanent magnets which are internal part of the device was evaluated both in vitro and in vivo including cytotoxicity test, sensitization test, primary skin irritant test and acute general toxicity test. Both the reaction of animals and pathology of the local tissue were observed after permanent magnets were implanted.
     Sixth The thickness of the lower abdominal wall was measured using ultrasound in 100 adults. The thickness of the lower abdominal wall at superior border of the pubic symphysis and 1,2,3,4 and 5cm above the pubic symphysis were measured using MRI in 37 adults.
     Results
     First This new micturition alent device on the principle of a compass patented by the national intellectual property rights bureau consists of an external alarm system and an internal permanent magnet. The permanent magnet is embedded with a silicon membrane. The alarm system is in fact an alarm controlled by a special switch which functions similarly to a compass and is therefore named a compass-switch. The alarm system can show the direction of the magnetic field where the central support axis is located. The alarm system is fixed on the lower abdominal wall outside and the permanent magnet is fixed on the bladder anterior wall. Any change in bladder volume would cause the change of the magnet position, which in turn causes the change of the magnetic field where the alarm is located and drives the hand of the alarm system to rotate. When the bladder volume reaches the preset value, the alarm buzzes automatically, alerting the patient to urinate. The design is characterized with simple structure and low power consumption when compared with other designs. A simple model of the alarm system included the dial, the compass switch, the buzzer, the power switch and the power supply and the latter four elements connected in series by wires to form the circuit. The compass switch consisted of the central support axis, the magnetic hand and the para-support axis. The hand was perpendicularly fixed on the central support axis and turned around the longitudinal axis of the central support axis. The central support axis and the para-support axis were made of non-magnetic metal of good conductivity. The N45 Brand NdFeB permanent magnetic rod with 3 mm in diameter took place of the magnetic hand because the magnetism of a common magnetic hand was not strong enough to work sensitively. A usual hand was then added that was made of non-magnetic metal of good conductivity. The hand and the magnetic rod were parallel and both fixed on the central support axis. Thus the hand, the magnetic rod and the central support can simultaneously turn around the longitudinal axis of the central support axis. The central support axis passes transversely through the gravity of the magnetic rod.
     Second In vitro simulated test, the correlation between the value of the model and the position of the magnet was significant(r>0.622,P<0.05), and more over, the correlation was one to one when the thickness of abdominal wall was from 2 to 4cm.The model began buzzing at the position of the magnet of 6.1, 6.3, 6.7 and 7.4cm when the thickness of abdominal wall was 2, 3, 4 and 5cm respectively. In animal test, the value of the model was 74.6±0.9, 79.6±1.2, 84.5±0.9, 90.1±0.8, 95.5±1.1, 101.8±2.1, 110.5±2.9 and 121.9±3.5°at the filling volume of 25, 50, 75, 100, 125, 150, 175 and 200 ml. They were positively correlated with one to one (r =1, P<0.01). When the bladder filling was preset at 150 ml, the model began buzzing at a factual filling of 147.6±8.0 ml, with the deviation error being less than 15 ml (10%). The shifting distance of the magnet from the initial filling state to 200 ml was 32.8±1.1mm.
     Third The geomagnetic field had no effect on the findings tested by the micturition alert device if the central fulcrum of the device parallelled with the direction of the geomagnetic field. The maximal effect occurred if the central fulcrum was vertical to the direction of the geomagnetic field. A moderate effect occurred corresponding to the acute angle between the central fulcrum and the geomagnetic field. Moreover, the effect was correlated with the position of body, the placement of permanent magnet and the thickness of abdominal wall.
     Fourth The value of the alarm system was correlated with the position of ferrite permanent magnet only when the thickness of simulated abdominal wall was 2cm(r=0.632,P=0.021), otherwise not(r<0.5,P>0.05). The correlation between the value of the alarm system and the position of NdFeB permanent magnets was significant(r>0.622,P<0.05), and intensified with the increasing diameter of NdFeB permanent magnets, but weakened with the increasing thickness of simulated abdominal walls.
     Fifth No sensitization, no stimulation, no acute general toxicity was observed except slight cytotoxicity to silicon membrane embedded permanent magnets. Wound healing was normal after muscular implantation of permanent magnets in 8 rabbits, one of which died from emaciation and others lived with excellent tolerance. The grade was 1 of the inflammatory reaction and fibrous capsule of the local tissue around the grafts. Among 8 dogs of the experimental group, one died from operation complications 10 hours after operation, another dog had intestinal obstruction 3 weeks after operation because iron wires in the intestinal tract was attracted by the permanent magnet and the other 6 dogs and 4 dogs of the control group were killed 1 year after operation which showed excellent tolerance with no abnormality in spirit, appetite, urine or stool and without any infection. Adhensions occurred between the epiploon and the bladder wall around permanent magnets in these 10 dogs. The fibrous capsule around permanent magnets was thin, the local bladder wall below permanent magnets was thickened, but the bladder mucosa was normal. The grade was 2 of the inflammatory reaction and fibrous capsule of the local tissue around the grafts. The findings of urine before and after operation were normal.
     Sixth The thickness of the lower abdominal wall was 2.34±0.66cm. The lower abdominal wall thickness was positively correlated with the weight, BMI and the distance from the measuring point to umbilicus(P<0.05), and was negatively correlated with bladder volume, laterolateral and craniocaudal diameters of the bladder(P<0.05), Their was no correlation of the lower abdominal wall thickness with gender, age, height and anterior-posterioral diameters of the bladder(P>0.05). The thickness of the lower abdominal wall at superior border of the pubic symphysis and 1,2,3,4 and 5cm above the pubic symphysis was 5.26±1.65, 3.45±1.34, 3.10±1.03, 3.02±1.05, 2.92±0.97 and 2.95±0.98 cm. Their was no correlation of the lower abdominal wall thickness with bladder volume(P>0.05).
     Conclusions
     First The new micturition alent device on the principle of a compass was demonstrated with reasonable design, simple structure and low power consumption.
     Second It was feasible for the micturition alert device on the principle of a compass.
     Third The effect of the geomagnetic field was correlated with body position on the findings tested by the device. Some measures may be taken to avoid or decrease the effect of the geomagnetic field on the device.
     Fourth The thickness of abdominal walls, the position and magnetism of permanent magnets are three important parameters of the device. They are correlated with and affect each other. Reasonable parameters may optimize the device. NdFeB permanent magnets of 3mm thickness and 10mm diameter may meet the need for the patients with an abdominal wall from 2cm to 6cm thickness; stronger permanent magnets for the patients with an abdominal wall more than 6cm thickness and weaker permanent magnets for the patients with an abdominal wall less than 2cm thickness.
     Fifth Silicon membrane embedded permanent magnets used in the device has excellent biocompatibility to meet the criteria for clinical application.
     Sixth The mean thickness of the lower abdominal wall measured using ultrasound was 2.34cm, and its 95% confidence interval was 22.1~24.7cm. The mean thickness of the lower abdominal wall measured using MRI at superior border of the pubic symphysis and 1, 2, 3, 4 and 5cm above the pubic symphysis was 5.26, 3.45, 3.10, 3.02, 2.92 and 2.95cm respectively, and its 95% confidence interval was 4.71~5.81, 3.01~3.90, 2.76~3.45, 2.67~3.37, 2.60~3.25 and 2.62~3.28cm.
引文
1. Benevento BT, Sipski ML. Neurogenic bladder, neurogenic bowel, and sexual dysfunction in people with spinal cord injury. Physical Therapy, 2002; 82(6):601-612.
    2.黎鳌,盛志勇,王正国,主编.现代战伤外科学.北京:人民军医出版社,1998; 856.
    3. Frankel HL, Coll JR, Charlifue SW, et al. Long-term Survival in Spinal Cord Injury: a Fifty Year Investigation. Spinal Cord, 1999; 36:266-274.
    4.郭友仁.唐山大地震截瘫15年康复工作回顾.伤残医学杂志,1994; 2(4):282-284.
    5.侯春林主编.脊髓损伤后膀胱功能重建.北京:人民军医出版社,2006; 112.
    6. Potter PJ. Disordered control of the urinary bladder after human spinal cord injury: what are the problems? Prog Brain Res.2005; 152:51-57.
    7. Xiao CG, Godec CJ. A possible new reflex pathway for micturition after spinal cord injury. Paraplegia, 1994; 32(5):300-307.
    8. Xiao CG, De Groat WC, Godec CJ,et al.“Skin-CNS-bladder”reflex pathway for micturition after spinal cord injury and its underlying mechanisms. J Urol, 1999 ; 162(3):936-942.
    9.衷鸿宾,侯春林,刘明轩,等.建立人工膀胱反射弧的实验研究.第二军医大学学报, 1998; 19(3):266-268.
    10.侯春林,衷鸿宾,张世民,等.建立人工膀胱反射弧恢复脊髓损伤患者排尿功能的初步报告.第二军医大学学报, 2000; 21(1):87-89.
    11.王金武,侯春林,卢宁,等.利用腹壁反射重建膀胱反射弧的远期功能性研究.中华显微外科杂志. 2002; 25(4):280-284.
    12. Hohenfellner M, Gleason CA, Nunes L,et al .Reinnervation of the rat bladder with a somatic nerve and a striated muscle flap. J Urol. 1995; 154(6):2164-2169.
    13. Van savage JG, Perez-Abadia GP, Palanca LG, et al. Electrically stimulated detrusor myoplasty. JUrology, 2000; 164:969-972.
    14. Elliott DS, Boone TB. Recent advances in the management of the neurogenic bladder. Urology. 2000; 56(6 Suppl. 1):76-81.
    15. Woderich R, Fowler CJ. Management of lower urinary tract symptoms in men with progressive neurological disease. Curr Opin Urol. 2006;16(1):30-36
    16. Chuang DC, Chang PL, Cheng SY. Root reconstruction for bladder reinnervation: an experimental study in rats.Microsurgery. 1991; 12(4):237-245.
    17.张少成,瞿创予,张雪松,等.神经移植术治疗截瘫神经性膀胱的尿动力学观察.中华泌尿外科杂志. 2001, 22(4):220-222.
    18. Dreher RD, Timm GW, Bradley, WE. Bladder volume sensing by local distension measurement. IEEE Trans Biomed Eng. 1972;19(3):247-8
    19. Bradley WE, Dreher RD, Timm GW. Volume sensing. A new method for management of the neurologically impaired bladder. Invest Urol. 1972; 10(2):135-7.
    20. Woltjen, J A, Timm, G W, Waltz, F M, et al. Bladder mobility detection using the Hall effect. IEEE Trans Biomed Eng. 1973; 20(6): 295-299
    21. Takayama K, Takei M, Soejima T,et al. Continuous monitoring of bladder pressure in dogs in a completely physiological state. Br J Urol. 1987;60(5):428-32
    22. Koldewijn EL, Van Kerrebroeck PE, Schaafsma E, et al. Bladder pressure sensors in an animal model. J Urol. 1994; 151(5):1379-84
    23. Waltz FM, Timm GW, Bradley WE. Bladder volume sensing by resistance measurement. IEEE Trans Biomed Eng. 1971; 18(1):42-6.
    24. Denniston JC, Baker LE. Measurement of urinary bladder emptying using electrical impedance. Med Biol Eng. 1975; 13(2):305-6.
    25. Provost B, Sawan M. Proposed new bladder volume monitoring device based on impedance measurement. Med Biol Eng Comput. 1997; 35(6):691-4.
    26. Sawan M, Arabi K, Provost B. Implantable volume monitor and miniaturized stimulator dedicated to bladder control. Artif. Organs. 1997; 21(3):219-22.
    27. Bradley WE, Rise MT, Frohrib DL. Clinical use of biocompatible ultrasonic bladder volume sensor. Urology. 1979; 14(3):300-2.
    28. Kodama H, Hieda I, Hieda IKuchinomachi Y, et al. Non-invasive ultrasonic urination sensor for ambulatory patient support. Methods Inf Med. 1994; 33(1):97-100
    29. Petrican P, Sawan MA. Design of a miniaturized ultrasonic bladder volume monitor and subsequent preliminary evaluation on 41 enuretic patients. IEEE Trans Rehabil Eng. 1998; 6(1):66-74.
    30. Kristiansen NK, Nygaard H, Djurhuus JC. Clinical evaluation of a novel ultrasound-based bladder volume monitor. Scand J Urol Nephrol. 2005; 39(4):321-8.
    31. Scheepe JR, Bross S, Braun P, et al. Volumetry of the urinary bladder with implantable ultrasound sensors. Urologe A. 2000; 39(3):235-9.
    32. Seif C, Herberger B, Cherwon E, et al. Urinary bladder volumetry by means of a single retrosymphysically implantable ultrasound unit. Neurourol Urodyn. 2004; 23(7):680-4.
    1.吴阶平主编.泌尿外科学.济南:山东科学出版社. 1993; 825-853
    2.张强,贾连顺.脊髓损伤的临床统计资料分析.第二军医大学学报. 2003; 24(6):684-686.
    3.黎鳌,盛志勇,王正国.现代战伤外科学.北京:人民军医出版社. 1998; 856
    4.曹志强,刘龙.糖尿病膀胱发病机制研究进展.沈阳部队医药. 2006; 19(5):349-351
    5. Chuang DC, Chang PL, Cheng SY. Root reconstruction for bladder reinnervation: an experimental study in rats. Microsurgery. 1991, 12(4):237-245.
    6.张少成,瞿创予,张雪松,等.神经移植术治疗截瘫神经性膀胱的尿动力学观察.中华泌尿外科杂志. 2001; 22(4): 220-222
    7. Dreher RD, Timm GW, Bradley WE. Bladder volume sensing by local distension measurement. IEEE Trans Biomed Eng. 1972;19(3):247-8
    8. Bradley WE, Dreher RD, Timm GW. Volume sensing. A new method for management of the neurologically impaired bladder. Invest Urol. 1972; 10(2):135-7.
    9. Woltjen, J A, Timm, G W, Waltz, F M, et al. Bladder mobility detection using the Hall effect. IEEE Trans Biomed Eng. 1973; 20(6): 295-299
    10. Takayama K, Takei M, Soejima T, et al. Continuous monitoring of bladder pressure in dogs in a completely physiological state. Br J Urol. 1987;60(5):428-32
    11. Koldewijn EL, Van Kerrebroeck PE, Schaafsma E, et al. Bladder pressure sensors in an animal model. J Urol. 1994; 151(5):1379-84
    12. Waltz FM, Timm GW, Bradley WE. Bladder volume sensing by resistance measurement. IEEE Trans Biomed Eng. 1971;18(1):42-6
    13. Denniston JC, Baker LE. Measurement of urinary bladder emptying using electrical impedance. Med Biol Eng. 1975;13(2):305-6
    14. Provost B, Sawan M. Proposed new bladder volume monitoring device based on impedance measurement. Med Biol Eng Comput. 1997;35(6):691-4
    15. Sawan M, Arabi K, Provost B. Implantable volume monitor and miniaturizedstimulator dedicated to bladder control. Artif. Organs. 1997;21(3):219-22
    16. Bradley WE, Rise MT, Frohrib DL. Clinical use of biocompatible ultrasonic bladder volume sensor. Urology. 1979;14(3):300-2
    17. Kodama H, Hieda I, Hieda IKuchinomachi Y, et al. Non-invasive ultrasonic urination sensor for ambulatory patient support. Methods Inf Med. 1994;33(1):97-100
    18. Petrican P, Sawan MA. Design of a miniaturized ultrasonic bladder volume monitor and subsequent preliminary evaluation on 41 enuretic patients. IEEE Trans Rehabil Eng. 1998;6(1):66-74
    19. Kristiansen NK, Nygaard H, Djurhuus JC. Clinical evaluation of a novel ultrasound-based bladder volume monitor. Scand J Urol Nephrol. 2005;39(4):321-8
    20. Scheepe JR, Bross S, Braun P, et al. Volumetry of the urinary bladder with implantable ultrasound sensors. Urologe A. 2000;39(3):235-9
    21. Seif C, Herberger B, Cherwon E, et al. Urinary bladder volumetry by means of a single retrosymphysically implantable ultrasound unit. Neurourol Urodyn. 2004;23(7):680-4
    1. Dreher RD, Timm GW, Bradley WE. Bladder volume sensing by local distension measurement. IEEE Trans Biomed Eng. 1972 May;19(3):247-8
    2. Woltjen JA, Timm GW, Waltz FM, et al. Bladder mobility detection using the Hall effect. . IEEE Trans Biomed Eng. 1973 ;295-299
    3. Kodama H, Hieda I, Hieda IKuchinomachi Y, et al. Non-invasive ultrasonic urination sensor for ambulatory patient support. Methods Inf Med. 1994 Mar;33(1):97-100
    4. Provost B, Sawan M. Proposed new bladder volume monitoring device based on impedance measurement. Med Biol Eng Comput. 1997;付35(6):691-4.
    5. Takayama K, Takei M, Soejima T, et al. Continuous monitoring of bladder pressure in dogs in a completely physiological state.Br J Urol. 1987 Nov;60(5):428-32
    6. Scheepe JR, Bross S, Braun P, et al. Volumetry of the urinary bladder with implantableultrasound sensors. Urologe A. 2000; 39(3):235-9.
    7. Denniston JC, Baker LE. Measurement of urinary bladder emptying using electrical impedance. Med Biol Eng. 1975; 13(2):305-6
    8. Koldewijn EL, Van Kerrebroeck PE, Schaafsma E, et al. Bladder pressure sensors in an animal model.J Urol. 1994; 151(5):1379-84.
    1.都有为.磁性材料新近进展,物理,2006,35(9):730-739
    2.王军红,马衍伟.高分子基磁性纳米复合物的研究进展,材料导报,2007,21(7):36-39
    3. WANG Zhanyong, XU Hui,NI Jiansen,et al. Effect of high magnetic field on the crystallization of Nd2Fe14B/α-Fe nanocomposite magnets, RARE METALS,2006,25(4): 337-341
    4.漆启华,戴闽.恒定磁场的生物学影响及防护,生物骨科材料与临术研究,2007,4(3):30-32
    5.周万松.磁场的临床应用与研究进展(2005年磁疗研讨会资料综述),黑龙江:生物磁学2005,5(4):110一111
    6.杨贞,沃兴德.磁疗法的临床研究进展,现代中西医结合杂志, 2007,16(24):3608-3612
    7.王军学,罗二平,申广浩,等.恒磁场对临床术后伤口愈合的影响,第四军医大学学报,2006,27(8):754-756.
    8.安经克,闫平,李亚男,等.磁加调制中频电刺激在人工流产术中的应用,河北医科大学学报,2007,28(5):365-366
    9.胡家才,李清泉,张莉,等.热-磁疗法对哮喘患者肺功能及气道炎症的影响,中华物理医学与康复杂志,2007,29(3):189-191
    10.孙秀巧,王铭维,郭记宏,等.磁刺激骶神经根治疗神经原性膀胱的疗效观察,临床荟萃,2007,22(17):1251-1252
    11.严登俊,李伟,王贵琴,等.生物电磁学研究进展,电气电子教学学报,2007,29(3):11-16
    12.闾坚强,韩星海,徐美娟,等.磁疗磁场分布测量及剂量表达方法,中国临床康复,2006,10(29):112-114
    13. High WB, Sikora J, Ugurbil K, et al. Subchronic in vivo effects of a high static magnetic field (9.4 T) in rats.J Magn Reson Imaging 2000;12(1):122-39
    14.张宇,张小云. 4T超导恒定强磁场对大鼠的急性毒性作用,中国临床康复,2006;10(1):112-115
    15. Wiskirchen J, Groenewaeller EF, Kehlbach R, et al. Long-term effects of repetitive exposure to a static magnetic field (1.5 T) on proliferation of human fetal lung fibroblasts. Magnetic Resonance in Medicine. 1999;41(3):464-468.
    16.沈云鹤,胡大可,唐安兴.电磁场与人体健康,国外医学生物医学工程分册,2000,23(1):54-58
    17.朱杰.磁场的生物学效应及其机理的研究,生物磁学,2005,5(1):26-29
    18.王冰水.电、磁治疗的现状和思考,中国物理学和康复杂志,2007,29(8):505-507
    19.郭润霞.恒定磁场生物效应与暴露安全限量,环境与健康杂志,2003, 20:50-52
    1.顾其胜,侯春林,徐政.实用生物医用材料学.上海:上海科学技术出版社,2005:319-360.
    2.过邦辅.矫形外科学.2版.北京:科学技术文献出版社,2004:99-113.
    3.王剑火,侯春林,王万宏,等.神经源性膀胱排尿报警装置的生物相容性研究.中国修复重建外科杂志。2008:1108-1112
    4.都有为.磁性材料新近进展.物理,2006,35(9):730-739.
    5.王军红,马衍伟.高分子基磁性纳米复合物的研究进展.材料导报,2007,21(7):36-39.
    6. WANG Zhanyong, XU Hui,NI Jiansen,et al. Effect of high magnetic field on the crystallization of Nd2Fe14B/α-Fe nanocomposite magnets.RARE METALS,2006,25(4): 337-341
    7.漆启华,戴闽.恒定磁场的生物学影响及防护.生物骨科材料与临术研究,2007,4(3):30-32
    8.周万松.磁场的临床应用与研究进展(2005年磁疗研讨会资料综述).生物磁学,2005,5(4):110-111.
    9.杨贞,沃兴德.磁疗法的临床研究进展.现代中西医结合杂志, 2007,16(24):3608-3612.
    10.王军学,罗二平,申广浩,等.恒磁场对临床术后伤口愈合的影响.第四军医大学学报,2006,27(8):754-756.
    11.安经克,闫平,李亚男,等.磁加调制中频电刺激在人工流产术中的应用.河北医科大学学报,2007,28(5):365-366.
    12.胡家才,李清泉,张莉,等.热-磁疗法对哮喘患者肺功能及气道炎症的影响.中华物理医学与康复杂志,2007,29(3):189-191.
    13.孙秀巧,王铭维,郭记宏,等.磁刺激骶神经根治疗神经原性膀胱的疗效观察.临床荟萃,2007,22(17):1251-1252.
    14.沈云鹤.电磁场与人体健康.国外医学:生物医学工程分册,2000,23(1):54-58.
    15.朱杰.磁场的生物学效应及其机理的研究.生物磁学,2005,5(1):26-29.
    16.王明华,孔祥鸣,张小云,等.强磁场对小鼠创伤修复和瘢痕粘连的影响.中华物理医学和康复杂志,2000,22(6):359-361.
    17.常汉英,于国,李晖,等.磁场对瘢痕组织的影响.中华理疗杂志,1997,20(1):19-22.
    18.严登俊,李伟,王贵琴,等.生物电磁学研究进展.电气电子教学学报,2007,29(3):11-16.
    19.闾坚强,韩星海,徐美娟,等.磁疗磁场分布测量及剂量表达方法.中国临床康复,2006,10(29):112-114.
    20. High WB, Sikora J, Ugurbil K, et al. Subchronic in vivo effects of a high static magnetic field (9.4 T) in rats. J Magn Reson Imaging,2000,12(1):122-139.
    21.张宇,张小云. 4T超导恒定强磁场对大鼠的急性毒性作用.中国临床康复,2006,10(1):112-115.
    22. Wiskirchen J, Groenewaeller EF, Kehlbach R, et al. Long-term effects of repetitive exposureto a static magnetic field (1.5 T) on proliferation of human fetal lung fibroblasts. Magn Reson Med,1999,41(3):464-468.
    
    1. Sakai H, Sheer TA, Mendler MH, et al. Choosing the location for non-image guided abdominal paracentesis. Liver-Int. 2005; 25(5): 984-6
    2. Milad MP, Terkildsen MF. The spinal needle test effectively measures abdominal wall thickness before cannula placement at laparoscopy. J Am Assoc Gynecol Laparosc. 2002; 9(4):514-8.
    3. Maple JT,Petersen BT,BaronTH,et al. Abdominal CT as a predictor of outcome before attempted direct percutaneous endoscopic jejunostomy. Gastrointest-Endosc. 2006 ; 63(3): 424-30
    4. Song C, Alijani T, Frank T, et al. Mechanical properties of the human abdominal wall measured in vivo during insufflation for laparoscopic surgery. Surg Endosc.2006; 20: 987–990
    5. Kalra MK, Maher MM, Prasad SR , et al. Correlation of Patient Weight and Cross-Sectional Dimensions with Subjective Image Quality at Standard Dose Abdominal CT. Korean Journal of Radiology; 2003; 4(4):234-238
    6.姚磊,刘军.医学实用数据手册.北京:中国广播电视出版社. 1993
    7.唐元升,张秀珍,韩殿存.人体医学参数与概念.济南:济南出版社. 1996
    8.王永贵.解剖学.北京:人民卫生出版社. 1994;262-298
    9.中国解剖学会体质调查委员会.中国人解剖学数值.北京:人民卫生出版社. 2002
    10. Reed D, Dwyer KM, Dwyer JH. Abdominal obesity and carotid artery wall thickness. The Los Angeles Atherosclerosis Study. Int J Obes Relat Metab Disord. 2003;27(12):1546-51
    11. Leite CC, Wajchenberg BL, Radominski R, et al. Intra-abdominal thickness by ultrasonography to predict risk factors for cardiovascular disease and its correlation with anthropometric measurements. Metabolism. 2002; 51(8):1034-40.
    12. Morricone L, Malavazos AE, Coman C. Echocardiographic abnormalities in normotensive obese patients: relationship with visceral fat. Obes Res. 2002; 10(6):489-98
    13. Roy GM, Bazzurini L, Solima E, et al. Safe technique for laparoscopic entry into the abdominal cavity. J Am Assoc Gynecol Laparosc. 2001; 8(4):519-28.
    14. Kawamoto R, Oka Y, Tomita H, et al. Association between abdominal wall fat index on ultrasonography and carotid atherosclerosis in non-obese men.J atherosclerosis and thrombosis. 2004; 12: 85-91.
    15.张玉海,赵继懋.神经泌尿学.北京:人民卫生出版社. 2006; 237-303
    1. Fowler CJ. Neurological disorders of micturition and their treatment. Brain. 1999; 122:1213-1231
    2. Woderich R, Fowler CJ. Management of lower urinary tract symptoms in men with progressive neurological disease. Curr Opin Urol. 2006;16(1):30-6
    3. Elliott DS, Boone TB. Recent advances in the management of the neurogenic bladder. Urology. 2000;56(6 Suppl. 1):76-81.
    4. Wyndaele JJ. Complications of intermittent catheterization: their prevention and treatment. Spinal cord. 2002; 40(10): 536-541
    5.侯春林.脊髓损伤后膀胱功能障碍的显微外科治疗.国外医学骨科学分册, 2003, 24(5):307-309
    6. Dreher RD, Timm GW, Bradley WE .Bladder volume sensing by local distension measurement. IEEE Trans Biomed Eng. 1972;19(3):247-8
    7. Bradley WE, Dreher RD, Timm GW. Volume sensing. A new method for management of the neurologically impaired bladder. Invest Urol. 1972; 10(2):135-7.
    8. Woltjen, J A, Timm, G W, Waltz, F M, et al. Bladder mobility detection using the Hall effect. IEEE Trans Biomed Eng. 1973;20(6): 295-299
    9.王剑火,侯春林等,张伟,等.一种神经源性膀胱排尿报警装置的设计.中国修复重建外科杂志.2008; 22(5):597-601
    10. Takayama K, Takei M, Soejima T,etc. Continuous monitoring of bladder pressure in dogs in a completely physiological state. Br J Urol. 1987;60(5):428-32
    11. Koldewijn EL, Van Kerrebroeck PE, Schaafsma E, et al. Bladder pressure sensors in an animal model. J Urol. 1994; 151(5):1379-84.
    12. Waltz FM, Timm GW, Bradley WE. Bladder volume sensing by resistance measurement. IEEE Trans Biomed Eng. 1971;18(1):42-6.
    13. Denniston JC, Baker LE. Measurement of urinary bladder emptying using electrical impedance. Med Biol Eng. 1975;13(2):305-6.
    14. Provost B, Sawan M. Proposed new bladder volume monitoring device based on impedance measurement. Med Biol Eng Comput. 1997;35(6):691-4.
    15. Sawan M, Arabi K, Provost B. Implantable volume monitor and miniaturized stimulator dedicated to bladder control. Artif. Organs. 1997;21(3):219-22.
    16. Bradley WE, Rise MT, Frohrib DL. Clinical use of biocompatible ultrasonic bladder volume sensor. Urology. 1979;14(3):300-2.
    17. Kodama H, Hieda I, Hieda IKuchinomachi Y, et al. Non-invasive ultrasonic urination sensor for ambulatory patient support. Methods Inf Med. 1994;33(1):97-100
    18. Petrican P, Sawan MA. Design of a miniaturized ultrasonic bladder volume monitor and subsequent preliminary evaluation on 41 enuretic patients. IEEE Trans Rehabil Eng. 1998; 6(1):66-74.
    19. Kristiansen NK, Nygaard H, Djurhuus JC. Clinical evaluation of a novel ultrasound-based bladder volume monitor. Scand J Urol Nephrol. 2005; 39(4):321-8.
    20. Scheepe JR, Bross S, Braun P, et al. Volumetry of the urinary bladder with implantable ultrasound sensors. Urologe A. 2000; 39(3):235-9.
    21. Seif C, Herberger B, Cherwon E, et al. Urinary bladder volumetry by means of a single retrosymphysically implantable ultrasound unit. Neurourol Urodyn. 2004; 23(7):680-4.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700