DNA修复基因和毒物代谢基因单核苷酸多态与膀胱癌遗传易感性
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分DNA修复基因单核苷酸多态与膀胱尿路上皮癌遗传易感性研究
     目的:DNA修复机制在防止基因突变,维持基因组稳定性过程中起着重要的作用。DNA修复基因多态是个体间DNA修复能力差异的重要原因。初步探讨在上海地区汉族人群中DNA修复基因(XPC Lys939Gln,XPG His1104Asp和XRCC1 Arg399Gln)单核苷酸多态性与膀胱尿路上皮癌(移行细胞癌)遗传易感性的关系
     方法:我们采用病例一对照研究方法,以Taqman探针实时荧光定量PCR技术和DNA测序等方法对130例病理证实原发膀胱尿路上皮癌患者和304例非肿瘤对照的三个DNA修复基因(XPC Lvs939Gln,XPG His1104Asp and XRCC1 Arg399Gln)的单核苷酸多态性位点进行检测。应用非条件Logistic回归模型,调整混杂因素后,分析各基因型与膀胱癌罹患风险的关系,还分析了基因-基因、基因-环境相互作用与膀胱癌风险的关系。
     结果:调整年龄、性别和吸烟因素后,XPC基因Lys939Gln多态与膀胱癌风险增高相关。与携带XPC 939 Lys/Lys基因型者比较,Lys/Gln和Gln/Gln基因型者(携带Gln突变等位基因者)罹患膀胱癌的风险增加到2.8倍(校正OR=2.80;95%CI=1.79-4.37)。按年龄分层后,携带Gln突变等位基因者(XPC939Lys/Gln杂合基因型和939Gln/Gln基因型)在≥64岁的研究对象中罹患膀胱癌的风险增加4.17倍(校正OR=4.17;95%CI=2.14-8.16)。再按性别分层分析,与Lys/Lys基因型比较,发现携带Gln突变等位基因的男性发生膀胱癌的风险增加2.95倍(校正OR=2.95;95%CI=1.43-6.08)。在重度吸烟人群中(≥25包-年),携带至少一个Gln等位基因者(Lys/Gln基因型+Gln/Gln基因型)罹患膀胱癌的风险为携带Lys/Lys基因型者的5.54倍(95%CI=1.86-16.47)。肿瘤组中,XPC 939Gln/Gln和Lys/Gln基因型频率在肌层浸润性膀胱癌患者和肿瘤多发者中明显高于非肌层浸润性膀胱癌患者和肿瘤单发患者(P<0.05)。
     与携带XPG1104Asp/Asp基因型个体比较,携带His突变等位基因者(携带1104Asp/His基因型个体和携带1104His/His基因型个体)罹患膀胱癌的风险增高到2.62倍(校正OR=2.62;95%CI=1.61-4.24)。年龄不影响与XPG Asp1104His多态相关的膀胱癌风险。再按性别分层分析,与Asp/Asp基因型比较,发现携带His/His纯合突变基因型的女性发生膀胱癌的风险增高到2.48倍(OR=2.48;95%CI=1.34-4.60)。在不吸烟人群中,携带His突变等位基因(His/His+Asp/His基因型)者罹患膀胱癌的风险为携带Asp/Asp基因型者的4.31倍(95%CI=1.19-12.47)。在肿瘤组中,XPG Asp1104His多态与肿瘤的临床病理特征无关。XRCC1基因Arg399Gln多态与膀胱癌风险无关联。与野生型基因型比较,突变杂合子和纯合子的ORs(95%CIs)分别为0.70(0.43-1.13),1.00(0.65-1.55)。
     吸烟可以增加膀胱癌的风险,其OR(95%CI)值为3.34(2.01-5.57)。在重度吸烟人群中(≥25包-年),携带至少一个XPC939Gln等位基因者(Lys/Gln基因型+Gln/Gln基因型)罹患膀胱癌的风险为携带Lys/Lys基因型者的5.54倍(95%CI=1.86-16.47)。
     以携带XPC 939Gln突变等位基因、XPG 1104His突变等位基因和XRCC1399Gln突变等位基因为高风险型。调整混杂因素后,与不携带风险型的个体相比,携带高风险基因型数量为2个和3个位点时,膀胱癌的患病风险分别增高到1.90倍(95%CI:1.13-4.12)和3.59倍(95%CI:1.82-9.26)并且该风险增高效应有统计学意义。
     结论:本次以上海地区汉族人群为研究对象的病例对照研究,主要的研究结果有:吸烟可增加膀胱尿路上皮癌的患病风险;XPC基因Lys939Gln和XPG基因Asp1104His的单核苷酸多态与膀胱尿路上皮癌的发病风险有关联;重度吸烟和XPC基因939Gln的交互作用可增加膀胱尿路上皮癌的患病风险;DNA修复体系多个(>2)高风险型SNP的积累可使膀胱尿路上皮癌的患病风险增高。
     第二部分毒物代谢酶基因单核苷酸多态与膀胱尿路上皮癌遗传易感性研究
     目的:参与环境化学物代谢的多种代谢酶具有遗传多态性,对于环境化学物质引起健康损害的个体易感性有重要的影响作用。在不同的种族和地域人群间多态性人群频率特征往往存在显著差异。初步探讨在上海地区汉族人群中Ⅰ相代谢酶基因(CYP2C9~*3,CYP2C19~*2,CYP2C19~*3,CYP2D6~*10,CYP3A4~*18和CYP3A5~*3)单核苷酸多态性与膀胱尿路上皮癌(移行细胞癌)遗传易感性的关系
     方法:我们采用病例一对照研究方法,以Taqman探针实时荧光定量PCR技术对130例病理证实原发膀胱尿路上皮癌患者和304例非肿瘤对照的6个Ⅰ相代谢酶基因基因(CYP2C9~*3,CYP2C19~*2,CYP2C19~*3,CYP2D6~*10,CYP3A4~*18和CYP3A5~*3)的单核苷酸多态性位点进行检测。应用非条件Logistic回归模型,调整混杂因素后,分析各基因型与膀胱尿路上皮癌罹患风险的关系,还分析了基因-基因、基因-环境相互作用与膀胱尿路上皮癌风险的关系。
     结果:这六个代谢酶基因单核苷酸多态各种基因型在正常对照及病例组中的分布均符合Hardy-Weinberg平衡定律。调整性别、年龄和吸烟情况后,无论是CYP2C9~*3,CYP2C19~*2,CYP2D6~*10,CYP3A4~*18和CYP3A5~*3的突变杂合基因型还是突变纯合基因型,均未发现与膀胱尿路上皮癌的发病风险有关联(调整OR值95%CI分别为突变杂合体1.02[0.61-1.68],0.85[0.47-1.54],1.09[0.67-1.77],1.12[0.67-1.86]和0.58[0.24-1.38];突变纯合体1.02[0.63-1.63],0.98[0.65-1.59],1.50[1.00-2.25],0.92[0.54-1.57]和0.96[0.65-1.40])。CYP2C19~*3的突变等位基因频率也和膀胱尿路上皮癌风险无关(调整OR:1.01;95%CI=0.42-2.45)。同时也未观察到这六个单核苷酸多态性与吸烟交互作用对膀胱尿路上皮癌罹患风险的阳性结果。
     基因-基因联合分析显示:病例组中的所用研究对象中至少携带1个高风险型;两组中未见有携带6个高风险型者。所以用携带1个高风险型的数据作为参照,调整混杂因素后,随着携带高风险基因型数量逐渐增多时,并未发现膀胱尿路上皮癌的患病风险随之增高。
     结论:本次以上海地区汉族人群为研究对象的病例对照研究结果:代谢酶基因CYP2C9~*3,CYP2C19~*2,CYP2C19~*3,CYP2D6~*10,CYP3A4~*18和CYP3A5~*3的单核苷酸多态性与膀胱尿路上皮癌的发病风险无关。
     第三部分单核苷酸多态与膀胱尿路上皮癌遗传易感性:多位点联合分析
     目的:肿瘤是一类复杂性疾病,它的发生与众多低外显的肿瘤遗传易感基因之间的相互作用以及基因-环境之间的交互作用有关。本研究以130例膀胱尿路上皮癌患者和304例非肿瘤对照为研究对象,选择了9个DNA损伤修复和致癌物代谢相关的功能性基因单核苷酸多态,包括XPCLys939Gln,XPG His1104Asp,XRCC1Arg399Gln,CYP2C9~*3,CYP2C19~*2,CYP2C19~*3,CYP2D6~*10,CYP3A4~*18和CYP3A5~*3。
     方法:在第一章和第二章以非条件logistic回归方法分别分析了这9个SNPs单个位点与肿瘤风险的相关性以及基因和环境之间的交互作用。为了进一步了解这9个位点之间的相互作用以及具体是哪几个位点有交互作用,我们采用用多元缩减法(multifactor-dimensionality reduction,MDR)分析这9个单核苷酸多态之间的相互作用关系。
     结果:本研究候选的9个基因多态中,从两点模型看,XPC Lys939Gln和XPGAsp1104His多态之间的存在交互作用,其相互验证的一致性(cross-validationconsistency,CVC)达到了10次,从三点模型看,XPC Lys939Gln,CYP2D6~*10和CYP3A5~*3基因多态之间的联合效应最显著,CVC达到了8;四点模型得出XPC、XPG、CYP2D6~*10和CYP3A5~*3多态与膀胱癌发病存在联合作用,其CVC6,Permutation检验P均小于0.05。在大于4个点的交互作用模型中,没有得出有显著性差异的结果。
     结论:我们的研究表明,膀胱尿路上皮癌是一个多基因参与的复杂疾病;多元缩减法多位点联合分析为肿瘤易感基因的研究提供了有用的方法。
Background & Objective: DNA repair has an essential role in protecting the genomefrom damage by endogenous and environmental agents. Polymorphisms in DNArepair genes may be associated with difference in the repair capacity and mayinfluence an individual's risk of cancer. We preliminarily investigated the associationbetween bladder transitional cell carcinoma(TCC) and single nucleotidepolymorphisms(SNPs) of DNA repair genes(XPC Lys939Gln, XPG His1104Asp andXRCC1 Arg399Gln)among Han-Chinese in Shanghai.
     Methods: We therefore conducted a case-control study to assess the relationshipbetween single nucleotide polymorphisms in DNA repair genes XPC, XPG andXRCC 1 and Bladder Cancer risk. and we also attempted to assess gene-gene andgene-environmental interactions. A total of 130 primary bladder transitional cellcarcinoma cases and 304 cancer-free controls were recruited and frequency-matched on age and gender status. Genotypes were determined by TaqMan Probe-basedpolymerase chain reaction and DNA sequencing techniques. Adjusted odds ratios(ORs) and their 95% confidence intervals(CIs) were computed to estimate the risk ofbladder transitional cell carcinoma for each genotype. All statistical tests weretwo-side tests.
     Results: We found that polymorphisms in XPC and XPG but not XRCC1 wereassociated with risk of bladder transitional cell carcinoma.
     The individuals with bladder transitional cell carcinoma at least having one XPC939Gln had an adjusted OR of 2.80(95%CI=1.79-4.37) compared with noncarriers.Stratification analysis revealed that the increased risk was mainly confined to malewith the adjusted OR of 2.95(95%CI=1.43-6.08) and older individuals(age atdiagnosis≥64 years) with the adjusted OR of 4.17(95%CI=2.14-8.16). In the casegroup, XPC Lys939Gln polymorphisms was associated with tumor stage and tumornumber.
     Compared with XPG1104Asp/Asp genotype, the His/His and Asp/His genotypewas significantly associated with bladder cancer(adjusted OR=2.62; 95% CI=1.61-4.24). The risk of the(1104His/His+Asp/His)genotype appeared to be morepronounced in females(adjusted OR=2.48;95%CI=1.34-4.60) and in subjects withbladder transitional cell carcinoma who were non-smokers(adjusted OR=4.31; 95%CI=1.19-12.47). In the case group, XPG His1104Asp polymorphisms was notassociated with tumor clinicopathological features. Neither the heterozygote nor thehomozygote variants of XRCC1 Arg399Gln polymorphisms were associated withincreased bladder cancer risk.
     Smoking increased the risk of developing bladder transitional cell carcinoma,having an adjusted OR of 3.34(95% CI=2.01-5.57). The subjects with heavysmoking and at least having one XPC 939Gln allele had an adjusted OR of 5.54(95%CI=1.86-16.47), compared with noncarriers and heavy smoking,
     As compared with individuals having no putative high-risk genotypes,individuals with three or more putative high-risk genotypes had a statistical increasedrisk of bladder transitional cell carcinoma. And the adjusted ORs(95%CIs) were1.90(1.13-4.12) for individuals with two high-risk genotypes, 3.59(1.82-9.26) forindividuals with three high-risk genotypes, respectively.
     Conclusion: The main findings from this case-control study carried out inHan-Chinese in Shanghai were as follows: Smoking may contribute to the bladder transitional cell carcinoma predisposition. DNA repair genes XPC Lys939Gln andXPG Asp1104His single nucleotide polymorphisms may play an important role in thedevelopment of bladder transitional cell carcinoma. The gene-environment interactionbetween XPC Lys939Gln polymorphism and cigarette smoke exposure may also haveeffect on the bladder carcinogenesis. The accumulation of multi-polymorphisms inDNA repair genes has a contribution to the genetic predisposition of bladdertransitional cell carcinoma.
     Background & Objective: Many carcinogen-metabolizing enzyme genes displaywide ranges of genetic polymorphism. The genetic polymorphism of these enzymesmodulate individual susceptibility to certain disease. There are notable deviations onthe population frequency of carcinogen-metabolizing gene polymorphism amongdifferent ethnic groups and regional resident population. We preliminarilyinvestigated the association between bladder transitional cell carcinoma(TCC) andsingle nucleotide polymorphisms(SNPs) of carcinogen-metabolizing enzymegenes(CYP2C9~*3, CYP2C19~*2, CYP2C19~*3, CYP2D6~*10, CYP3A4~*18 andCYP3A5~*3)among Han-Chinese in Shanghai.
     Methods: We therefore conducted a case-control study to assess the relationshipbetween single nucleotide polymorphisms in xenobiotic metabolism genesCYP2C9~*3, CYP2C19~*2, CYP2C19~*3, CYP2D6~*10, CYP3A4~*18 and CYP3A5~*3and Bladder Cancer risk. and we also attempted to assess gene-gene andgene-environmental interactions. A total of 130 primary bladder transitional cellcarcinoma cases and 304 cancer-free controls were recruited and frequency-matchedon age and gender status. Genotypes were determined by TaqMan Probe-basedpolymerase chain reaction. Adjusted odds ratios(ORs) and their 95% confidenceintervals(CIs) were computed to estimate the risk of bladder transitional cellcarcinoma for each genotype. All statistical tests were two-side tests.
     Results: The distribution of genotypes of these CYP polymorphisms geneticvariants in cases and controls was consistent with Hardy-Weinberg equilibrium. Usinglogistic regression adjusting for smoking, gender and age, neither the heterozygotenor the homozygote variants of CYP2C9~*3, CYP2C19~*2,, CYP2D6~*10, CYP3A4~*18and CYP3A5~*3 polymorphisms were associated with increased bladder cancer risk(adjusted odds ratio [95% confidence interval] for heterozygote 1.02[0.61-1.68],0.85[0.47-1.54], 1.09[0.67-1.77], 1.12[0.67-1.86] and 0.58[0.24-1.38], respectivelyand homozygote variant, 1.02[0.63-1.63], 0.98[0.65-1.59], 1.50[1.00-2.25],0.92[0.54-1.57] and 0.96[0.65-1.40]).The CYP2C19~*3 polymorphisms was notassociated with bladder cancer risk either(adjusted OR:1.01; 95% CI=0.42-2.45).Moreover, we did not find any significant interaction between these CYPpolymorphisms and environmental exposure to cigarette smoking.
     As compared with individuals having one putative high-risk genotypes,individuals with two or more putative high-risk genotypes had not a statisticalincreased risk of bladder transitional cell carcinoma.
     Conclusion: The main findings from this case-control study carried out inHan-Chinese in Shanghai were as follows: the single nucleotide polymorphisms(SNPs) of CYP2C9~*3, CYP2C19~*2, CYP2C19~*3, CYP2D6~*10, CYP3A4~*18 andCYP3A5~*3 may not influence the risk of bladder transitional cell carcinoma.
     Background & Objective: Accumulating evidence shows that most cancers arecaused by interactions of many low-penetrance susceptibility genes. In this study, weinvestigated the association between risk of bladder transitional cell carcinoma andsingle nucleotide polymorphisms(SNPs) in multiple loci in a case-control study consisted of 130 patients and 304 cancer-free controls.
     Methods: The functional SNPs investigated were XPC Lys939Gln, XPGHis1104Asp, XRCC1Arg399Gln, CYP2C9~*3, CYP2C19~*2, CYP2C19~*3,CYP2D6~*10, CYP3A4~*18 and CYP3A5~*3. Traditional unconditional logisticregression model was used to evaluate the effect of single SNP alone in chapter oneand chapter two. In this chapter, multifactor-dimensionality reduction(MDR) wasapplied to examine the interactions between these 9 SNPs interactions.
     Results: It was found that, among these SNPs, MDR analysis revealed that the XPCLys939Gln and XPG His1104Asp SNPs displayed significant interaction in risk of thebladder cancer. Moreover, two sets of polymorphisms were found to nteract, whichincreased the risk of bladder cancer.
     Conclusion: Our results support the hypothesis that bladder cancer is a complexdisease resulting from the interactions of low-penetrance genes and MDR seems to bea useful analytical tool for complex genetic diseases.
引文
1.Parkin MD,Bray F,Ferlay J,et al.Global Cancer Statistics,2002.CA Cancer J Clin,2005,55:74-108.
    2.Jemal A,siegel R,Ward E,et al.Cancer statistics,2008.CA Cancer J Clin 2008,76:71-96.
    3.虞颂庭,臧美孚,夏溟.尿路上皮肿瘤概论.见:吴阶平.吴阶平泌尿外科学.济南:山东科学技术出版社,2004.919-942.
    4.魏矿荣,陈振雄,梁智恒,等.中山市1970-1999年膀胱癌发病趋势分析.中国肿瘤,2004,14:235-237.
    5.张薇,项永兵,刘振伟,等.1973-1999年上海市区老年人恶性肿瘤发病趋势分析.中华老年医学杂志,2005,24:701-704.
    6.徐桂兰,奉兆民,段纪俊,等.武汉市1995年-1997年恶性肿瘤发病分析.中国肿瘤,2002,11:455-456.
    7.Lammle M,Beer A,Settles M,et al.Reliability of MR imaging-based virtual cystoscopy in the diagnosis of cancer of the urinary bladder.AJR Am J Roentgenol,2002,178:1438-1488.
    8.Beer A,Saar B,Zantl N,et al.MR cystography for bladder tumor detection.Eur Radiol,2004,14:2311-2319.
    9.Tekes A,Kamel I,Imam K,et al.Dynamic MRI of bladder cancer: evaluation of staging accuracy.A JR Am J Roentgenol,2005,184:121-127.
    10.Deserno WM,Harisinghani MG,Taupitz M,et al.Urinary bladder cancer: preoperative nodal staging with ferumoxtran-10-enhanced MR imaging.Radiology,2004,233:449-456.
    11.Jana S,Blaufox MD.Nuclear medicine studies of the prostate,testes,and bladder.Semin Nucl Med,2006,36:51-72.
    12.Bas WG,van Rhijn,Henk G van der Poel,et al.Urine markers for bladder cancer surveillance: A systematic review.Eur Urol,2005,47:736-748.
    13.Gr(?)goire M,Fradet Y,Meyer F,et al.Diagnostic accuracy of urinary cytology,and deoxyribonucleic acid flow cytometry and cytology on bladder washings during follow up for bladder tumors.J Urol,1997,157:1660-1664.
    14.Kannan V,Bose S.Low grade transitional cell carcinoma and instrument artifact.A challenge in urinary cytology.Acta Cytol,1993,37:899-902.
    15.Messing EM,Catalona W.Urothelial tumors of the urinary tract.In Campbell's urology,7th ed.Walsh PC,Retik AB,Vaughan ED Jr,Wein AJ,eds.Philadelphia (PA): W.B.Saunders,1998,2327-2408.
    16.Roy JY,Staerkel GA,Ayala AG.Cytologic and histologic features of superficial bladder cancer.Urol Clin North Am,1992,19:435-453.
    17.Schroeder GL,Lorenzo Gomez MF,Hautmann SH,et al.A side by side comparison of cytology and biomarkers for bladder cancer detection.J Urol,2004,172:1123-1126.
    18.Glas AS,Roos D,Deutekom M,et al.Tumour markers in the diagnosis of primary bladder cancer.A systematic review.J Urol,2003,169:1975-1982
    19.叶敏,沈海波,黄云腾,等.几种新瘤标对膀胱癌早期诊断价值的比较.临床泌尿外科杂志,2004,19:151-153.
    20.Toma MI,Barak V,Hautmann SH,et al.Comparison of the Immunocyt test and urinary cytology with other urine tests in the detection and surveillance of bladder cancer.World J Urol,2004,22:145-149.
    21.Friedrich MG,Toma MI,Hellstem A,et al.Comparison of multitarget fluorescence in situ hybridization in urine with other non-invasive tests for detecting bladder cancer.BJU Int,2003,92:911-914.
    22.Boman H,Hedelin H,Holmang S,et al.Four bladder tumor markers have a disappointingly low sensitivity for small size and low grade recurrence.J Urol,2002,167:80-83.
    23.Coleman J,Franks ME,Grubb LR,et al.Highlights from the society of urologic oncology 4th annual meeting.J Urol,2005,173:938-941.
    24.王春荣,林宗明.膀胱肿瘤标记物的研究进展.国际泌尿系统杂志,2006, 26:12-15.
    25.Serretta V,Pomara G,Rizzo L,et al.Urinary BTA-Stat,BTA-Trak and NMP22 in surveillance after TUR of recurrent superficial transitional cell carcinoma of the bladder.Eur Urol,2000,38:419-452.
    26.Brown FM.Urine cytology,Is it still the gold standard for screening? Urol Clin North Am,2000,27:25-37.
    27.Iwaki H,Kageyama S,IsonoT,et al.Diagnostic potential in bladder cancer of a panel of tumor markers identified by proteomic analysis.Cancer Sci,2004,95:955-961
    28.Wu X,Gu J,Grossman HB,et al.Bladder cancer predisposition: a multigenic approach to DNA-repair and cell-cycle-control genes.Am J Hum Genet.2006 Mar; 78:464-479.
    29.Hoeijmakers JHJ.Genome maintenance mechanisms for preventing cancer.Nature,2001; 411:366-374.
    30.Wood RD,Mitchell M,Sgouros J.et al.Human DNA repair genes.Science,2001; 219: 1284-1289.
    31.Nickerson DA,Taylor SL,Weiss KM,et al.DNA sequence diversity in a 9.7kb region of the human lipoprotein lipase gene.Nature,1998; 19: 233-240.
    32.Shen MR,Jones IM,and Mohrenweiser H.Nonconservation amino acid substitution variants exist at polyrnorphic frequency in DNA repair genes in healthy humans.Cancer Res.1998; 58:604-608.
    33.Wei Q,Cheng L.,Hong WK,et al.Reduced DNA repair capacity in lung Cancer patients.Cancer Res,1996; 56: 4103-4107.
    34.Friedberg EC.DNA repair.New York: WH Freedman and Company.1985.
    35.Franekova M,Halasova E,Bukovska E,et al.Gene polymorphisms in bladder cancer.Urol Oncol.2008; 26:1-8.
    36.Zhao H,Lin J,Grossman HB,et al.Dietary isothiocyanates,GSTM1,GSTT1,NAT2 polymorphisms and bladder cancer risk.Int J Cancer.2007; 120:2208-13.
    37.Steinmaus C,Moore LE,Shipp M,et al.Genetic polymorphisms in MTHFR 677 and 1298,GSTM1 and T1,and metabolism of arsenic.J Toxicol Environ Health A.2007; 70:159-70.
    38.Van Tassell CP,Smith TP,Matukumalli LK,et al.SNP discovery and allele frequency estimation by deep sequencing of reduced representation libraries.Nat Methods.2008;5:247-252.
    39.Kim S,Misra A.SNP genotyping: technologies and biomedical applications.Armu Rev Biomed Eng.2007; 9:289-320.
    40.Lee JE.High-throughput genotyping.Forum Nutr.2007; 60:97-101.
    41.Engle LJ,Simpson CL,Landers JE,et al.Using high-throughput SNP technologies to study cancer.Oncogene.2006 Mar 13; 25:1594-601.
    1.Sobin DH,Witteking Ch,eds.TNM Classification of Malignant Tumours.6th ed.NewYork:Wiley-Liss 2002,199-202
    2.Sauter G,Algaba F,Amin M,et al.Tumour of urinary system:non-invasive urothelial neoplasia.In Eble JN,Sauter G,Epstein JI,Sesterhenn,eds.WHO Classification of Classification of Tumour of urinary system and male genital organs. Lyon: IARCC Press, 2004.
    3. Hu JJ, Mohrenweiser HW, Bell DA, etal. Symposium overview: genetic polymoprhisms in DNA repair and cancer risk. Toxicol Appl Pharmacol 2002; 185:64-73.
    4. de Boer J, Hoeijmakers JH. Nucleotide excision repair and human syndromes. Carcinogenesis 2002; 21:453-460.
    5. Hoeijmakers JH. Genome maintenance mechanisms for preventing cancer. Nature 2001; 411:366-374.
    6. Talor EM, Broughton BC, Botta E, et al. Xeroderma pigmentosum and trichothiodystrophy are associated with different mutations in the XPD (ERCC2) repair/transcription gene. Proc Natl Acad Sci. USA. 1997; 94: 8658-8663.
    7. Coin F, Marinoni JC, Rodolfo C, et al. Mutations in the XPD helicase gene result in XP and TTD phenotype, preventing interaction between XPD and the p44 subunit of TFIIH. Nature 1998; 20: 184-188.
    8. Friedberg EC. DNA repair. New York: WH Freedman and Company. 1985.
    9. Volker M, Mone MJ, Karmakar P, et al. Sequential assembly of the nucleotide excision repair factors in vivo. Molecular Cell, 2001, 8:213-224.
    10. Janicijevic A, Sugasawa K, Shimizu Y, et al. DNA bending by the human damage recognition complex XPC-HR23B. DNA Repair, 2003, 2:325-336.
    11. Sugasawa K, Ng JM, Masutani C, et al. Xeroderma pigmentosum group C protein complex is the initiator of global genome nucleotide excision repair. Mol Cell, 1998; 2: 223-232.
    12. Vodicka P, Kumar R, Stetina R, et al. Genetic polymorphisms in DNA repair genes and possible links with DNA repair rates, chromosomal aberrations and single-strand breaks in DNA. Carcinogenesis, 2004, 25:757-763.
    13. Khan SG, Metter EJ, Tarone RE, et al. A new xeroderma pigmentosum group C poly(AT) insertion/deletion polymorphism. Carcinogenesis, 2000, 21:1821-1825.
    14. Denissenko MF, Pao A, Tang MS, et al. Preferential formation of benzo[a]pyrene adducts at Bladder Cancer mutational hotpots in p53. Science 1996; 274:430-432.
    15. Tang MS, Pierce JR, Doisy RP. Differences and similarities in the repair of two benzo[a]pyrene diol epoxide isomers induced DNA adducts by uvrA, uvrB, and uvrC gene products. Biochemistry 1992; 31:8429-8436.
    16. Sanyal S, Festa F, Sakano S, et al. Polymorphisms in DNA repair and metabolic genes in bladder cancer.Carcinogenesis,2004,25:729-734.
    17.Sak SC,Barrett JH,Paul AB,et al.The polyAT,intronic IVS11-6 and Lys939Gln XPC polymorphisms are not associated with transitional cell carcinoma of the bladder.British Journal of Cancer,2005,92:2262-2265.
    18.O'Donovan A,Davies AA,Moggs JG,et al.XPG endonuclease makes the 3'incision in human DNA nucleotide excision repair.Nature 1994; 371:432-435.
    19.Wakasugi M,Reardon JT,Sancar A.The non-catalytic function of XPG protein during dual incision in human DNA nucleotide excision repair.J Biol Chem,1997; 272: 16030-16034.
    20.Emmert S,SChneider TD,Khan SG,et al.The human XPG gene: gene architecture,alternative splicing and single nucleotide polymorphisms.Nucleic Acids Res,2001; 29: 1443-1452.
    21.Mac Innes MK,Dickson JA,HernandeZ R.R,et al.Human ERCC5 cDNA-cosmid complementation for excision repair and bipartite amino acid domains conserved with RAD proteins of Saccharomyces cerevisiae and Schzosac-charomyces pombe.Mol Cell Biol,1993; 13: 6393-6402.
    22.Gary R,Ludwing DL,Cornelius HL,et al.The DNA repair endonuclease XPG binds to proliferating cell nuclear antigen (PCNA) and shares sequence elements with the PCNA-biding regions of FEN-1 and cyclin-dependent kinase inhibitor p21.J Biol Chem,1997; 272: 24522-24529.
    23.Cheng L,Spitz MR,Hong WK,et al.Reduced expression levels of nucleotide excision repair genes in lung cancer: a case-control analysis.Carcinogenesis,2000; 21:1527-1530.
    24.Cheng L,Sturgis EM,Eicher SA.et al.Expression of nucleotide excision repair genes and the risk for squamous cell carcinoma of the head and neck.Cancer,2002; 94: 393-397.
    25.Sakano S,Kumar R,Larsson P,et al.A single-nucleotide polymorphism in the XPG gene,and tumour stage,grade,and clinical course in patients with nonmuscle-invasive neoplasms of the urinary bladder.BJU Int 2005; 97:847-51.
    26.Yu Z,Chen J,Ford BN,et al.DNA repair systems: an overview.Enviro Mol Mutagen,1999; 33:3-20.
    27.Thompson LH and West MG.XRCC 1 keeps DNA from getting stranded.Mutat Res,2000; 459: 1-18.
    28.Thompson LH,Brookman KW,Jones NJ,et al.Molecular cloning of the human XRCC 1 gene, which corrects defective DNA strand break repair and sister chromatid exchange. Mol Cell Biol, 1990; 10: 6160-6171.
    29. Kubota Y, Nash RA, Klungland A. et al. Reconstitution of DNA base excision-repair with purified human proteins: interaction between DNA polymerase beta and the XRCC 1 protein. EMBO J, 1996; 15: 6662-6670.
    30. Caldecott KW, Aoufouchi S, Johnson P, et al. XRCCI polypeptide interacts with DNA polymerase beta and possibly poly (ADP-ribose) polymerase, and DNA ligase Ⅲ is a novel molecular 'nick-sensor' in vitro. Nucleic Acids Res, 1996; 24:4387-4394.
    31. Cappelli E, Taylor R, Cevasco M, et al. Involvement of XRCC 1 and DNA ligase III gene products in DNA base excision repair. J Biol Chem. 1997; 272: 23970-23975.
    32. Caldecott KW, McKeown CK, Tucker JD, et al. An interaction between the mammalian DNA repair protein XRCC 1 and DNA ligase Ⅲ. Mol Cell Biol, 1994; 14: 68-76.
    33. Whitehouse CJ., Taylor RM, Thistlethwaite A, et al. XRCC 1 stimulates human polynucleotide kinase activity at damaged DNA termini and accelerates DNA single-strand break repair. Cell, 2001; 104:107-117.
    34. Shen MR, Jones IM, Mohrenweiser H. Nonconservation amino acid substitution variants exist at polymorphic frequency in DNA repair genes in healthy humans. Cancer Res, 1998; 58:604-608.
    35. Tebbs RS, Flannery ML, Meneses JJ, et al. Requirement for the XRCCI DNA base excision repair gene during early mouse development. Dev Biol, 1999; 208:513-529.
    36. Lunn RM, Langlois RG, Hsieh LL, et al.XRCCl polymorphisms: effects on alfatoxin Bl-DNA adducts and glycophorin A variant frequency. Cancer Res; 1999,59:2557-2561.
    37. Karl T. Kelsey, Sunyeong Park, Heather H. Nelson, et al. Karagas. A Population-Based Case-Control study of the XRCCI Arg399Gln Polymorphism and Susceptibility to Bladder Cancer. Cancer Epidemiology Biomarkers & Prev, 2003; 12:1234-1240.
    38. Shen MR, Hung RJ, Brennan P, et al. Polymorphisms of the DNA repair genes XRCCI, XRCC3, XPD, interaction with environmental exposures, and bladder cancer risk in a case-control study in northern Italy. Cancer Epidemiol Biomarkers & Perv,2003;12:1234-1240.
    39.Stern MC,Umbach DM,van Gils CH,et al.DNA repair gene XRCC1 polymorphisms,smoking,and bladder cancer risk.Cancer Epidemiol Biomarkers Prev 2001; 10:125-131.
    40.Matullo G,Guarrera S,Carturan S,et al.DNA repair gene polymorphisms,bulky DNA adduct in white blood cells and bladder cancer in a case-control study.Cancer Epidemiology Biomarkers & Prevention,2001; 92(4):5692-567.
    41.Sanyal S,Fabiola F,Sakano S,et al.Polymorphisms in DNA repair and metabolic genes in bladder cancer.Carcingenesis,2004; 25,(5):729-734.
    42.Sak SC,Barrett JH,Paul AB,et al.DNA repair gene XRCC1 polymorphisms and bladder cancer risk.BMC Genet 2007; 8:13.
    43.Wang C,Sun Y,Han R.XRCC1 genetic polymorphisms and bladder cancer susceptibility: a meta-analysis.Urology 2008; 72:869-872.
    1.Kirchheiner J,Brockmoller J.Clinical consequences of cytochrome P450 2C9 polymorphisms.Clin Pharmacol Ther,2005,77:1-16.
    2.Mizutani T.PM frequencies of major CYPs in Asians and Caucasians.Drug Metab,2003,35:99-106.
    3.Hong X,Zhang S,Mao G,et al.CYP2C9~*3 allelic variant is associated with metabolism of irbesartan in Chinese population.Eur J Clin Pharmacol,2005,61:627-634.
    4.Bae JW,Kim HK,Kim JH,et al.Allele and genotype frequencies of CYP2C9 in a Korean population.Br J Clin Pharmacol,2005,60:418-422.
    5.Nakai K,Habano W,Nakai K,et al.Ethnic differences in CYP2C9~*2 (Arg144Cys) and CYP2C9~*3(Ile359Leu) genotypes in Japanese and Israeli populations.Life Sci,2005,78:107-111.
    6.Hong X,Zhang S,Mao G,et al.CYP2C9~*3 allelic variant is associated with metabolism of irbesartan in Chinese population.Eur J Clin Pharmacol,2005,61:627-634.
    7.Fortuny J,Kogevinas M,Garcia-Closas M,et al.Use of analgesics and nonsteroidal anti-inflammatory drugs,genetic predisposition,and bladder cancer risk in Spain.[erratum appears in Cancer Epidemiol Biomarkers Prey].2007 Feb; 16:363.
    8.Takanashi K,Tainaka H,Yasumori,et al.CYP2C9 Ile 359 and Leu variants: enzyme kinetic study with seven substrates.Pharmacogenetics,2000,10:95-104.
    9.de Morais SM Wilkinson GR,Blaisdell J,et al.Identification of a new genetic defect responsible for the polymorphism of (S)-mephenytoin metabolism in Japanese.Mol Pharmacol.1994; 46:594-598.
    10.周宏灏 主编,遗传药理学 第1版北京:科学出版社,2001,123-138.
    11.Brockmoller J,Cascorbi I,Kerb R,et al.Combined analysis of inherited polymorphisms in arylamine N-acetyltransferase 2,glutathione S-transferases M1 and T1,microsomal epoxide hydrolase,and cytochrome P450 enzymes as modulators of bladder cancer risk.Cancer Res.1996; 56:3915-3925.
    12.Moore LE,Wiencke JK,Bates MN,et al.Investigation of genetic polymerphisms and smoking in a bladder cancer case-control study in Argentina.Cancer Lett 2004; 211:199-207.
    13.Bartsch H,Nair U,Risch A,et al.Genetic polymorphism of CYP genes,alone or in combination,as a risk modifier of tobacco-related cancers.Cancer Epidemiol Biomarkers Prev 2000; 9:23-28.
    14.Ribeiro Pinto LF,Teixeira Rossini AM,Albano RM,et al.Mechanisms of esophageal cancer development in Brazilians.Mutat Res 2003; 544:365-373
    15.Klose TS,Blaisdell JA,Goldstein JA.Gene structure of CYP2C8 and extrahepatic distribution of the human CYP2Cs.J Biochem Mol Toxicol 1999; 13:289-295
    16.Shi WX,Chen SQ.Frequencies of poor metabolizers of cytochrome P450 2C19 in esophagus cancer,stomach cancer,lung cancer and bladder cancer in Chinese population.World J Gastroenterol 2004; 10:1961-1963.
    17.金百冶,陈枢青,蔡松良,等.CYP2C19遗传多态性与膀胱癌易感性关系的研究.中华泌尿外科杂志,2000,21:656-658
    18.Ji L,Pan S,Wu J,et al.Genetic polymorphisms of CYP2D6 in Chinese mainland.Chinese Med J,2002,115:1780
    19.Gao Y,Zhang Q.Polymorphisms of the GSTM1 and CYP2D6 genes associated with susceptibility to lung cancer in Chinese.Mutat Res,1999,444:441
    20.Fukatse T,Hirokawa Y,Araki T,et al,Genetic polymorphisms of hormone-related genes and prostate cancer risk in Japanese population.Anticancer res.2004; 24:2431-2437.
    21.Wadelius M,Autrup JL,Stubbins MJ,et al.Polymorphisms in NAT2,CYP2D6, CYP2C19 and GSTP1 and their association with prostate cancer.Pharmaco-genetics.1999; 9:333-40.18.
    22.Anwar WA,Abdel-Rahman SZ,El-Zein RA,et al.Genetic polymorphism of GSTM1,CYP2E1 and CYP2D6 in Egyptian bladder cancer patients.Carcinogenesis.1996; 17: 1923-1929.
    23.Romkes M,Chern HD,Lesnick TG,et al.Association of low CYP3A activity with p53 mutation and CYP2D6 activity with Rb mutation in human bladder cancer.Carcinogenesis.1996; 179: 1057-1062.
    24.Brockmoller J,Cascorbi I,Kerb R,et al.Combined analysis of inherited polymorphisms in arylamine N-acetyltransferase 2,glutathione S-transferases M1 and T1,microsomal epoxide hydrolase,and cytochrome P450 enzymes as modulators of bladder cancer risk.Cancer Res.1996; 56:3915-3925.
    25.Chinegwundoh FI,Kaisary AV.Polymorphism and smoking in bladder carcinogenesis.Br J Urol.1996; 77: 672-675.
    26.Saarikoski ST,Sara F,Husgafvel-Pursiainen K,et al.CYP2D6 ul trarapid metabolizer genoytype as a potential modifier of smoking behaviour.Pharmacogenetics.2000; 10:5-10.
    27.Sobti RC,Badran AI,Sharma S,Sharma SK,et al.Genetic polymorphisms of CYP2D6,GSTM1,and GSTT1 genes and bladder cancer trisk in North India.Cancer genet Cytogenet.2005; 156:68-73.
    28.Tateishi T,Watanabe M,Moriya H,et al.No ethnic difference between Caucasian and Japanese hepatic samples in the expression frequency of CYP3A5 and CYP3A7 proteins.Biochem Pharmacol 1999; 57: 935-939.
    29.Domanski TL,Finta C,Halpert JR,et al.cDNA cloning and initial characterization of CYP3A43,a novel human cytochrome P450.Mol Pharmacol 2001; 59: 386-392.
    30.Westlind A,Malmebo S,Johansson L,et al.Cloning and tissue distribution of a novel human cytochrome P450 of the CYP3A subfamily,CYP3A43.Biochem Biophys Res Commun 2001; 281:1349-1355.
    31.De Waziers 1,Cugnenc PH,Yang CS,et al.Cytochrome P450 isoenzymes,epoxide hydrolase and glutathione transferases in rat and human hepatic and extrahepatic tissue.J Pharmacol Exp Ther 1990; 253: 387-394.
    32. Shimada T, Yamazaki H, Mimura M, et al. Interindividual variations in human liver cyto-chrome P450 enzyme involved in the oxidation of drugs, carcinogens and toxic chemicals: Studies with liver microsomes of 30 Japanese and 30 Caucasians. J Pharmacol Exp Ther 1994; 270: 414-423.
    33. Hsieh KP, Lin YY, Cheng CL, et al. Novel mutations of CYP3A4 in Chinese. Drug metab Dispos 2001 ;29: 268-273.
    34. Dai D, Tang J, Rose R, et al. Identification of variants of CYP3A4 and characterization of their abilities to metabolize testosterone and chlorpyrifos. J Pharmacol Exp Ther 2001; 299: 825-831.
    35. Fukushima-Uesaka H, Saito Y, Watanabe H, et al. Halotypes of CYP3A4 and their close linkage with haplotypes in a Japanese population. Hum Mutat 2004; 26:100-108.
    36. Me Hq Wood AJJ, Kim RB, et al. Genetic variability in CYP3A5 and its possible consequences. Phanmacogenomics 2004; 5: 243-72.
    37. Hustert E, Haberl M, Burk O, et al. The genetic determinants of the CYP3A5 polymorphism, Pharmacogenetics 2001 ;11:773-779.
    38. Chou FC, Tzeng SJ, Huang JD. Genetic polymorphism of cytochrome P450 3A5 in Chinese. Drug Metab Dispos 2001;29: 1205-1209.
    39. Liu TC, Lin SF, Chen TP, et al. Polymorphism analysis of CYP3A5 in myloid leukemia. Oncol Rep 2002; 9: 327-329.
    40. Jounaidi Y, Hyrailles V, Gervot L, et al. Detection of CYP3A5 allelic variant: a candidate for the polymorphic expression of the protein. Biochem Biophys Res Commun, 1996, 221:466- 470.
    41. Kuehl P, Zhang J, Lin Y, et al. Sequence diversity in CYP3A promoters and characterization of the genetic basis of polymorphic CYP3A5 expression. Nat Genet, 2001, 27:383-391.
    42. Zeigler-Johnson CM, Walker AH, Mancke B, et al. Ethnic differences in the frequency of prostate cancer susceptibility alleles at SRD5A2 and CYP3A4. Hum Hered.2002; 54:13-21.
    43. Zeigler-Johnson C, Friebel T, Walker AH, et al. CYP3A4, CYP3A5, and CYP3A43 genotypes and haplotypes in the etiology and severity of prostate cancer. Cancer Res. 2004; 64:8461-8467.
    44.Wojnowski L,Turner PC,Pedersen B,et al.Increased levels of aflatoxin-albumin adducts are associated with CYP3A5 polymorphisms in the Gambia,West Africa.Pharmacogenetics,2004,14:691-700.
    45.Dandara C,Ballo R,Parker MI,et al.CYP3A5 genotypes and risk of oesophageal cancer in two South African populations.Cancer Lett,2005,225:275-282.
    46.李振华,孔垂泽,王立忠.前列腺癌发生风险与CYP3A5基因多态性的关系.中华实验外科杂志,2003,20:1098-1099.
    1.Hanahan D,Weinberg RA.The hallmarks of cancer.Cell,2000,100:57-70.
    2.Hoh J,Ott J.Mathematical multi-locus approaches to localizing complex human trait genes.Nat Rev Genet,2003,4: 701-709.
    3.Hoh J,Ott J.Genetic dissection of diseases: design and methods.Curr Opin Genet Dev.2004,14:229-232.
    4.Bellman,R.Adaptive Control Processes: a Guided Tour.Princeton University Press,1961,Princeton.
    5.Nelson MR,Kardia SL,Ferrell RE,et al.A combinatorial partitioning method to identify multilocus genotypic partitions that predict quantitative trait variation.Genome Res,2001,11:458-470.
    6.Ritchie MD,Hahn LW,Roodi N,et al.Multifactor-dimensionality reduction reveals high-order interactions among estrogen-metabolism genes in sporadic breast cancer.Am J Hum Genet,2001,69:138-147.
    7.Hahn LW,Ritchie MD,Moore JH.Multifactor dimensionality reduction software for detecting gene-gene and gene-environment interactions.Bioinformatics,2003,19:376-382.
    8.Ritchie MD,Hahn LW Moore JH.Power of multifactor dimensionality reduction for detecting gene-gene interactions in the presence of genotyping error,missing data,phenocopy,and genetic heterogeneity.Genet Epidemiol,2003,24: 150-157.
    9.Moore JH,Hahn LW A cellular automata approach to detecting interactions among single-nucleotide polymorphisms in complex multifactorial diseases.Pac Symp Biocomput,2002,54: 53-64.
    10.Moore JH.A global view ofepistasis.Nat Genet,2005,37: 13-14.
    1.Johson SL,Cohen SM.Epidemiology and etiology of bladder cancer.Semin Surg Oncol,1997,13:291-298.
    2.Li D,Firozi PF,Wang LE,et al.Sensitivity to DNA damage induced by benzo (a) pyrenediol epoxide and risk of lung cancer:a case-control a-nalysis.Cancer Res,2001,61: 1445-1450.
    3.Park JY,Park SH,Choi JE,et al.Polymorphisms of the DNA repair gene xeroderma pigmentosum group A and risk of primary lung cancer.Cancer Epidemiol Biomarkers Prev,2002,11:993-997.
    4.Ronen A.Human DNA repair genes.Environ Mol Mut: 2001,37:241-283.
    5.Spitz MR,Wu X,Wang Y,et al.Modulation of nucleotide excision repair capacity by XPD polymorphisms in lung cancer patients.Cancer Res,2001,61:1345-1357.
    6.吴一迁,崔恒宓,万曙光,等.乙肝病毒对DNA修复基因和肝癌发生的作用.肿瘤,2002,22:379.
    7.Sunaga N,Kohno T,Yanagitani N,et al.Contribution of the NQO1 and GSTT1 polymorphisms to lung adenocarcinoma susceptibility.Cancer Epidemiol Biomarkers Prev,2002,11:703-738.
    8.Tuimala J,Szekely G,Gundy S,et al.Genetic polymorphisms of DNA repair and xenobiotic-metabolizing enzymes: role in mutagen sensitivity.Carcinogenesis,2002,23:1003-1008.
    9.Lunn RM,Langlois RG,Hsieh LL,et al.XRCC1 polymorphisms: effects on alfatoxin B1-DNA adducts and glycophorin A variant frequency.Cancer Res,1999,59:2557-2561.
    10.Kelsey KT,Park S,Nelson HH,et al.A population-based case-control study of the XRCC1 Arg399Gln polymorphism and susceptibility to bladder cancer. Cancer Epidemiol Biomarkers Prev 2004; 13:1337-1341.
    11. Shen M, Hung RJ, Brennan P, et al. Polymorphisms of the DNA repair, genes XRCCl, XRCC3, XPD, interaction with environmental exposures, and bladder cancer risk in a case-control study in northern Italy. Cancer Epidemiol Biomarkers & Perv, 2003,12:1234-1240.
    12. Stern MC, Umbach DM, van Gils CH, et al. DNA repair gene XRCCl polymorphisms, smoking, and bladder cancer risk. Cancer Epidemiol Biomarkers Prev 2001; 10:125-131.
    13. Matullo G, Guarrera S, Carturan S, et al. DNA repair gene polymorphisms, bulky DNA adduct in white blood cells and bladder cancer in a case-control study. Cancer Epidemiology Biomarkers & Prevention, 2001, 92:562-567.
    14. Sanyal S, Fabiola F, Sakano S, et al. Polymorphisms in DNA repair and metabolic genes in bladder cancer. Carcingenesis, 2004,25:729-734.
    15. Sak SC, Barrett JH, Paul AB, et al. DNA repair gene XRCCl polymorphisms and bladder cancer risk. BMC Genet 2007; 8:13.
    16. Wang C, Sun Y, Han R. XRCCl genetic polymorphisms and bladder cancer susceptibility: a meta-analysis. Urology 2008; 72:869-872.
    17. Qiao Y, Spitz MR, Shen H, et al. Modulation of repair of ultraviolet damage in the hose-cell reactivation assay by polymorphic XPC and XPD/ERCC2 genotypes. Carcingenesis, 2002,23:295-299.
    18. Hemm ink i k, Xu G, Angelini S, et al. XPD exon 10 and 23 polymorphisms and DNA repair in human skin in situ. Carcingenesis, 2001, 22:1185-1188.
    19. Stern MC, Johnson LR, Bell DA, et al. XPD codon 751 polymorphism, metabolism genes, smoking, and bladder cancer risk.Cancer Epidemiol Biomasrkers Prev, 2002,11:1004-1011.
    20. Schabath MB, Delclos GL, Grossman HB, et al. Polymorphisms in XPD exons 10 and 23 and bladder cancer risk. Cancer Epidemiol Biomarkers Prev, 2005, 14:878-884.
    21. Garcia-Closas M, Malats N, Real FX, et al. Genetic variation in the nucleotide excision repair pathway and bladder cancer risk. Cancer Epidemiol Biomarkers Prev 2006; 15:536-542.
    22. Shao J, Gu M, Xu Z, et al. Polymorphisms of the DNA gene XPD and risk of bladder cancer in a Southeastern Chinese population. Cancer Genet Cytogenet 2007; 177:30-36.
    23. Wu X, Gu J, Grossman HB, et al. Bladder cancer predisposition: a multigenic approach to DNA-repair and cell-cycle-control genes. Am J Hum Genet 2006; 78:464-479.
    24. Chen M, Kamat AM, Huang M, et al. High-order interactions among genetic polymorphisms in nucleotide excision repair pathway genes and smoking in modulating bladder cancer risk. Carcinogenesis 2007; 28:2160-2165.
    25. Andrew AS, Nelson HH, Kelsey KT, et al. Concordance of multiple analytical approaches demonstrates a complex relationship between DNA repair gene SNPs, smoking and bladder cancer susceptibility. Carcinogenesis 2006; 27:1030-1037
    26. Araujo FD, Pierce AJ, Stark JM, et al. Variant XRCC3 implicated in cancer is functional in homology-directed repair of double-strand breaks. Oncogene, 2002, 21:4176-4808.
    27. Matullo G, Palli D, Peluso M, et al. XRCC1, XRCC3, XPD gene polymorphisms, smoking and 32P-DNA adducts in a sample of healthy subjects. Carcingenesis, 2001,22:1434-1445.
    28. Stern MC, Umbach DM, Lunn RM, et al. DNA repair gene XRCC3 codon 241 polymorphism, its interaction with smoking and XRCC1 polymorphisms, and bladder cancer risk. Cancer Epidemiol Biomarkers Prev 2002; 11:939-43.
    29. Figueroa JD, Malats N, Rothman N, et al. Evaluation of genetic variation in the double-strand break repair pathway and bladder cancer risk. Carcinogenesis 2007; 28:1788-1793.
    30. Janicijevic A, Sugasawa K, Shimizu Y, et al. DNA bending by the human damage recognition complex XPC-HR23B.DNA Repair(Amst),2003,2:325-336.
    31. Vodicka P, Kumar R, Stetina R, et al. Genetic polymorphisms in DNA repair genes and possible links with DNA repair rates, chromosomal aberrations and single strand breaks in DNA. Carcingenesis, 2004, 25:757-763.
    32. Sak SC, Barrett JH, Paul AB, et al. The polyAT, intronic IVS11-6 And Lys939Gln XPC polymorphisms are not associated with transitional cell carcinoma of the bladder. Br J Cancer, 2005, 92: 2262-2265.
    33. Zhang D, Chen C, Fu X, et al. A meta-analysis of DNA repair gene XPC polymorphisms and cancer risk. J Hum Genet 2008; 53:18-33.
    34. FranciscoG, Menezes PR, Eluf-Neto J, et al. XPC polymorphisms play a role in tissue-specific carcinogenesis: a meta-analysis. Eur J Hum Genet 2008;16:724-734.
    35.Zhu Y,Lai M,Yang H,et al.Genotypes,haplotypes and diplotypes of XPC and risk of bladder cancer.Carcinogenesis 2007; 28:698-703.
    36.O'Donovan A,Davies AA,Moggs JG,et al.XPG endonuclease makes the 3'incision in human DNA nucleotide excision repair.Nature 1994; 371:432-435.
    37.Wakasugi M,Reardon JT,and Sancar A.The non-catalytic function of XPG protein during dual incision in human DNA nucleotide excision repair.J Biol Chem,1997; 272: 16030-16034.
    38.Emmert S,SChnelder TD,Khan SG and Kraemer KH.The human XPG gene:gene architecture,alternative splicing and single nucleotide polymorphisms.Nucleic Acids Res,2001; 29: 1443-1452.
    39.Sakano S,Kumar R,Larsson P,et al.A single-nucleotide polymorphism in the XPG gene,and tumour stage,grade,and clinical course in patients with nonmuscle-invasive neoplasms of the urinary bladder.BJU Int,2005; 97:847-51.
    1.Srivastava DS,Kumar A,Mittal B,et al.Polymorphism of GSTM1 and GSTT1 genes in bladder cancer: a study from North India Arch Toxi co1,2004,78:430-434.
    2.Giannakopoulos X,Charalabopoulos K,Baltogiannis D,et al.The role of N-acetyltransferase-2 and glutathione S-transferase on the risk and aggressiveness of bladder cancer.Anticancer Res,2002,22:3801-3804.
    3.Daly AK,Cholerton S,Armstrong M,et al.Genotyping for polymorphisms in xenobiotic metabolism as a predictor of disease susceptibility.Environ Health Perspect.1994; 102:55-61.
    4.Muarta M,Watanabe M,Yamanaka M,et al.Genetic Polymorphisms in cytochrome P450(CPY)1A1,CYP1A2,CYP2E1,glutathione S-transferase (GST) M1 and GSTT1 and susceptibility to prostate cancer in the Japanese population.Cancer Lett.2001:165:171-177.
    5.Hung RJ,Boffetta P,Brennan P,et al.GST,NAT,SULT1A1,CYP1B1 genetic polymorphisms,interactions with environmental exposures and bladder cancer risk in a high-risk population.Ina J Cancer 2004; 110: 598-604.
    6.周宏灏 主编,遗传药理学 第1版北京:科学出版社,2001,123-138.
    7.de Morais SM,Wilkinson GR,Blaisdell J,et al.Identification of a new genetic defect responsible for the polymorphism of (S)-mephenytoin metabolism in Japanese.Mol Pharmacol.1994; 46:594-598.
    8.Brockmoller J,Cascorbi I,Kerb R,et al.Combined analysis of inherited polymorphisms in arylamine N-acetyltransferase 2,glutathione S-transferases M1 and T1,microsomal epoxide hydrolase,and cytochrome P450 enzymes as modulators of bladder cancer risk.Cancer Res.1996; 56:3915-3925.
    9.Moore LE,Wiencke JK,Bates MN,et al.Investigation of genetic polymerphisms and smoking in a bladder cancer case-control study in Argentina.Cancer Lett 2004; 211: 199-207.
    10.Bartsch H,Nair U,Risch A,et al.Genetic polymorphism of CYP genes,alone or in combination,as a risk modifier of tobacco-related cancers.Cancer Epidemiol Biomarkers Prev 2000; 9:23-28
    11.Ribeiro Pinto LF,Teixeira Rossini AM,Alban,et al.Mechanisms of esophageal cancer development in Brazilians.Mutat Res 2003; 544:365-373
    12.金百冶,陈枢青,蔡松良,等.CYP2C19遗传多态性与膀胱癌易感性关系的研究.中华泌尿外科杂志,2000,21:656-658.
    13.Shi WX,Chen SQ.Frequencies of poor metabolizers of cytochrome P450 2C19 in esophagus cancer,stomach cancer,lung cancer and bladder cancer in Chinese population.World J Gastroenterol 2004; 10:1961-1963
    14.Ji L,Pan S,Wu J,et al.Genetic polymorphisms of CYP2D6 in Chinese mainland.Chinese Med J,2002,115:1780
    15.Gao Y,Zhang Q.Polymorphisms of the GSTM1 and CYP2D6 genes associated with susceptibility to lung cancer in Chinese.Mutat Res,1999,444:441
    16.Anwar WA,Abdel-Rahman SZ,El-Zein RA,et al.Genetic polymorphism of GSTM1,CYP2E1 and CYP2D6 in Egyptian bladder cancer patients. Carcinogenesis.1996; 17: 1923-1929.
    17.Romkes M,Chern HD,Lesnick TG,et al.Association of low CYP3A activity with p53 mutation and CYP2D6 activity with Rb mutation in human bladder cancer.Carcinogenesis.1996; 179: 1057-1062.
    18.Chinegwundoh FI,Kaisary AV.Polymorphism and smoking in bladder carcinogenesis.Br J Urol.1996; 77(5): 672-675.
    19.Saarikoski ST,Sata F,Husgafvel-Pursiainen K,et al.CYP2D6 ul trarapid metabolizer genoytype as a potential modifier of smoking behaviors.Pharmacogenetics.2000; 10:5-10.
    20.Sobti RC,Al-Badran AI,Sharma S,et al.Genetic polymorphisms of CYP2D6,GSTM1,and GSTT1 genes and bladder cancer trisk in North India.Cancer genet Cytogenet.2005; 156:68-73.
    21.Ouerhani S,Marrakchi R,Bouhaha R,et al.The role of CYP2D6~*4 variant in bladder cancer susceptibility in Tunisian patients.Bulletin du Cancer.2008; 95: 1-4.
    22.Choi JY,Lee KM,Cho SH,et al.CYP2E1 and NQO1 genotypes,smoking and bladder cancer.Pharmacogeneticss.2003; 13:349-355.
    23.Zeigler-Johnson CM,Walker AH,Mancke B,et al.Ethnic differences in the frequency of prostate cancer susceptibility alleles at SRD5A2 and CYP3A4.Hum Hered.2002; 54:13-21.
    24.Zeigler-Johnson C,Friebel T,Walker AH,et al.CYP3A4,CYP3A5,and CYP3A43 genotypes and haplotypes in the etiology and severity of prostate cancer.Cancer Res.2004; 64:8461-8467.
    25.Chen CL,Liu Q,Relling Mv.Simultaneous characterization of glutathione S-transferase M1 and T1 polymorphisms by polymerase chain reaction in American whites and blacks.Pharmacogenetics.1996; 6:187-191.
    26.Board PG,Coggan M.BamHI and EcoRI restriction fragment length polymorphisms at the glutathione S-transferase 3 locus.Nucleic Acids Res.1989:17:7550.
    27.Bell DA,Taylor JA,Paulson DF,et al.Genetic risk and carcinogen exposure: a common inherited defect of the carcinogen metabolism gene glutathione S-transferase M1 (GSTM1) that increases susceptibility to bladder cancer.J Natl Cancer Inst.1993; 85:1159-1164.
    28.Brockmoller J,Kerb R,Drakoulis N,et al.Glutathione S-transferase M1 and its variants A and B as host factors of Bladder cancer susceptibility: a case-control study. Cancer Res. 1994:54:4103-4111.
    29. Lee SJ, Cho SH, Park SK, et al. Combined effect of glutathione S-transferase Ml and Tl genotypes on bladder cancer risk. Cancer Lett. 2002; 177: 173-179.
    30. Garcia-Closas M, Malats N, Silverman D, et al. NAT2 slow acetylation, GSTM1 null genotype, and risk of bladder cancer: results from the Spanish Bladder Cancer Study and meta-analyses. Lancet 2005; 366:649-659.
    31. Vineis P, Veglia F, Garte S, et al. Genetic susceptibility according to three metabolic pathways in cancers of the lung and bladder and in myeloid leukemias in nonsmokers. Ann Oncol 2007; 18:1230-1242.
    32. Wu X, Lin X, Dinney CP, et al. Genetic polymorphism in bladder cancer. Front Biosci 2007; 12:192-213.
    33. Kim WJ, Kim CH, et al. GSTT1-null genotype is a protective factor against bladder cancer. Urology 2002; 60: 913-918.
    34. Kim WJ, Lee HL, Lee SC, et al, Polymorphisms of N-acetyltransferase 2, glutathione S-transferase muand theta genes as risk factors of bladder cancer in relation to asthma and tuberculosis. J Urol. 2000:164: 209-213.
    35. Shen H. Kauvar L. Tew KD. Importance of glutathione and associated enzymes in drug response. Oncol Res. 1997; 9:295-302.
    36. Simic T, Mimie-Oka J, Savic-Radojevic A, et al. Glutathione S-transeferase Tl-1 activity upreuglated in transitional cell carcinoma of urinary bladder. Urology 2005; 65:1035-1040.
    37. Kellen E, Hemelt M, Broberg K, et al. Pooled analysis and meta-analysis of the glutathione S-transferase P1 Ile 105Val polymorphism and bladder cancer: a HuGE-GSEC review. Am J Epidemiol 2007; 165:1221-1230.
    38. Hein DW. N-acetyltransferase 2 genetic polymorphism: effects of carcinogen and haplotype on urinary bladder cancer risk. Oncogene 2006; 25:1649-1658.
    39. Lower GM Jr, Nplsson T, nelson CE, et al. N-acetyltransferase phenotype and risk in urinary bladder cancer: approaches in molecular epidemiology. Preliminary results in Sweden and Denmark. Environ Health Perspecy. 1979; 29:71-79.
    40. Gu J, Liang D, Wang Y, et al. Effects of N-acetyl transferase 1 and 2 polymorphisms on bladder cancer risk in Caucasians. Mutat Res 2005; 581:97-104.
    41.Lubin JH,Kogevinas M,Silverman D,et al.Evidence for an intensity-dependent interaction of NAT2 acetylation genotype and cigarette smoking in the Spanish Bladder Cancer Study.hat J Epidemiol 2007; 36:236-241.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700