燃煤汞释放及转化的实验与机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
汞(Hg)是一种剧毒的重金属元素,能在生物体内累积并通过食物链进入人体,造成中枢神经损伤及婴幼儿畸形,是一种全球污染物,其排放控制成为越来越被关注的热点。燃煤电厂是最大的人为汞排放源,然而煤燃烧过程中汞的排放规律和控制机理方面研究尚很浅薄,在我国更是如此。
     本文借助管式炉和沉降炉试验系统和燃煤烟气Hg在线分析仪,对煤粉燃烧过程中汞的释放迁徙及排放控制规律展开了实验和理论方面的研究,考察了汞在煤粉燃烧过程中的析出特性及其影响因素,探索了氧燃烧方式下的汞排放特征及脱除性能,分析了燃煤烟气组分对汞的氧化规律,并对实际燃煤电厂的汞排放进行了现场采样和模拟预测,以期为燃煤汞排放控制的理论研究和控制技术的开发奠定基础。
     在管式电加热炉试验系统上,考察了不同煤种的Hg析出温度、析出强度分布及其烟气中的Hg形态分布,并与煤中Hg的赋存形态进行了关联分析,提出了基于Hg的析出特性初步判断煤中主要汞赋存形态的实验思路与方法,分析了煤中Hg与S的依存释放特性。煤样的Hg析出呈多峰分布,第一个析出峰(P1)强度较高,在360℃~460℃左右;第二个析出峰(P2)和第三个析出峰(P3)的强度大小不一,P2峰在445℃~850℃,P3峰在930℃以上。析出峰的单质汞(Hg0(g))比例在38%~100%,呈现P1>P2>P3的规律。利用Hg的析出特性,结合浮沉实验,可对煤中主要的Hg赋存形态及其分布进行初步判断。煤中Hg与S存在一定依存关系。
     利用管式炉和沉降炉实验系统,在氧燃烧气氛(O2/CO2)下,考察了不同煤种的Hg排放浓度及形态分布,分析了O2浓度变化的影响,探索了煤粉添加CaO和Fe203的Hg控制机理。O2/CO2气氛下,煤中Hg的初始析出受到一定抑制,P1峰的强度和温度均有所降低。烟气中的汞浓度及形态分布因煤样而异。O2浓度升高至30%时,烟煤的总汞(HgT(g))排放浓度显著增加,Hg0(g)浓度基本维持不变。O2/CO2气氛可促进CaO对Hg的脱除,强化Fe2O3对Hg0(g)的催化氧化;O2浓度升高不利于CaO脱HgT(g),但30%的O2可明显促进Fe2O3对Hg0(g)的氧化吸附。
     利用模拟燃煤烟气,研究了燃煤烟气组分HCl/C12/SO2/NO/NO2对Hg0(g)形态转化的影响规律,探讨了烟气组分间的协同作用。HCl和Cl2是最主要的Hg0(g)氧化剂,HCl与Hg0(g)的反应在600℃以上才发生,Cl2在室温下即能显著氧化Hg0(g)。反应温度高于400℃后,烟气中的Cl2开始分解。NO对Hg0(g)的氧化与其浓度有关,Hg0(g)氧化率随反应温度升高而降低。O2、NO2和SO2对Hg0(g)的氧化率均较低,不超过10%。两种烟气组分共存显示了Hg0(g)氧化的协同作用。HCl/NOx和Cl2/NOx对Hg0(g)的氧化情况相似:200℃~600℃范围的Hg0(g)氧化显著增强,600℃~1000℃范围的Hg0(g)氧化有所减弱;加入O2有利于Hg0(g)氧化。SO2明显抑制HCl对Hg0(g)的氧化。400℃时SO2和NO2共存可获得48%~63%的Hg0(g)氧化率,温度升高到1000℃后,Hg0(g)氧化率大幅降低。
     采用美国EPA推荐的OHM方法和EPA方法26A,对燃煤电厂的汞及卤素化合物的排放进行了现场同时采样,调查了燃煤电厂烟气中的汞形态分布及排放浓度,分析了Hg0(g)随烟气流程的氧化情况,探讨了HF、HCl、NO和SO2与汞形态转化的关联,建立了基于BP神经网络的燃煤电厂汞排放预测模型并与现场采样结果进行了比较。烟气中气态总汞的浓度为6~28μg/Nm3,随着烟气流程,烟气中气相总汞的浓度降低,氧化态汞的比例从41%升高到74%。汞的排放因子为5.63 g/1012J(13.11b/1012Btu)。燃煤烟气中的卤素化合物主要为HF和HCl, Cl2与HBr浓度极低,未检测到Br2。烟气中HF、HC1、SO2和NO的浓度与氧化态汞的比例均显示了一定的正相关性。对本次采样结果的预测显示模型具有一定的精度。
Mercury is an extremely toxic trace element, can occumulated in organisms and enter hunman body through food chain. Mercruy poisoning can cause neurologic damage and infantile deformity. As a global pollutant, mercury has gained more and more attention. Coal-fired power plant is the main anthropogenic emission source of mercury. However, detail mechanisms about mercury emission and transportation during coal combustion remained unknown, especially in China.
     Mercury emission, transformation and control characteristics during coal combustion were investigated by tube furnace and drop tube furnace, utilizing mercury continuous emission monitor (Hg CEM). Studies of mercury about the emission characteristics and influences during heating, the speciation and control performance under oxy-fuel combustion, the oxidation by other flue gases, as well as the emission from a power plant were conducted in order to provide theoretical and practical information on mercury control during coal combustion.
     Mercury emission characteristics, including temperature and tensity, as well as speciation in flue gas during coal heating were investigated on a tube furnace. The mercury emission characteristics were analysed and used to identify the mercury form and distribution in coal. The relationship between mercury and coal sulfur was also studied. Results showed that Hg emission concentration displayed a multi-peak distribution. The first peak (P1) had the highest emission tensity at the temperature of 360℃-460℃, the second peak (P2), appeared at 445℃-850℃while the third peak (P3) corresponding to temperature higher than 930℃. The concentration of mercury released in P2 could be higher or lower than P3, depending on the coal type. The Hg0(g) percentage in separate Hg peaks was in the range of 38%-100%, in the order of P1>P2>P3. With the mercury emission characteristics and sink-float seperation process, the main forms of mercury and its content in coal were predicted. Mercury in coal is associated with sulfur, for some coals mercury and SO2 released at the same temperature.
     Mercury emission and speciation during coal combustion under O2/CO2 atmosphere were conducted on a tube furnace and a drop tube furnace. Influences of O2 concentration and CaO/Fe2O3 were also investigated. Results showed that the initial mercury emission was inhibited with both the tensity and temperature of P1 weakened. Mercury concentration and speciation in flue gas differed for different coals. When O2 increased to 30%, the HgT(g) concentration of bituminous coal notablely increased, while Hg (g) concretion was nearly not affected by O2 variation. Mercury control by CaO and the catalytic oxidation of Hg (g) by Fe2O3 can be promoted by O2/CO2 atmosphere. However, the increase of O2 concentration would prompt HgT(g) emission under CaO addition and prompted Hg0(g) oxidation and adsorption by Fe2O3.
     Homogeneous Hg0(g) oxidation by a single as well as two flue gas components of HCl/Cl2/SO2/NO/NO2 from 200℃-1000℃were investigated on a bench-scale quartz reactor. Results showed that HCl and Cl2 were the main Hg0(g) oxidants:Hg0(g) oxidation by HCl only occurred above 600℃, while Cl2 can significantly oxidize Hg0(g) even at room temperautre. Cl2 sarted to decompose at temperture higher than 400℃. Hg0(g) oxidation by NO was affected by NO concentration and decreased at higher temperature. O2, NO2 and SO2 alone exhibited limited Hg0(g) oxidation, less than 10%. The flue gas interactions effected Hg0(g) oxidation. Hg0(g) oxidation by HCl/NOx or Cl2/NOx was enhanced at 200℃-600℃and inhabited at 800℃~1000℃, wihle the addition of O2 further promoted Hg0(g) oxidation. SO2 strongly inhibited Hg0(g) oxidation by HCl. The coexist of SO2 and NO2 at 400℃can oxidize 48%~63%of the total Hg0(g) and the percent of Hg0(g) oxidized decrease sharply at 1000℃.
     A field measurement was conducted on a 200 MW pulverized coal fired boiler, using Ontario Hydro method (OHM) and EPA Method 26A to determine the speciation of Hg and halides in postcombustion flue gases, respectively. A model based on BP neural network was established and trained by ICR data in order to predict the mercury emission from real power plants and was compareded with this field data. Results indicated that, the total gas phase mercury (HgT(G)) in flue gas was 6-28μg/Nm3. As the flue gas cooling down, the percentage of oxidized mercury in total gas phase mercury (Hg2+(g)/HgT(G)) increased from 41% to about 74% across the electrostatic precipitator (ESP) outlet. The main halides measured in flue gas were HF and HCl, while the concentration of Cl2 and HBr were extremely low and no Br2 was detected in flue gas. Acid flue gas components, such as HCl, HF, SO2 and NO, showed a certain extent of promotion on Hg oxidation. The measured mercury emission factor (EMF) in this test was 5.63 g/1012J (13.1 1b/1012Btu). The BP neural network model was used to predict the mercury emission from this 200MW pulverized coal fired boiler, and results showed certain practical merits.
引文
[1]BP世界能源统计2010,www.bp.com/statisticalreview
    [2]中华人民共和国国家统计局,中国统计年鉴2010,http://www.stats.gov.cn/tjsj /ndsj/2010/indexch.htm
    [3]中华人民共和国国家统计局,中华人民共和国2010年国民经济和社会发展统计公报,2011年2月28日,http://www.stats.gov.cn/tjgb/ndtjgb/qgndtjgb/t2011 0228402705692.htm
    [4]Linak W P, Wendt J O L. Toxic metal emissions from incineration:Mechanisms and control. Prog. Energy Combust. Sci.,1993,19(2):145-185.
    [5]高洪亮,模拟燃煤烟气中汞形态转化及脱除技术的试验及机理研究[博士论文],杭州,浙江大学,2004.
    [6]National Research Council, Toxicological Effects of Methyl Mereury, National Academy Press, Washington, DC. Library of Congress Card Number:00-108382, 2000.
    [7]Mason R P, Fitzgerald W F, Morel F M.. The biogeochemical cycling of elemental mercury:anthropogenic influences. Geochemical et Cosmochimicia Acta,,1994. 58(15):3191-3198.
    [8]U.S. Environmental Protection Agency, Mercury Study Report to Congress. Volume I:Executive Summary, Office of Air Quality Planning and Standards and Office of Research and Development, EPA-452/R-97-003, December 1997.
    [9]Bullock O R. Current methods and research strategies for modeling atmospheric mercury. Fuel Processing Technology,2000,65-66:459-471.
    [10]UNEP Chemicals Branch,2008. The Global Atmospheric Mercury Assessment: Sources, Emissions and Transport. UNEP-Chemicals, Geneva.
    [11]Elisabeth G. Pacyna, Jozef M. Pacyna, Frits Steenhuisen, Simon Wilson. Global anthropogenic mercury emission inventory for 2000. Atmospheric Environment, 2006,40:4048-4063
    [12]Streets D G, Hao J M, Wu Y, et al. Anthropogenic mercury emissions in China. Atmospheric Environment,2005,39:7789-7806.
    [13]Ye Wu, Shuxiao Wang, David G. Streets, et al. Trends in Anthropogenic Mercury Emissions in China from 1995 to 2003. Environ. Sci. Technol.,2006,40(17): 5312-5318.
    [14]王起超,沈文国,麻壮伟.中国燃煤汞排放量估算.中国环境科学,1999,19(4):318-321.
    [15]张明泉,朱元成,邓汝温.中国燃煤大气排放汞量的估算与评述.人类环境杂志,2002,31(6):482-484.
    [16]胡长兴,周劲松,何胜,等.全国燃煤电站汞排放量估算.热力发电,2010,39(2):0001-0004.
    [17]Clean Air Mercury Rule. U.S. Environmental Protection Agency:Washington D.C., 2005. http://www.epa.gov/air/mercuryrule/index.htm
    [18]刘听,蒋勇.美国燃煤火力发电厂汞控制技术的发展及现状.高科技与产业化.2009,(3):92-95
    [19]http://www.chinacses.org/c/cn/news/2011-01/27/news_3286.html
    [20]http://ch.bcrc.cn/col/1256348910653/1299747901318.html
    [21]生活垃圾焚烧污染控制标准,国家环境保护总局文件,环发[2000]46号,2000.3.1.
    [22]GB9078-1996,工业炉窑大气污染物排放标准北京:国家环境保护局,1996
    [23]http://www.chinanews.com/cj/2011/06-08/3095093.shtml
    [24]冯新斌,仇广乐,付学吾,等.环境汞污染.化学进展,2009,21(2-3):436-457.
    [25]郑楚光,张军营,赵永椿等.煤燃烧汞的排放及控制.北京:科学出版社,2010:43-48.
    [26]王起超,马如龙.煤及其灰渣中的汞.中国环境科学,1997,17(1):76-78.
    [27]冯新斌,洪业汤,倪建宇等.贵州煤中汞的分布、赋存状态及对环境的影响.煤田地质与勘探,1998,26(2):12-14.
    [28]郑刘根,刘桂建,齐翠翠,等.中国煤中汞的环境地球化学研究,中国科技大学学报,2007,37(8):48-55.
    [29]任德贻,赵峰华,代世峰,等.煤的微量元素地球化学.北京:科学出版社,2006:268-279.
    [30]郑楚光,徐明厚,张军营,等.燃煤痕量元素的排放与控制.武汉:湖北科学技术出版社.2002.
    [31]冯新斌,洪业汤,洪冰,等.煤中汞的赋存状态研究.矿物岩石地球化学通报,2001,20(2):71-78.
    [32]Liugen Zheng, Guijian Liu, Cuicui Qi, et al. The use of sequential extraction to determine the distribution and modes of occurrence of mercury in Permian Huaibei coal, Anhui Province, China. International Journal of Coal Geology,2008, 73:139-155.
    [33]刘晶,郑楚光,张军营等.煤中易挥发痕量元素赋存形态的分析方法及实验研究.燃烧科学与技术,2003,4:295-299.
    [34]Xia, K., Skyllberg, U.L., Bleam, W.F., et al. X-ray absorption spectroscopic evidence for the complexation of Hg (Ⅱ) by reduced sulfur in soil humic substances. Environmental Science Technology,1999,33:257-261.
    [35]张成,陈刚,晁岳建,等.贵州省六枝、遵义矿区煤中汞和硫的赋存相关特性研究.燃料化学学报,2009,37(1):001-005.
    [36]Shaoqing Guo, Zhenyu Liu, Jianli Yang. The release behavior of Hg in coal during heat treatment, Proceedings of the 6th international symposium on coal combustion. Wuhan, China,2007.
    [37]Kevin C G, Christopher J Z. Mercury transformations in coal combustion flue gas. Fuel Processing Technology,2000,66(6):289-310.
    [38]Frandsen F. Trace elements from combustion and gasification of coal-An equilibrium approach. Fuel and Energy,1995,9(36):357.
    [39]U. S. EPRI, An Assessment of Mercury Emissions from U.S. Coal-Fired Power Plants, Palo Alto, CA, TR-1000608, Oct 2000.
    [40]John H. Pavlish, Everett A. Sondreal, Michael D. Mannl, et al. Status review of mercury control options for coal-fired power plants. Fuel Processing Technology, 2003,82:89-165.
    [41]陈雷,典型燃煤电站汞排放现场实验和模拟研究[硕士论文],清华大学,2006.
    [42]Hall B, Schager P, Lindqvist O. Chemical reactions of mercury in combustion flue gases. Water, Air and Soil Pollution,1991,56(4):3-14.
    [43]Hall B, Lindqvist O, Ljungstrom E. Mercury chemistry in simulated flue gases related to waste incineration conditions. Environmental Science and Technology, 1990,24(1):108-111.
    [44]Laudal, Dennis L., Brown, Thomas D., Nott, Babu R.. Effects of flue gas constituents on mercury speciation. Fuel Processing Technology,2000,65-66: 157-165.
    [45]Hans Agarwal, Harvey G. Stenger, Song Wu, et al. Effects of H2O, SO2, and NO on Homogeneous Hg Oxidation by Cl2. Energy & Fuels,2006,20:1068-1075.
    [46]Rebecca N. Sliger, John C. Kramlich, Nick M. Marinov. Development of a Chemical Kinetic Model for the Homeogeneous Oxidation of Mercury by Chlorine Species. Fuel Processing Technology,2000,65-66:423-438.
    [47]Rebecca North Sliger, Development of a Chemical Kinetic Model for the Homogeneous Oxidation of Mercury by Chlorine Species:A Tool for Mercury Emissions Control, Ph.D Dissertation, University of Washington,2001.
    [48]Stephen Niksa, Joseph. J.Helble, Naoki Fujiwara. Kinetic Modeling of Homogeneous Mercury Oxidation:The Importanceof NO and H2O in Predicting Oxidation in Coal-Derived Systems. Environ. Sci. Technol.,2001,35:3701-3706.
    [49]吴辉,邱建荣,刘峰,等.O2/CO2燃烧方式下燃煤Hg析出特性试验研究.中国工程热物理学会第十五届年会论文,2009年,合肥.
    [50]Schager P. The behaviour of mercury in flue gases. Report FBT-91-20, Sweden: Statens energiverk, National Energy Administration,1990.
    [51]U.S. Environmental Protection Agency, CONTROL OF MERCURY EMISSIONS FROM COAL-FIRED ELECTRIC UTILITY BOILERS:INTERIM REPORT, Office of Air Quality Planning and Standards, EPA-600/R-01-109, April 2002.
    [52]Carey T R, Skarupa R C, Hargrove O W. Enhanced control of mercury and other HAPs by innovative modifications to wet FGD processes. Contract DE-AC22-95PC95260, USA:the U.S. Department of Energy,1998.
    [53]Hall B, Schager P, Weesmaa J. The homogeneous gas phase reaction of mercury with oxygen, and the corresponding heterogeneous reactions in the presence of activated carbon and fly ash, Chemosphere,1995,30(4):611-627.
    [54]Akers D, Dosphy R. Role of coal cleaning in control of air toxic. Fuel Processing Technology,1994,39:73-80.
    [55]Luttrell G H. An evaluation of coal preparation technologies for controlling trace element emissions. Fuel Processing Technology,2000,65-66:407-422.
    [56]Quick W J,.Irons R M. A. Trace element partitioning during the firing of washed and untreated powers station coals. Fuel,2002,8:665-672.
    [57]Akers D J, Raleigh C E. The mechanisms of trace element removal during coal cleaning. Coal Preparation,1998,19:3-4.
    [58]Hoffart A, Seames W, Kozliak E, et al. A two-step acid mercury removal process for pulverized coal. Fuel,2006,85:1166-1173.
    [59]Guffey F D, Bland A E. Thermal pretreatment of low-ranked coal for control of mercury emissions. Fuel Processing Technology,2004,85:521-531.
    [60]Merdes A C, Keener T C, Khang S, et al. Investigation into the fate of mercury in bituminous coal during mild pyrolysis. Fuel,1998,77:1783-1792.
    [61]Wang M, Keener T C, Khang S. The effect of coal volatility on mercury removal from bituminous coal during mild pyrolysis. Fuel Processing Technology,2000,67: 147-161.
    [62]Iwashita A, Tanamachi S, Nakajima T, et al. Removal of mercury from coal by mild pyrolysis and leaching behavior of mercury. Fuel,2004,83:631-638.
    [63]Akira Ohki, Kota Sagayama, Shomei Tanamachi, et al. Release behavior of mercury during mild pyrolysis of coals and nitric acid-treated coals, Powder Technology,2008,180:30-34.
    [64]Zhenghe Xu, Guoqing Lu, On Yi Chan. Fundamental Study on Mercury Release Characteristics during Thermal Upgrading of an Alberta Sub-bituminous Coal. Energy & Fuels,2004,18:1855-1861.
    [65]Cheng Zhang, Gang Chen, Rajender Gupta, et al. Emission Control of Mercury and Sulfur by Mild Thermal Upgrading of Coal. Energy and Fuels,2009,23: 766-773.
    [66]Ravi K. Srivastava, Nick Hutson, Blair Martin, et al. Control of mercury emissions from coal-fired electric utility boilers. Environmental Science & Technology,2006, 40(5):1385-1393.
    [67]U.S. Environmental Protection Agency. CONTROL OF MERCURY EMISSIONS FROM COAL-FIRED ELECTRIC UTILITY BOILERS:INTERIM REPORT. EPA-600/R-01-109, April 2002.
    [68]杨宏旻,Liu K L, Cao Y,等.电站烟气脱硫装置的脱汞特性试验.动力工程,2006,26(4):554-557.
    [69]陈进生,袁东星,李权龙,等.燃煤烟气净化设施对汞排放特性的影响.中国电机工程学报,2008,28(2):72-76.
    [70]任建莉,周劲松,骆仲泱,等.活性炭吸附烟气中气态汞的试验研究.中国电机工程学报,2004,2.
    [71]Liberti L, Notarnicola M, Amicarelli V, et al. Mercury removal with powdered activated carbon from flue gases at the Coriano municipal solid waste incineration plant. Waste Management & Research,1998,16(4):183-189.
    [72]Md. Azhar Uddin, Masaki Ozaki, Eiji Sasaoka, et al. Temperature-Programmed Decomposition Desorption of Mercury Species over Activated Carbon Sorbents for Mercury Removal from Coal-Derived Fuel Gas. Energy & Fuels.2009,23(10): 4710-4716.
    [73]Bustard J., Lindsey C., Brignac P., et al. Long-term operation of a COHPAC system for removing mercury from coal-fired flue gas. Presented at Powergen. Orlando, FL,2004.
    [74]Liu W, Vidic R D, Brown T D. Optimization of high temperature sulfur impregnation on activated carbon for permanent sequestration of elemental mercury vapors. Environ. Sci. Technol.,2000,34:483-488.
    [75]Liu W, Vidic R D, Brown T D. Impact of flue gas conditions on mercury uptake by sulfur-impregnated activated carbon. Environ. Sci. Technol.,2000,34:154-159.
    [76]Liu W, Vidic R D, Brown T D. Optimization of sulfur impregnation protocol for fixed-bed application of activated carbon-based sorbents for gas-phase mercury removal. Environ. Sci. Technol.,1998,32:531-538.
    [77]Korpiel J A, Vidic R D. Effect of sulfur impregnation method on activated carbon uptake of gas-phase mercury. Environ. Sci. Technol.,1997,31:2319-2325.
    [78]Ghorishi S B, Keeney R M, Serre S D. et al. Development of a Cl-impregnated activated carbon for entrained-flow capture of elemental mercury. Environ. Sci. Technol.,2002,36:4454-4459.
    [79]Zeng H C, Jin F, Guo J. Removal of elemental mercury from coal combustion flue gas by chloride-impregnated activated carbon. Fuel,2004,83:143-146.
    [80]Lee S Y, Seo Y C, Jurng J S. Removal of gas-phase elemental mercury by iodine-and choride-impregnated activated carbon. Atmosphere Environment,2004,38: 4887-4893
    [81]Charles A. Lockert, Qunhui Zhou, Yinzhi Zhang. Update on Sorbent-Based Mercury Control in Hot-Side ESP Environments. Presented at the Electric Utility Environmental Conference, Tucson, AZ, January 24,2006.
    [82]孙巍,晏乃强,贾金平.载澳活性炭去除烟气中的单质汞.中国环境科学,2006,26:257-261.
    [83]Zhijian Mei, Zhemin Shen, Tao Yuan, et al. Removal of vapor-phase elemental mercury by N-doped CuCo04 loaded on activated carbon. Fuel Processing Technology,2007,88:623-629.
    [84]Li Y H, Lee C W, Gullett B K, Importance of activated carbon's oxygen surface functional groups on elemental mercury adsorption. Fuel,2003,82:451-457.
    [85]W.H. Gibb, F. Clarke, A.K. Mehta. The fate of coal mercury during combustion, Fuel Processing Technology,2000,65-66:365-377.
    [86]M. Mercedes Maroto-Valer, Yinzhi Zhang, Evan J. Granite, et al. Effect of porous structure and surface functionality on the mercury capacity of a fly ash carbon and its activated sample. Fuel,2005,84:105-108.
    [87]N. Fujiwara, Y. Fujita, K. Tomura, et al. Mercury transformations in the exhausts from lab-scale coal flames. Fuel,2002,81:2045-2052.
    [88]Glenn A. Norton, Hongqun Yang, Robert C. Brown, et al. Heterogeneous oxidation of mercury in simulated post combustion conditions. Fuel,2003,82:107-116.
    [89]Hongqun Yang, Effects of Fly Ash on the Oxidation of Mercury During Post-Combustion Conditions, Ph.D Dissertation, Iowa State University, Ames, Iowa,2002.
    [90]Kevin C. Galbreath, Christopher J. Zygarlicke, James E. Tibbetts, et al. Effects of NOx, α-Fe2O3, γ-Fe2O3,and HCl on mercury transformations in a 7-kW coal combustion system. Fuel Processing Technology,2004,86:429-448.
    [91]S. Behrooz Ghorishi, Chun W. Lee, Wojciech S. Jozewicz, et al. Effects of Fly Ash Transition Metal Content and Flue Gas HCl/SO2 Ratio on Mercury Speciation in Waste Combustion. Environmental Engineering Science,2005,22(2):221-231.
    [92]William J. O'Dowd, Henry W. Pennline, Mark C.Freeman, et al. A technique to control mercury from flue gas:The Thief Process. Fuel Processing Technology, 2006,87:1071-1084.
    [93]Evan Granite, Mark C. Freeman, Richard A.Hargis, et al. The Thief Process for Mercury Removal from Flue Gas. Mercury Control Technology Conference Pittsburgh, PA, December 11-13,2006.
    [94]Josh Gesick, Pilot Testing of Fly Ash-Derived Sorbents for Mercury Control in Coal-fired Flue Gas, ACAA/CBRC/WRAG Fall Meeting, October 5,2004.
    [95]Grant E. Dunham, Raymond A. DeWall, Constance L. Senior. Fixed-bed studies of the interactions between mercury and coal combustion fly ash. Fuel Processing Technology,2003,82:197-213.
    [96]王泉海.煤燃烧过程中汞排放及其控制的实验及机理研究[博士论文],华中科技大学,2006.
    [97]Ghorishi. SB, Sedman. CB. Low Concentration Mercury Sorption Mechanisms and Control by Calcium-Based Sorbents:Application in Coal-Fired Processes. J. Air Waste Manage. Assoc.,1998,48(12):1191-1198.
    [98]J.R. Morency, T. Panagiotou, C.L. Senior. Zeolite sorbent that effectively removes mercury from flue gases. Filtrat,2002,39:24-26.
    [99]Yan T Y. A Novel Process for Hg Removal from Gases. Ind. Eng. Chem. Res.1994, 33:3010-3014.
    [100]Levlin M, Ikavalko E, Laitinen T. Adsorption of mercury on gold and slver surfaces. Fresenius J Anal Chem,1999,365:577-586.
    [101]Liu Y, Kelly D J A, Yang H Q, et al. Novel regenerable sorbent for mercury capture from flue gases of coal-fired power plant. Envrion. Sci. Technol.,2008,42: 6205-6210.
    [102]Dong J, Xu Z H, Kuznicki S M, et al. Mercury removal from flue gases by novel regenerable magnetic nanocomposite sorbents. Environ. Sci. Technol.,2009,43: 3266-3271.
    [103]Wu S J, Ova N, Ozaki M, et al. Development of iron oxide sorbents for Hg0 removal from coal derived fuel gas:sulfidation characteristics of iron oxide sorbents and activity for COS formation during Hg0 removal. Fuel,2007,86: 2857-2863.
    [104]Lee T G, Biswas P. Kinetics of mercury capture using titania sorbents. Aerosol Sci., 1998.29(1):577-578.
    [105]Li J, Yan N, Qu Z, et al. Catalytic oxidation of elemental mercury over the modified catalyst Mn/a-Al2O3 at lower temperatures. Environ. Sci. Technol.,2010, 44(1):426-431.
    [106]Poulston S, Granite E J, Pennline H W, et al. Metal sorbents for high temperature mercury capture from fuel gas. Fuel,2007,86:2201-2203.
    [107]Lee W, Bae G. Removal of elemental mercury (Hg0) by nanosized V2O5/TiO2 catalysts. Environ. Sci. Technol.,2009,43:1522-1527.
    [108]孔凡海.铁基纳米吸附剂烟气脱汞实验及机理研究[博士论文],华中科技大学, 2010.
    [109]Erik P, Wu C Y, Mazyck D W, et al. Adsorption enhancement mechanisms of silica-titania nanocomposites for elemental mercury vapor removal. Environmental Science and Technology,2005.39(5):1269-1274.
    [110]Yan Cao, Zhengyang Gao, Jiashun Zhu, et al. Impacts of Halogen Additions on Mercury Oxidation, in A Slipstream Selective Catalyst Reduction (SCR), Reactor When Burning Sub-Bituminous Coal. Environ. Sci. Technol.,2008,42 (1): 256-261.
    [111]Livengood C D, Mendelsohn M H. Progress for combined control of mercury and nitric oxide. EPRI-DOE-EPA Combined Utility Air Pollution Control Symposium, 1999, Atlanta, Georgia..
    [112]Granite E J, Pennline H W. Photochemical Removal of Mercury from Flue Gas. Ind. Eng. Chem. Res.2002,41:5470-5476.
    [113]Christopher R. McLarnon, Evan J. Granite, Henry W. Pennline. The PCO process for photochemical removal of mercury from flue gas. Fuel Processing Technology, 2005,87:85-89.
    [114]EPA-600/R-05/034, Multipollutant Emission Control Technology Options for Coal-fired Power Plants. March 2005.
    [115]Boyle, P. D.; Steen, D.; Dovale, A. J. Commercial Demonstration of ECO Multipollutant Control Technology. Presented at the ICAC Forum'03, Nashville, TN, Oct 2003.
    [116]IEA GHG Int.oxy-combustion network,Yokohama Japan,Mar 5~6,2008.
    [117]Buhre, B.J.P., Elliott, L.K., Sheng,C.D., et al. Oxy-fuel combustion technology for coal-fired power generation. Progress in Energy and Combustion Science,2005, 31(4):283-307.
    [118]Yewen Tan, Eric Croiset. Emissions from Oxy-fuel Combustion of Coal with Flue Gas Recycle. The 30th International Technical Conference on Coal Utilization & Fuel Systems, Clearwater, Florida, USA, April 17-21,2005.
    [119]Achariya Suriyawong, Michael Gamble, Myong-Hwa Lee, et al. Submicrometer Particle Formation and Mercury Speciation Under O2-CO2 Coal Combustion. Energy & Fuels,2006,20:2357-2363.
    [120]刘彦,韦宏敏,徐江荣,等.O2/CO2与空气对燃煤汞形态分布的影响,中国电机工程学报,2008,28(11):48-53.
    [121]F. Chatel-Pelage, O. Marin, N. Perrin, et al."A pilot-scale demonstration of oxy-combustion with flue gas recirculation in a pulverized coal-fired boiler", The 28th International Technical Conference on Coal Utilization & Fuel Systems, March 10-13 2003, Clearwater, Florida.
    [122]王泉海,邱建荣,温存,等.氧燃烧方式下痕量元素形态转化的热力学平衡模拟.中国工程热物理学会燃烧学学术会议论文集.北京,2005.642-646.
    [123]Pushan Shah, Vladimir Strezov, Peter F. Nelson. Speciation of Mercury in Coal-Fired Power Station Flue Gas. Energy Fuels,2010,24:205-212.
    [124]F. Goodarzi, J. Reyes, K. Abrahams. Comparison of calculated mercury emissions from three Alberta power plants over a 33 week period-Influence of geological environment. Fuel,2008,87:915-924.
    [125]K.S. Park, Y.-C. Seo, S.J. Lee, et al. Emission and speciation of mercury from various combustion sources. Powder Technology,2008,180:151-156.
    [126]杨祥花,燃煤电站锅炉系统的汞排放分析及其预测[硕士论文],东南大学,2006,南京.
    [127]Gharebaghi M., Hughes K.J., Porter, R.T.J. et al. Mercury Speciation in Air-coal and Oxy-coal Combustion:A Modelling Approach. Proc. Combust. Inst.,2011, 33(2):1779-1786.
    [128]Robert R. Jensen, Shankar Karki, Hossein Salehfar. Artificial neural network-based estimation of mercury speciation in combustion flue gases. Fuel Processing Technology,2004,85:451-462.
    [129]Martin T. Hagan, Howard B. Demuth戴葵,等译Neural Network Design机械工业出版社,2005年3月.
    [130]130 Laudal DL, Heidt MK, Brown TD,et al. Mercury speciation:a comparison between EPA method and other sampling methods. Presentation at the 89th Annual Meeting & Exhibition of the Air & Waste Management Association. Nashville USA,1996.
    [131]Power plant validation of the mercury speciation sampling method, EPRI TR-112588,1999.
    [132]Technology Status Review-Monitoring And Control Of Trace Elements. Report No.COAL R249 DTI/Pub URN 03/1582, November 2003.
    [133]MERCURY INFORMATION CLEARINGHOUSE:QUARTER2-MERCURY MEASUREMENTS, April,2004. www.ceamercuryprogram.ca.
    [134]Operating Manual-Mercury Stack Monitor SM3. Mercury Instruments Anatytical Technologies, Version 1.1.
    [135]ASTM, Standard Test Method for Elemental, Oxidized, Particle-Bound and Total Mercury in Flue Gas Generated from Coal-Fired Stationary Sources (Ontario Hydro Method), D 6784-02.2002.
    [136]吴昊,燃煤过程中汞挥发析出规律的研究[硕士论文],华中科技大学,2003,武汉.
    [137]成斌,氧燃烧方式下SOx排放特性的实验及模拟研究[硕士论文],华中科技大学,2007,武汉.
    [138]郝宇,齐庆杰,周新华,等.煤燃烧过程中硫析出特性的影响因素研究,矿业快报,2005,436:10-16.
    [139]Garcia-Labiano F, Hampartsoumian E, Williams A. Determination of Sulfur Release and its Kinetics in rapid Pyrolysis of Coal. Fuel,1995,74(7):1072-1079.
    [140]M.Okawa, N.Kimura, T.Kiga, et al. The characteristic of pulverized coal combustion inthe system of O2/CO2 combustion for CO2 recovery. ASPACC,1997, 543-546.
    [141]刘豪,高浓度C02气氛下煤燃烧及污染物排放特性的基础研究,华中科技大学博士后出站工作报告,2008年6月.
    [142]Paula A. Bejarano, Yiannis A. Levendis. Single-coal-particle combustion in O2/N2 and O2/CO2 Environments. Combustion and Flame,2008,153:270-287.
    [143]Grant E. Dunham, Raymond A. DeWall, Constance L. Senior. Fixed-bed studies of the interactions between mercury and coal combustion fly ash. Fuel Processing Technology,2003,82:197-213.
    [144]Presto A A, Granite E J.. Survey of catalysts for oxidation of mercury in flue gas. Environmental Science and Technology,2006,40(18):5601-5609.
    [145]Pan H, Minet R, Benson S, et al. Process for converting hydrogen chloride to chlorine. Ind. Eng. Chem. Res.,1994,33:2296-2299.
    [146]Sung Jun Lee, Jost O. L. Wendt, Joep Biermann. High-temperature sequestration of elemental mercury by noncarbon based sorbents. The 6th International Symposium on Coal Combustion. Wuhan, China. Sept.2009.
    [147]Minghou Xu, Yu Qiao, Chuguang Zheng, et al. Modeling of homogeneous mercury speciation using detailed chemical kinetics. Combustion and Flame,2003, 132:208-218.
    [148]Sliger R N, Kramlich J C, Marinov N M. Fall 1999 meeting of the western states section/The combustion institute, University of California, Irvine, California,1999, October 25-26,99F-072.
    [149]EPA U.S., Determination of Hydrogen Halide and Halogen Emissions from Stationary Sources, Method 26a.
    [150]Niksa S, Fujiwara N, Fujita Y, et al. A mechanism for Hg oxidation in coal-derived exhausts. AWMA 2002,52(8):894-901.
    [151]Qiu J R, Helble J J. Development of an Improved Model for Determining the Effects of SO2 on Homogeneous Hg Oxidation.28th Int. Technical Conf. on Coal Utilization and Fuel Systems, Coal Technology Assoc., Clearwater, FL, March, 2003.
    [152]Stanley J. Miller, Grant E. Dunham, Edwin S. Olson, et al. Flue gas effects on a carbon-based mercury sorbent. Fuel Processing Technology,2000,65-66: 343-363.
    [153]国家技术监督局,中华人民共和国国家标准:煤中氟的测定方法,GB4633-84, 1984.
    [154]国家技术监督局,中华人民共和国国家标准:煤中氯的测定方法,GB/T3558-1996.1996.
    [155]国家环境保护局,国家技术监督局,中华人民共和国国家标准:煤中汞的测定方法,GB/T 16659-1996.1996.
    [156]EPA U.S., Microwave Assisted Acid Digestion of Siliceous and Organically Based Matrices, Method 3052.
    [157]郭欣,煤燃烧过程中汞、砷、硒的排放与控制研究[博士论文],华中科技大学,2005.
    [158]Liang Zhang, Yuqun Zhuo, Lei Chen, et al. Mercury emissions from six coal-fired power plants in China. Fuel Processing Technology,2008,89:1033-1040.
    [159]Shou-Heng Liu, Nai-Qiang Yan, et al. Using Bromine Gas To Enhance Mercury Removal from Flue Gas of Coal-Fired Power Plants. Environ. Sci. Technol.,2007, 41(4):1405-1412.
    [160]Yan Cao, Quanhai Wang, Chien-wei Chen, et al. Investigation of Mercury Transformation by HBr Addition in a Slipstream Facility with Real Flue Gas Atmospheres of Bituminous Coal and Powder River Basin Coal. Energy & Fuels, 2007.21:2719-2730.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700