高超声速飞行器气动力气动热数值模拟和超声速流动的区域推进求
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文围绕超声速流动气动力气动热的准确求解和超声速流动的高效数值求解及其应用展开研究,研究包括两方面的内容:一是超声速流动壁面摩阻、热流的准确预测技术及其在吸气式高超声速飞行器气动力气动热预测中的应用,二是伪时间迭代的空间推进求解技术和复杂超声速流动的高效区域推进求解技术研究及其在复杂工程问题和气动优化设计中的应用。
     关于超声速流动中壁面摩阻、气动热准确数值预测技术及应用研究。由于在超声速流动中,气流和固壁之间存在较大的相对运动速度,壁面会产生大的速度梯度和温度梯度,导致气流对物体产生较大的摩擦阻力和气动加热;同时在大多数的超声速流动中,存在层流和湍流两种流动状态,数值模拟要准确的预测超声速流动的气动力和气动热,必须足够准确的预测出在层流和湍流两种流动状态下物面的速度梯度和温度梯度。
     本文的时间迭代求解方法,采用有限体积方法在结构网格上离散守恒型的流动控制方程。时间离散采用LU-SGS方法;空间离散中,无粘通量采用3阶MUSCL插值和AUSMPW+格式构造,粘性偏导数采用基于Guass定理的方法构造。在边界上采用两层虚点的2阶精度处理。湍流模型采用Kok修正的k ?ωTNT两方程模型,并在湍流计算中耦合了在湍流边界层内一致有效、考虑可压缩和热传导效应的先进壁面函数边界条件。
     运用以上数值模拟技术,对于超声速层流(超声速圆柱驻点法向网格雷诺数Re n<80内);亚、超声速状态下的湍流(等应力层等假设的前提下,在y +<200~300范围内),可以得到较为准确的壁面压力、摩阻和热流信息。对吸气式高超声速飞行器流场中的典型流态进行了详细的验证和确认,以确保在整体飞行器数值模拟中结果的可靠性。在此基础上对典型高超声速飞行器在无动力巡航飞行状态下的气动力和气动热进行了数值预测。获得飞行器外表面和内流道的热流分布及峰值区域,峰值区热流可达3MW/m2以上;得到了飞行器的气动力特性,其中摩擦阻力(包括内流道摩阻)占总阻力的62.7%。这些数据对飞行器的热防护和气动设计十分关键。
     关于超声速流动的伪时间空间推进求解技术、复杂超声速流动的区域推进求解技术及应用研究。
     在确认了对超声速流动的气动力、气动热准确数值模拟的基础上,实现了对超声速占主导的层流、湍流和多组分有限速率化学反应流动的空间推进进求解。空间推进求解采用伪时间迭代方法,在一个推进面上迭代求解抛物化NS方程。在推进面上的隐式时间迭代采用修正的LU-SGS方法,推进方向的无粘通量采用一阶或二阶的迎风离散方法,法向和展向无粘通量采用3阶MUSCL插值和AUSMPW+格式构造,推进方向的粘性耗散项被舍弃,其它方向的粘性耗散项采用基于Gauss积分的方法构造。空间推进方法成功的应用到了二维、轴对称和三维超声速无粘、层流、湍流和多组分有限速率化学反应流动的推进求解中。数值试验表明空间推进方法在求解超声速占主导的流动时,所得结果与实验一致且和时间迭代方法结果具有相当的准确性,求解速度比时间迭代方法提高了1~2个数量级。
     对于复杂超声速流动,提出并实现了复杂超声速流动的区域推进求解方法,并运用在实际工程问题的求解中。复杂超声速流动的区域推进求解,按照流动的物理特征,沿主流方向划分为超声速占主导的区域或回流、亚声速占主导的区域。在超声速占主导的区域采用空间推进求解PNS方程的方法求解,在回流和亚声速占主导的区域采用时间迭代求解完全NS方程的方法求解。区域推进求解了典型二维复杂超声速流动,表明区域推进求解方法在求解复杂超声速流动时和时间迭代方法具有相同的准确性,且求解速度提高了数倍。在此基础上对吸气式高超声速飞行器的三维进气道、氢燃料三维超燃冲压发动机和碳氢燃料二维一体化整机进行了区域推进求解,以显示该方法的高效性以及在处理复杂工程问题中的灵活性。计算得到的结果和实验测量值以及时间迭代方法的结果一致,在求解效率上,对于三维氢燃料发动机,整个流场采用时间迭代方法求解,需要256个CPU(0.8GHz),5天时间得到一个状态的结果,而采用区域推进方法求解相同的流动状态,空间推进区域仅采用1个CPU(2.8GHz),时间迭代区域采用8个CPU(2.8GHz),总共只需要3天左右时间。
     区域推进求解方法具有高效、灵活和可靠的特点。把区域推进方法做为自动优化设计过程中的CFD分析工具,结合优化外形的参数化描述以及计算网格的自动化生成,使用成熟的优化工具,实现了吸气式高超声速飞行器尾喷管的单目标和多目标自动优化设计。高效准确的湍流流动的CFD分析工具,使得一个设计循环仅需40秒左右时间,优化循环1000次仅耗时11个小时左右,整个优化过程在单个CPU上得以快速完成。优化后的尾喷管的升力和推力都有了较大的提高。
     本文包含七章内容。第一章是引言,介绍研究工作的意义和国内外进展以及本文的研究内容。第二章介绍流动的时间迭代求解方法以及本文采用的先进壁面函数边界条件,验证了壁面函数边界条件在亚跨声速和超声速流动中的准确性以及本文采用的热完全气体模型。第三章采用本文开发的CFD软件,验证和确认了吸气式高超声速飞行器典型流态的气动热和气动力分布,计算了一体化高超声速飞行的气动热和气动力,为工程设计提供了可靠的气动热、气动力数据。第四章介绍了求解包含超声速层流、湍流和有限速率化学反应流动的空间推进求解方法,并对开发的空间推进程序进行了严格的验证确认和应用。第五章提出和实现了复杂超声速流动的区域推进求解,把该方法应用在了实际工程问题的求解中,取得了较好的计算结果和较高的求解效率。第六章结合流动的区域推进求解方法,完成了高超声速飞行器单壁膨胀尾喷管的自动优化设计,使尾喷管的性能得到了大的提高。第七章是本文的结束语。
The aims of this thesis are studying methods for accurate simulating aerodynamic heat&force of hypersonic/supersonic flows and the efficient numerical method for hypersonic/supersonic flows. There are two parts of works included in this thesis. The first part is the technologies of accurately simulating aerodynamic force and aerodynamic heat of supersonic flow and its applications in predicting the aerodynamic force and aerodynamic heat of hypersonic vehicle. The second part is the high efficient methods in solving supersonic flow, they are space marching and region marching methods, and their applications in solving complex engineering problems and in automatical aerodynamic optimization design.
     Studying work related to accurate numerical simulation of aerodynanic force and heat and its apllications are as follows:
     There is comparatively large velocity gradient between flow and solid surface in supersonic flow field, which leads to large velocity and temperature gradients producing comparatively large skin friction and aerodynamic heat. At the same time, there are laminar and turbulent flow conditions in most of supersonic flows. Numerical simulating technologies must have sufficient accuracy to predict the velocity and temperature gradients in laminar and turbulent conditions for accurately predicting the aerodynamic heat and force.
     The time dependent methods of this thesis use cell-averaged finite volume techniques to solve the conservative form governing equations on structured grid. LU-SGS method is used in time-marching. In space terms difference, inviscid fluxes construction use third order MUSCL interpolation method and AUSMPW+ scheme, viscous fluxes use central difference method which base on the Gauss Law. Turbulence simulations use Kok’s modified k ?ωTNT 2-equation turbulence mode coupled with an advanced wall function boundary condition considering modification of compressibility and heat transfer and being valid in whole turbulence boundary layer.
     Basing on the techniques introduced above, the accurate wall skin friction and wall heat flux can be gotten for laminar flows (normal grid Reynolds number Re n<80 for hypersonic cylinder flow) and for the turbulence flows (y+<200~300 assuming the constant shear stress hypothesis in the lower part of the boundary layer etc.) . For accurately predicting hypersonic vehicle’s flow fields, the characteristic flows in hypersonic vehicles are confirmed and validated by present CFD tool. The aerodynamic force and heat of a hypersonic vehicle are predicted in the power off, cruise conditions basing on the numerical confirmations described above. Wall heat flux and its maximum locations are obtained. In the maximum heat flux region, the maximum heat flux can beyond 3MW/m2. At the same time, aerodynamic force characters are acquired. The skin friction force, including inner inlet and combustion chamber friction force, possesses 62.7% of the whole drag force. Those data is very crucial to the heat protection and aerodynamic design of hypersonic vehicles.
     Studying work related to pseudo-temporal space marching methods and region marching methods for complex supersonic flows and their applications are as follows: As having obtained accurate numerical prediction abilities for aero force and heat flux of supersonic flows, space marching ability of supersonic dominated flow field is fulfilled. Space marching methods use pseudo-temporal iteration and iteratively solve parabolic NS equations in the marching plane. The time iterating method in the marching plane uses modified LU-SGS methods. Inviscid fluxes of the space marching direction use first order or second order upwind difference. The construction of normal direction and spanwise inviscid fluxes uses third order MUSCL interpolation and AUSMPW+ scheme. Viscous and dissipation fluxes in the space marching direction are neglected and the remainder directions dissipation gradients of viscous fluxes are constructed basing on Guess Law. Space marching techniques are successfully used in supersonic dominated inviscid, laminar, turbulence and multi-species finite rate chemical reaction flow fields in 2D/3D and axisymmetric cases. Numerical results show that the space marching algorithms are agree well with experiment and have the same level of accuracy in solving supersonic dominated flow fields in comparison with time iteration methods, furthermore, present space marching algorithms are 1~2 orders faster than time iteration methods.
     For complex supersonic flows, region marching methods are established and used in engineering problems. The region marching methods for complex supersonic flow fields divide the flow field in streamwise direction into supersonic flow dominated regions or reverse and subsonic flow dominated regions according to their physical characters. In the supersonic flow dominated region, flow field is solved by space marching algorithms and in the reverse and subsonic flow dominated region time iterating method is used. The 2D characteristic complex supersonic flow fields are solved using region marching methods. It shows that region marching method have the same level of accuracy as time iterating algorithms in dealing with complex supersonic flow, furthermore, region marching method accelerate the convergence speed several times compared with time iterating algorithms. The 3D inlet and hydrogen fueled Scramjet engine of hypersonic vehicle and 2D kerosene fuled whole areo-breathing engine are numerically simulated with region marching method to illustrate its high efficiency and easily using in complex engineering problems. The region marching results have good agreements with experimental results and time iterating results.
     Considering about the computational efficiency, for 3D hydrogen fueled Scramjet case, it takes 5 days with 256 CPU processors (0.8GHz) to get on condition’s result for time iterating algorithm in the entire flow field. But it only takes 3 days with 1 CPU processor in the space marching regions and 8 CPU processors (2.8GHz) in the time iterating regions to get the same result for region marching method.
     Because it’s high efficiency and easy using and accuracy, region marching method is used as the turbulence CFD analysis tool during the cycle of automatic design optimization. Combined with parametric description of optimization geometry and automatic grid generation, single and multi-objects automatic optimizations of single expansion ramp nozzle (SERN) of hypersonic vehicle are fulfilled using the sophisticated optimization tools. Because of using cheap and accurate CFD analysis software, only about 40 seconds are needed for one optimization cycle and 11 hours are needed for about 1000 optimization cycles. The optimization procedures can run quickly in a single CPU processor. The lift and propulsion force of the nozzle have improved significantly after the optimization.
     Seven chapters are included in this thesis. The First chapter is the introduction. The meaning and development of researching work are introduced. In chapter 2, time iterating algorithms are introduced and wall function boundary conditions and thermally perfect gas model are validated. In the third chapter, the aerodynamic force and heat flux of the hypersonic vehicle and the characteristic flow conditions of hypersonic vehicle are simulated, those work provide reliable datum of heat flux and aero-force for engineering design. In chapter 4, the space marching algorithms of supersonic turbulent and chemical reaction flow included their validations are fulfilled. In chapter 5, the region marching method for complex supersonic flow fields and their applications in engineering problems are fulfilled. In chapter 6, combining region marching method for solving supersonic flow fields, automatic optimization design of hypersonic vehicle’s SERN nozzle is conducted. Chapter 7 is the conclusion of this thesis.
引文
[1] Join J. Bertin, Russell M. Cummings, Fifty years of hypersonic: where we’ve been, where we’re going. Progress in Aerospace Sciences 39(2003)511-536 .
    [2] R. Hallion, The History of Hypersonics: Or, 'Back to the Future: Again and Again',AIAA Paper 2005-329
    [3] Ronald S. Fry, A century of Ramjet propulsion technology evolution, Journal of Propulsion and Power, Vol.20, No.1, January-February, 2004
    [4] 刘兴洲,高超声速吸气式飞行技术的研究进展,2005 年高超声速技术研讨会论文集,北京,2005 年 3 月
    [5] 乐嘉陵,CARDC 高超声速技术进展与展望,2005 年高超声速技术研讨会论文集,北京,2005 年 3 月
    [6] 王振国,高超声速技术研究进展及发展设想,2005 年高超声速技术研讨会论文集,北京,2005 年 3 月
    [7] 张新宇,陈立红,范学军等,超燃冲压发动机基础研究进展与设想,2005年高超声速技术研讨会论文集,北京,2005 年 3 月
    [8] Frank K.Lu, Dan E.Marren., Advanced Hypersonic Test Facilities, progress in astronautics and aeronautics, Volume 198. Published by AIAA, Inc. Virginia,2002.
    [9] Houshang B. Ebrahimi,l An Overview of Computational Fluid Dynamics for Application to Advanced Propulsion Systems, AIAA 2002-5130
    [10] John D.Anderson, Jr. Hypersonic and high temperature gas dynamics, McGraw-Hill Book Company, 1989
    [11] 瞿章华 刘伟等, 高超声速空气动力学,国防科技大学出版社,2001 年 5月
    [12] William H. Heiser, David T. Pratt, Hypersonic airbreathing propulsion, Washington DC: AIAA;1994.
    [13] John J.Bertin, Hypersonics aerothermodynamics, Washington DC: AIAA; 1994.
    [14] 傅德熏,流体力学数值模拟,国防工业出版社,1993 年 1 月.
    [15] 张涵信 沈孟育,计算流体力学——差分方法的原理和应用,国防工业出版社,2003 年 1 月
    [16] Scott L. Lawrence, Parabolized Navier-Stokes Methods For Hypersonic Flows, von Karman Institute for Fluid Dynamics, N91-32433
    [17] JOHN J.K, An Explicit Upwind Algorithm for Solving the Parabolized Navier-Stokes Equations, NASA Technical Paper 3050, 1991.
    [18] 高智 高雷诺数流动的控制方程体系和扩散抛物化 Navier-Stokes 方程组的意义和用途[J],力学进展 2005,35(3)
    [19] 王汝权,申义庆 扩散抛物化 Navier-Stokes 方程数值解法评述[J],力学进展 2005,35(4)
    [20] CHARLES E. Cockrell, Jr., WALTER C. E, et al. Integrated Aero-Propulsive CFD Methodology for the Hyper-X Flight Experiment[R]. AIAA 2000-4010.
    [21] Mary Kae Lockwood, Dennis H. Petley ect,Airbreathing hypersonic vehicle design and analysis methods and iterations, Progress in Aerospace Sciences 35(1999)1-32.
    [22] Ryan P. Starkey and Mark J. Lewis, Design of an Engine-Airframe Integrated Hypersonic Missile Within Fixed Box Constraints, AIAA-1999-0509
    [23] Kashif H. Javaid and Varnavas C. Serghides, AIRFRAME-PROPULSION INTEGRATION METHODOLOGY FOR WAVERIDER-DERIVED HYPERSONIC CRUISE AIRCRAFT DESIGN CONCEPTS. AIAA 2004-1201
    [24] M. S.Holden, T.P.Wadhams. A DATABASE OF AEROTHERMAL MEASUREMENTS IN HYPERSONIC FLOW IN “BUILDING BLOCK” EXPERIMENTS FOR CFD VALIDATIO, AIAA 2003-1137
    [25] Doyle Knight, RTO WG 10: Test Cases for CFD Validation of Hypersonic Flight, AIAA 2002-0433
    [26] James L. Brown, Turbulence Model Validation for Hypersonic Flows, AIAA paper 2002–3308, 2002.
    [27] Frederic Thivet, Omar Besbes , Doyle D. Knight., Effect of Grid Resolution on Accuracy of Skin Friction and Heat Transfer in Turbulent Boundary Layers, AIAA 2000-0820.
    [28] Stephen J. Alter. A Structured-Grid Quality Measure for Simulated Hypersonic Flows. AIAA 2004–0612.
    [29] Nichols R H, Nelson C C, Wall function boundary conditions including heat transfer and compressibility[J]. AIAA Journal, 2004,42(6):1107~1114.
    [30] Charles E. Cockrell, Jr., Aaron H. Auslender, ect, Aeroheating predictions for the X-43 cowl-closed configration at Mach 7 and 10, AIAA 2002-0218.
    [31] Birgit U. Reinartz, Jorn van Keuk, etc, COMPUTATION OF WALL HEAT FLUXES IN HYPERSONIC INLET FLOWS, AIAA 2002-0506, 2002.
    [32] William L. Ko, Leslie Gong, Thermo-structural Analysis of Unconventional Wing Structures of a Hyper-X Hypersonic Flight Research Vehicle for the Mach 7 Mission NASA/TP-2001-210398.
    [33] Wolfgang vieser, Thomas Esch, Heat transfer predictions using advancedtow-equations turbulence models[R]. CFX technical memorandum CFX-val10/0662 http://www.software.aeat.com/cfx.
    [34] David M. Hazelton, Rodney D.W. Bowersox, Heat Transfer and Skin Friction in.a Mach 6: Inlet Flow , AIAA 99-4890.
    [35] Wen-Lan Wang, Iain D. Boyd, etc, Particle and Continuum Computations of Hypersonic Flow Over Sharp and Blunted Cones, AIAA 2001–2900.
    [36] Peter A. Gnoffo , CFD Validation Studies for Hypersonic Flow Prediction AIAA 2001-1025.
    [37] Tom Gally, Dick Campbell, CONSTRAINED AEROTHERMODYNAMIC DESIGN OF HYPERSONIC VEHICLES, AIAA 2002-3139.
    [38] C. Weber, R. Behr, C. Welland, Investigation of hypersonic turbulent flow over the X-38 crew return vehicle, AIAA 2000-2601.
    [39] C.Weiland, J.Longo, ect., Aerothermodynamics for reusable lanch systems, Aerospace Science and Technology 8(2004)101-110
    [40] Abdelkader Frendi,On the CFD Support for the Hyper-X Aerodynamic Database, AIAA 99-0885
    [41] Qunzhen Wang, ON THE PREDICTION OF CONVECTIVEHEAT TRANSFER COEFFICIENTS USINGGENERAL-PURPOSE CFD CODES, AIAA 2001 -0361
    [42] Jain, A. C., Hayes, J. R., Hypersonic pressure, skin-friction and heat transfer distributions on space vehicles: planar bodies, AIAA Journal, Vol.42, No.10, 2004, pp.2060-2069
    [43] Jain, A. C., Hayes, J. R., Hypersonic pressure, skin-friction and heat transfer distributions on space vehicles: Three-Dimensional Bodies, AIAA Journal, Vol.42, No.10, 2004, pp.2070-2081
    [44] 贺国宏,高晓成,庞勇高超声速再入体表面热流数值模拟研究 空气动力学学报 2001 Vol.19 No.2 P.177-185.
    [45] 王发民,高超声速升力体气动力气动热数值计算,空气动力学学报,2001年 04 期.
    [46] 夏刚,程文科,秦子增,Spalart-Allmaras 湍流模型在高超声速气动加热计算中的应用,国防科技大学学报,2002/06
    [47] 宗文刚,高阶紧致格式及其在复杂流场求解中的应用,博士学位论文,中国空气动力研究与发展中心。
    [48] 黎作武 张涵信,高超声速气动热高精度计算方法研究,第一届近代空气动力学与气动热力学会议论文集 CARS 2006-0-0064.
    [49] 宗文刚,类航天飞机外形气动热数值计算的验证与研究,第一届近代空气动力学与气动热力学会议论文集 CARS 2006-0-0178
    [50] 叶友达 芦笙等,高超声速高升阻比飞行器气动特性数值模拟研究,第一届近代空气动力学与气动热力学会议论文集 CARS 2006-0-0063
    [51] 艾邦成 姜贵庆 童秉纲,复杂外型飞行器层流和湍流热环境数值预测研究,第一届近代空气动力学与气动热力学会议论文集 CARS 2006-0-0055
    [52] 谢锦睿 吴颂平,TVD 格式的改进及其在高超声速流动表面热流计算中的应用,第一届近代空气动力学与气动热力学会议论文集 CARS 2006-0-0013
    [53] 张红杰 马晖扬 童秉纲,高超声速复杂流动中湍流模式应用的评估,空气动力学学报,Vol.19,No.2, 2001 年 6 月
    [54] Tannehill,J.C., Anderson, etc., Computational fluid mechanics and heat transfer.(2nd edition) Taylor and Francis, Washington D.C., 1997
    [55] Newsome R.W., Walters R.W., Thomas J.L., An efficient iteration strategy for upwind/relaxation solutions to the thin-layer Navier-Stokes equations, AIAA 87-1113
    [56] Francis A. Greene, An Upwind-Biased Space Marching Algorithm for Supersonic Viscous Flow, NASA Technical Paper 3068, 1991
    [57] J.A.White, J.H.Morrison,A Pseudo-Temporal Multi-Grid Relaxation Scheme for Solving the Parabolized Navies-stokes Equations, AIAA 99-3360
    [58] Thomas P. Gielda, Jerry E. Deese, Ramesh K. Agarwal, Efficient finite-volume parabolized Navier-stokes solutions of highly maneuverable reentry vehicle flowfields, AIAA 90-3013
    [59] A.V.Rodionov, New space-marching technique for exhaust plume simulation, AIAA 2000-3390
    [60] Joseph H. Morrison, John J. Korte, Implementation of Vigneron’s Streamwise pressure gradient approximarion in the PNS equations, AIAA 92-0189
    [61] D.K.Prabhu, J.C.Tannehill, etc., A new PNS code for chemical nonequilibrium flows, AIAA 87-0284.
    [62] Miller J.H., Tannehill J.C., etc., Developmemt of an upwind PNS code for thermochemical nonequilibrium flows, AIAA 95-2009.
    [63] Lawrence S.L., Application of space-marching methods to hypersonic forebody flowfields, AIAA 92-5030.
    [64] Korte J.J., Mcrae D.S., Numerical simulation of flow over a hypersonic aircraft using an explicit upwind PNS solver. AIAA 89-1829.
    [65] Lawrence S.L., Chanssee D.S., etc., Application of an upwind algorithm to the three dimensional PNS quations, AIAA 86-1116
    [66] Gielda T.P., Mcrae D.S., An accurate stable explicit PNS solver for high speed flows. AIAA 86-1116.
    [67] Korte J.J., Mcrae D.S., Explicit upwind algorithm for the PNS equations. AIAA 88-0716
    [68] N.Qin, D.K.Ludlow, etc., Multigrid acceleration of a preconditioned GMRES Implicit PNS solver, AIAA 99-0779
    [69] Moschetta J M, Grea B J, Saint L L A contribution to the steady/unsteady PNS debate[R], West-East High Speed Flow Field Conference, Marsielles,France,2002
    [70] James H.Miller, Join C.Tannehill, Scott L.Lawrence, Computational of supersonic flows with emdedded separated regions using an efficient PNS algorithm, AIAA 97-1942.
    [71] James H.Miller, Join C.Tannehill, Scott L.Lawrence, PNS algorithm for soving supersonic flows with upstream influences, AIAA 98-0226
    [72] James H.Miller, Join C.Tannehill, Scott L.Lawrence, Application of the IPNS algorithm to complex two-dimensional geometry, AIAA 99-0546
    [73] John C. Tannehill, James H. Miller,Iterative PNS Algorithms for Solving 3-D Supersonic Flows with Upstream Influences, AIAA 2000-0821
    [74] Kato H., Join C.Tannehill, Developmemt of a forward-backward sweeping PNS algorithm, AIAA 2002-0735
    [75] Kato H., Join C.Tannehill, Mehta U.B., etc., Simulation of turbulent MHD flow using an iteratives PNS algorithm. AIAA 2003-0326.
    [76] Nakahashi K, Saitoh E. Space-marching method on unstructured grid for supersonic flows with embedded subsonic regions. AIAA J,1997,35(1):1280-1293
    [77] Marino H, Nakahashi K., Space-marching method in unstructured hybrid grid for supersonic viscous flows. AIAA 99-0661
    [78] MCGRORY W.D., WALTERS R. W., LOHNER R., Three-dimensional space-marching algorithm on unstructured grids,AIAA journal 1991, vol.29, No11, pp.1844-1849
    [79] Stalnaker,J.F, Nicholson, L.A, etc., Improvements to the AFWAL PNS Code formulation, AFWAL TR-86-3076.
    [80] Lawrence, S.L., Tannehill, J.C., Chausee, J.C., An upwind Algorithm for the Parabolized Navier-stokes Equations, AIAA 86-1117.
    [81] Chaput E., Dubios F., Lemaire D., etc., FLU3PNS: A three-dimensional thin layer and Parabolized Navier-Stokes Solver using the MUSCl upwind scheme, AIAA 91-0728.
    [82] Liu T.G., Wang R.Q. Song S.H., An implicit-explicit upwind algorithm for the PNS equations, ACTA Mechanica sinica, 1994,10(2):129-135.
    [83] 林明森 傅德薰,超声速粘性绕流的一种新的空间推进数值解法,计算物理,1993,10(3):325-330
    [84] 林明森 傅德薰,用空间推进法求解钝锥三维粘性绕流,空气动力学学报,1995 年 Vol13(3):317-322
    [85] 申义庆,高智,王汝权,有二次涡的激波边界层干扰流动的 DPNS/NS 方程计算,空气动力学学报,2000,18(4):407-412.
    [86] 刘宇,张振朋,三维抛物化 NS 方程全隐式矢通量分裂求解,北京航空航天大学学报,1998,24(6):629-632.
    [87] 陈兵,空间推进算法及超燃冲压发动机部件优化设计研究,博士学位论文,北京航空航天大学,2005
    [88] William A. Wood, Scott Eberhardt, Dual-Code Solution Strategy for Chemically-Reacting Hypersonic Flows, AIAA 95-0158, 1995
    [89] William A. Wood ,Combined LAURA-UPS Solution Procedure for Chemically-Reacting Flows, NASA TM107964, 1993
    [90] http://vulcan-cfd.larc.nasa.gov/index.html
    [91] http://www.aerosft.com
    [92] R. J. Ungewitter, S. M. Dash, J. Papp, and A. Hosangadi, Design-oriented analysis of scramjet combustor flowfield using combined UNS/PNS procedure , AIAA-2000-3616 , AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, 36th, Huntsville, AL, July 16-19, 2000.
    [93] 庄逢甘,张德良. 扩散抛物化(DP)NS 方程组的意义及其在计算流体力学中的应用.[J]空气动力学学报,2003,21(1)
    [94] Xue Jukui and Wang Ruquan,An efficient algorithm for hypersonic viscous flows,Acta Mechanica Sinica,volume 7, Number 3 / August, 1991
    [95] 毕远峰 曾广存,超声速有翼飞行器的分区无粘数值模拟,空气动力学学报,Vol13(2):159-165,1995 年
    [96] Vijay Shukla, Andrew Gelsey, etc., Automated redesign of the NASA P8 Hypersonic Inlet Using Numerical Optimization[R]. AIAA paper 1996-2549
    [97] Thivet F Toward the aerodynamic optimization of a supersonic airplane using a genetic algorithm and a PNS solver[R], AIAA paper 2002-3144
    [98] M. Moin Hussaini and John J. Korte, Investigation of Low Reynolds Number Rocket Nozzle Design Using PNS-Based Optimization Procedure, NASA Technical Memorandum 110295, 1996.11
    [99] Susumu Hasegawa, Doyle Knight, Numerical Analysis and Optimization of Two Dimensional Hypersonic Inlets, AIAA 2004-0856 42nd AIAA Aerospace Sciences Meeting and Exhibit 5-8 January 2004, Reno, Nevada
    [100] Michael Blaize, Doyle Knight, etc., Automated optimal design of two dimensional high speed missile inlets. AIAA 98-0950
    [101] X.Q. Xing and M.Damodaran, Design of Three-Dimensional Nozzle Shape using NURBS, CFD and Hybrid Optimization Strategies, AIAA 2004-4368.
    [102] M. FERLAUTO, F. LAROCCA and L. ZANNETTI, Integrated Design and Analysis of Intakes and Nozzles in Air-Breathing Engines, AIAA 2000-0356.
    [103] 张 勇 汪广元 等 超燃冲压发动机尾喷管优化设计[R] 中国国防科学技术报告 2005-05
    [104] 罗世彬,罗文彩等, 超燃冲压发动机二维进气道多级多目标优化设计方法[J],国防科技大学学报,2004,Vol26(3)
    [105] 贺旭照 赵慧勇 乐嘉陵,考虑可压缩与热传导的壁面函数边界条件及其应用,空气动力学学报,2006 年第 4 期
    [106] 贺旭照 乐嘉陵,超声速流动中气动力气动热的 CFD 验证及应用,第一届近代空气动力学与气动热力学会议论文集 CARS 2006-0-0063,四川绵阳2006.8
    [107] 贺旭照 赵慧勇 乐嘉陵,超声速流动中物面摩阻及热流的 CFD 验证,第十二届全国激波与激波管学术会议,河南洛阳,2006.7
    [108] 贺旭照 乐嘉陵,空间推进方法求解抛物化 Navier-Stokes 方程及其验证,空气动力学学报,(已录用,待发表)
    [109] 贺旭照 乐嘉陵,空间推进求解超声速流动的通量分裂方法及应用,第十一届全国激波与激波管学术会议,四川绵阳,2004.9
    [110] He Xuzhao, Le Jialing, A Pseudo Temporal Space marching Scheme for Solving the Parabolized Navier-Stokes Equations, Sino-Russia High Speed Flow Conference, 2006.06, Sichuan.Mianyang China
    [111] 贺旭照 乐嘉陵,复杂超声速流动的区域推进求解,实验流体力学,(已录用,待发表)
    [112] 贺旭照 张勇等,高超声速飞行器单壁膨胀喷管的自动优化设计,推进技术(已录用,待发表)
    [113] 倪鸿礼 贺旭照等,吸气式高超声速飞行器后体尾喷管设计研究,第十二届全国激波与激波管学术会议,河南洛阳,2006.7
    [114] R. J. Kee, F. M. Rupley, E. Meeks, and J. A. Miller, “Chemkin-Ⅲ: A fortran chemical kinetics package for the analysis of gas-phase chemical and plasma kinetics”, Sandia National Laboratories report SAND96-8216, 1996
    [115] Grant E. Palmer, Michael J. Wright, A comparison of methods to compute high-temperature gas viscosity, AIAA paper No. 2002-3342, 2002.
    [116] Wilcox, D. C., Turbulence modeling in CFD, 2nd ed., DCW industries, La Canada, CA, 1998.
    [117] David C. Wllcox, Turbulence Modeling: An Overview, AIAA 2001-0724, 39th Aerospace Sciences Meeting & Exhibit, January 8-11, 2001 / Reno, NV.
    [118] Menter, F.R., Influence of freestream values on k ?ωturbulence model predictions, AIAA Journal, Vol.30, No.6, 1992.
    [119] J.C.Kok, Resolving the dependence on free-stream values for the k-omega turbulence model, NLR-TP-99295, July, 1999.
    [120] Shih T.S., Povinelli,L.A., etc., Turbulence surface flow and wall function,AIAA 99-2392, June 1999
    [121] Nichols, R.H., Development and Validation of a two-equation turbulence model with wall functions for compressible flow, AIAA 96-2385, 1996
    [122] Sondak D.L., Pletcher R.H., Application of wall functions to Generalized Non-orthogonal Curvilinear coordinate systems, AIAA Journal Vol.33,No.1, 1995,pp.33-41.
    [123] Simon Gant, Development and Application of a New Wall Function for Complex Turbulent Flows, Doctor thesis, University of Manchester Institute of Science and Technology P.O. Box 88, Manchester M60 1QD, UK, November 2002
    [124] 赵学端 缪其奠,粘性流体力学(p358~p371),机械工业出版社,1983 年 6月
    [125] Jonas Bredberg, On the wall boundary condition for turbulence Models, Internal Report00/4 Department of Thermo and fluid dynamics, Chalmers University of Technology. Sweden
    [126] http://www.fluent.com
    [127] Tysinger,T.L., Caughey, D.A. Implicit Multigrid algorithm for the Navier-stokes equations, AIAA paper No. 91-0242, 1991
    [128] Imlay, Scott T.; Roberts, Donald W.; Soetrisno, Moeljo; Eberhardt, Scott,Nonequilibrium Thermo-Chemical Calculations Using a Diagonal Implicit Scheme, AIAA paper No. 91-0468, 1991.
    [129] Culbert B. Laney, Computational gasdynamics, Cambridge University Press, 1998.
    [130] Anderson W K, Thomas J L, Van Leer B, A Comparison of Finite Volume Flux Vector Splitting for the Euler Equations, AIAA paper No. 85-0122,1985.
    [131] Kyu. Hong. Kim,ChongAm.Kim,Oh.hyun.Rho, Accurate computa tions of hypersonic flows using AUSMPW+ scheme and Shock-Aligned Grid Technique,AIAA paper No.98-2442, 1998.
    [132] NPARC Alliance Validation Archive,www.grc.nasa.gov
    [133] AIAA CFD Drag Prediction, http://aaac.larc.nasa.gov/tsab/cfdlarc/aiaa-dpw/
    [134] Tao Du, Zi-Niu Wu, Mixed Analytical/Numerical Method for Low-Reynolds Number k-ε Turbulence Models, AIAA Journal Vol.42,No.6, Jone 2004
    [135] Huang P G, Bradshaw P. and Coakley T J. Skin friction and velocity profile family for compressible turbulent boundary layers[ J]. AIAA Journal 1993,31(9):1600~1604
    [136] Sinha, K, Candler G V. Convergence improvement of two-equation turbulence model calculations, AIAA paper 98-2649, 1998.
    [137] Horstman C C, Settles G S. A reattaching free shear layer in compressible turbulent flow[ J ]. AIAA Jounal 1982,20(1):1100~1110.
    [138] Rumsey, C.L., Rivers, S.M., etc , Study of CFD Variation of Transport Configurations form the Second Drag Prediction Work Shop. AIAA- 2004-0394.
    [139] 童秉纲 孔祥言 邓国华,气体动力学,高等教育出版社,1995 年 5 月
    [140] 张兆顺,湍流,国防工业出版社,北京,2002 年 1 月
    [141] Kolpfer G.H., Yee H.C., Viscous hypersonic shock on shock interaction on blunt cow lips,AIAA 88-0233
    [142] R.Hakkinen,I.Gerber,etc The interaction of an oblique shock wave with a laminar boundary layer, Memo 2-18-59W, Nasa,1959
    [143] Christopher E. Glass, Numerical Simulation of Low-Density Shock-Wave Interactions, NASA/TM-1999-209358, July 1999.
    [144] B.Edney, Anomalous heat transfer and pressure distributions on blunt bodies at hypersonic speeds in the presence of an impinging shock, FFA Report 115, Aero.res.Inst. of Sweden,1968
    [145] Michael S. Holden etc COMPARISONS BETWEEN MEASUREMENTS IN REGIONS OF LAMINAR SHOCK WAVE BOUNDARY LAYER INTERACTION IN HYPERSONIC FLOWS WITH NAVIER-STOKES AND DSMC SOLUTIONS , AIAA 2002-0435 2002
    [146] G.A. Gerolymos, E. Sauret, and I. Vallet,Oblique Shock Wave/Boundary Layer Interaction using Near-Wall Reynolds Stress Models,AIAA 2003-3466.
    [147] J.R.Forsythe,K.A.Hoffmann and Y.B.Suzen Investigation of Modified Menter’s Two-Equation Turbulence Models for Supersonic Applications. AIAA 99-0873 1999.
    [148] Doyle Knight and Hong Yan, RTO WG 10: CFD Validation for Shock Wave Turbulent Boundary Layer Interactions, AIAA 2002-0437
    [149] Paciorri R, Dieudonnéy W. VALIDATION OF THE SPALART-ALLMARAS TURBULENCE MODEL FOR APPLICATION IN HYPERSONIC FLOWS[ R ]. AIAA paper 97-3365, 1997
    [150] Ge-cheng zha and doyle Knight computation of 3D Asymmetric cross shock wave/turbulent boundary layer interaction using a full Reynolds stress equations turbulence model. AIAA 1996-0040 1996
    [151] Frederic Thivet, Doyle D. Knight, Some Insights in Turbulence Modeling for Crossing Shock Wave/Boundary Layer Interactions, AIAA 2000-0131
    [152] Chang C.L., Merkle C.L., The relation between flux vector splitting and parabolized schemes. Journal of computational physics, 1989, 80(1): 344~361.
    [153] Gary S. Settles, Thomas J. Fitzpatrick and Seymour M. Bogdonoff, Detailed study of attached and separated compression orner flowfields in high Reynolds number supersonic flow, AIAA Journal vol.17, No.6, June 1979, also in AIAApaper No. 78-1167, 1978.
    [154] Gary S. Settles, Irwin E. Vas, and Seymour M. Bogdonoff, Details of a shock-seperated turbulent boundary layer at a compression corner, AIAA Journal vol.14, No.12m December 1976, also in AIAA paper 76-164
    [155] 杜涛 吴子牛,带源项的守恒系统时间分裂算法定常解的收敛性研究,空气动力学学报,Vol.22,No.4, December.2004.
    [156] Chris S. Craddock & Peter A. Jacobs, A Space marching Compressible Flow Solver with Chemistry and Optimization SM3DPLUS, Department of Mechanical Engineering, The University of Queensland, Brisbane 4072, Australia. June 1998.
    [157] Coleman G.T. and Stollery J. L., Heat transfer in hypersonic turbulent separated flow, Report72-05, Department of Aeronautics, Imperial College of Science and Technology, London England.
    [158] Burrows, M. C. and Kurkow, A. P., “Analytical and experimental study of supersonic combustion of hydrogen in a vitiated airstream”, NASA TM X-2828, September 1973.
    [159] K. Shah and S. F. Owens, “Supersonic combustion of hydrogen and air CFD-ACE+ validation report”, September 2002, CFDRC report: VA-2002-03.
    [160] William A. Engblom, Franco C. Frate and Chris C. Nelson, “Progress in validation of WIND-US for Ramjet/Scramjet combustion”, AIAA paper No. 2005-1000, 2005.
    [161] Ganesh Wadawadigi, John C. Tannehill, Philip E. Buelow, A three dimensional upwind PNS code for chemically reacting scramjet flowfields, AIAA 92-2898.
    [162] Evans, J. S., and Schexnayder, C. J., “Influence of chemical kinetics and unmixedness on burning in supersonic hydrogen flames”, AIAA Journal, Vol. 18, No.2, 1979, pp.805-811,1979.
    [163] J. Bohbot, G. Grondin, D. Darracq and A. Corjon, A parallel multigrid conservative patched/sliding mesh algorithm for turbulent flow computation of 3D complex aircraft configuration, AIAA paper 2001-1006, 2001.
    [164] J. Bohbot, J-C. Jouhaud, D. Darracq,Coupled Patched-Grid/AMR Meshing Technics for Transonic Aircraft Design,AIAA 2002-0546.
    [165] 赵慧勇,超燃冲压整体发动机并行数值研究,博士学位论文,中国空气动力研究与发展中心 2005
    [166] 刘陵等编著,超声速燃烧与超声速燃烧冲压发动机,西北工业大学出版社.
    [167] 贺元元,机体/推进一体化高超声速飞行器数值研究,中国空气动力研究与发展中心博士论文,2004 年 10 月.
    [168] Gruhn P., Henckels A., Seiberger G., Improvement of SERN Nozzle performance by aerodynamic flap design, Aerospace science and technology, 2000,6:395~405.
    [169] http://SimulationResearch.lbl.gov GenOpt(R) Generic Optimization Program User Manual Version 2.0.
    [170] Shinya W., Tomoyuki H., Mitsunori M., Neighborhood cultivation genetic algorithm for Multi-objective optimization problems, Proceedings of the 4th Asia-pacific conference on SEAL, 2002:198~202.
    [171] 周铸,基于 Navier-Stokes 方程的气动优化设计的方法研究与应用,博士学位论文,中国空气动力研究与发展中心,2002 年 9 月.
    [172] F.W.Spaid,E.R.Keener, Hypersonic Nozzle-Afterbody CFD Code Validation, part I: Experimental Measurements. AIAA Paper 93-0607.
    [173] S.M.Ruffin, E.Venkatapathy, S.H.Lee,E.R.Keener, F.W.Spaid, Single Expansion Ramp Nozzle Simulations, AIAA Paper 92-0387.
    [174] 杨顺华,单膨胀斜面喷管数值模拟,国防科学技术报告,2003 年 6 月
    [175] X.Q. Xing, M. Damodaran, Design of Three-Dimensional Nozzle Shape using NURBS,CFD and Hybrid Optimization Strategies, AIAA 2004-4368.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700