控制烟气汞排放的钴锰系列吸附剂研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
汞作为一种对环境和人类健康有害的重金属元素,成为国内外极为关注的优先控制污染物。目前燃煤汞排放已经成为最大的人为汞污染排放源,中国是世界上少数能源消耗以煤为主的国家,控制燃煤汞排放是我国急需解决的环境问题。
     燃煤汞排放控制技术包括吸附法和等离子体法等多种,其中吸附法的研究比较多。但目前研究中使用的活性碳及其它改性吸附材料存在吸附容量小、稳定性差、速率低、成本过高和二次污染等问题,严重限制了其实际应用。本论文以氧化铝(AL)和活性碳(AC)为载体并辅以Co和Mn等具催化作用成分的复合吸附材料为研究对象,拟通过实验和理论计算筛选出吸附容量高且吸附速率快的烟气脱汞吸附材料,并对其进行再生试验研究,以降低运行成本和解决废弃材料的二次污染问题。
     论文首先研究了Co和Mn系列吸附剂的制备方法及条件、其它金属离子和非金属掺杂对吸附去除气态汞性能的影响。通过低温液氮吸脱附等温线(BET)、X射线粉末衍射(XRD)、X射线光电子能谱(XPS)、透射电镜(TEM)、热重分析(TGA)以及程序升温还原(TPR)等多种表征手段,探讨了各种制备因素对吸附材料的化学物理特性的影响,同时对构效关系及氧化还原反应活性位进行了深入的分析。
     研究表明,对氧化铝基吸附剂而言,Co3O4和MnO2都具有一定的去除汞的能力,但是易被SO2作用而失去活性。通过对Co3O4负载氧化铝吸附剂进行阳离子Cu和Mn的掺杂改性后发现:Cu离子掺杂产物Cu-Co-AL在活性没有太大提高的前提下,其抗SO2作用能力得到了很大增强。NH4Cl/NH4Br对Co-AL和Cu-Co-AL的改性提高了它们去除汞的能力,其中Cu-Co-AL掺杂NH4Cl/NH4Br后活性提高了45%。XPS和XRD表明掺杂NH4Cl/NH4Br后,N原子取代了金属氧化物表面的一部分晶格氧;BET和SEM表明掺杂后的吸附剂具有更大的比表面积。NH4Cl/NH4Br改性的Co-AL和Cu-Co-AL材料吸附汞饱和后,XPS表征显示其表面含有HgCl/HgBr。由此可见,掺杂改性对提高Co-AL和Cu-Co-AL去除汞能力的影响因素包括:比表面增大、N取代其晶体表面的氧以及阴离子的活化。同时,NH4Cl/NH4Br的掺杂提高了Cu-Co-AL材料的寿命,Cu-Co-Cl-AL和Cu-Co-Br-AL的寿命分别为158h和208h,远远高于Cu-Co-AL的26h。
     对活性炭基吸附剂而言,负载三种不同氯化物CoCl2、MgCl2和MnCl2后,CoCl2/AC表现出最高的去除汞能力,而MgCl2/AC最差,说明不同的阳离子对氯化物改性活性炭的活性产生了很大影响。氧化物MnO2、Co3O4和CuCo2O4在活性炭表面的负载能提高活性炭的高温去除汞的能力。用NH4Cl/NH4Br对Cu-Co-AC改性,所制备的吸附剂Cu-Co-Cl-AC和Cu-Co-Br-AC去除汞的能力得到了进一步的提高。当吸附温度从80℃上升到150℃时,Cu-Co-Cl-AC和Cu-Co-Br-AC去除汞的能力分别从91%和92.1%上升到92.5和100%。Cu-Co-Cl-AC和Cu-Co-Br-AC的寿命分别从Cu-Co-AC的24h上升到90h和105h。
     载体亦对负载的金属氧化物去除汞的活性有影响,对氧化铝基,Mn-AL表现出最大去除汞的能力;对活性炭基,Co-AC具有最大去除汞的能力。
     燃媒烟气试验结果表明:负载量为20wt%且300℃活化的CoCl2/AC在150℃时去除气态汞的效率可以达到99%以上,并且具有很好的抗SO2中毒能力; CoCl2/AC的饱和汞吸附容量为171mgHg/gAC,是未改性活性碳的826倍。
     论文还研究了吸附剂的再生方法。结果表明:Co-AL和Cu-Co-AL吸附剂达到饱和后能够加热再生,其中Co-AL的再生率在90%以上,而Cu-Co-AL的活性在再生过程中可以得到进一步提高。再生产生的高浓度元素汞可以回收利用而降低汞处理的成本,且不会对环境造成二次污染。
     论文最后利用DFT理论研究了N掺杂对提高Co-AL和Cu-Co-AL的汞吸附性能的原因。计算表明:N掺杂可显著降低汞在Co3O4(110)和CuCo2O4(110)表面化学吸附所需活化能Ea,氧空穴生成能OVFE与Ea之间存在很好的相关性。通过考察元素周期表中不同非金属元素掺杂对Co3O4(110)表面OVFE的影响,发现能提高Co3O4(110)晶格氧活性元素的顺序为:Si > N > Se > S > P > I > Te = C > B,而降低Co3O4(110)晶格氧活性的惰性剂为:Cl > F > Br;但是,Cl、F和Br更倾向于在吸附剂表面与汞结合,本实验中,XPS表征显示NH4Cl/NH4Br改性材料吸附汞后表面存在的HgCl和HgBr亦支持了上述结果。
     综上所述,本论文研制的氧化催化吸附剂不但可以快速去除烟气中的元素汞,而且材料可以再生,能够消除潜在的二次环境污染问题,该吸附剂在处理烟气脱汞技术中具有潜在的应用前景。
Mercury is one of the most toxic pollutants and can easily be released into the atmosphere and severely threat human health and environment. Power plants are the largest mercury discharging resources. In China, coal is the major one-off energy and Hg pollution from combustion in air is severe environmental issue.
     Many technologies have been applied to control the mercury emission of coal-fired power plants, such as air pollution control devices (APCDs), sorbent injection (SI), electro-catalytic oxidation (ECO), photochemistry oxidation, oxidant injection, and catalytic oxidation, etc. Among them, SI is the most promising technology. However, there exist several problems with activated carbon and other sorbents such as low adsorption capacity, instability, low adsorption velocity, high operation costs and second pollution, which strictly confine SI application. In this paper, Co, Mn serial sorbents are selected as research object. High adsorption capacity and velocity materials for mercury are screened out, and the regeneration tests are processed to lower the operation costs and second pollution problem.
     Firstly, the preparation methods and qualification of Co, Mn serial sorbents, metal doping and non-metal doping effects on sorbent’s mercury removal ability are studied. How the preparation factors affect sorbents’chemical and physical property is investigated by BET、XRD、XPS、TEM、TGA and TPR. At the same time, the relationship between construction of sorbents and their mercury removal ability are analyzed.
     (一) Al2O3 carrier sorbent
     MnO2 and Co3O4 show some activity to remove the Hg from the simulated gas, but they lost activity when SO2 exist. The doping of Co3O4 by Cu can generate Cu-Co-AL which has similar Hgo removal ability to Co3O4 but better SO2 anti-poisoning ability. NH4Cl/NH4Br doping is beneficial to Co-AL and Cu-Co-AL’s Hgo removal ability, especially the dopant NH4Cl/NH4Br doped Cu-Co-AL whose Hg removal ability can increase 45%. The XPS and XRD results manifest that O atom of Co3O4 and CuCo2O4 surface has been replace by N atom, BET and SEM results manifest that NH4Cl/NH4Br doped Co-AL and Cu-Co-AL have higher specific surface area. Therefore, the Hgo removal ability improvement of NH4Cl/NH4Br doped sorbent can attribute to above phenomenon. Except that, the XPS results of spent NH4Cl/NH4Br doped Co3O4 or CuCoO4 manifest that anion Cl-/Br- participate the Hgo oxidation reaction. Cu-Co-Cl-AL and Cu-Co-Br-AL’s longevity reach 158 h and 208 h, respectively, which are far longer than Cu-Co-AL’s 26 h.
     (二) AC carrier sorbent
     Among the three different chlorine-impregnated AC, CoCl2/AC shows the highest Hgo removal ability and MgCl2/AC show the lowest Hgo removal ability. The loading of metal oxides on AC can increase AC’s Hg removal ability. When oxides loaded on Al2O3, Mn-AL shows the highest Hgo removal ability. However, when oxides loaded on AC, Co-AC shows the highest Hgo removal ability. Cu-Co-Cl-AC and Cu-Co-Br-AC show higher Hgo removal ability than Cu-Co-AC. When adsorption temperature increases from 80℃to 150℃, Cu-Co-Cl-AC and Cu-Co-Br-AC’s Hgo removal ability increase from 91% and 92.1% to 92.5% and 100%, respectively. Cu-Co-Cl-AC and Cu-Co-Br-AC’s breakthrough time increase from Cu-Co-AC’s 24 h to 90 h and 105 h, respectively.
     (三) the experiments under actual flue gas
     The experiment results show that when the loading value is 20 wt%, the mercury removal ability of CoCl2/AC activated at 300℃reach 99% at 150℃,and has perfect anti-SO2 ability. The mercury adsorption capacity of CoCl2/AC is 171mgHg/gAC,and 826 times as AC. CoCl2/AC was applied to the actual flue gas Hg adsorption. The combustion test was carried out on small-scale equipment in lab. The result showed that improved AC adsorbed 97% of the gaseous element Hg, compared with 3% of element Hg adsorbed by solution, which indicated that improved AC was feasible in the actual gas treatment.
     Secondly, spent sorbents can be regenerated by heating. Both Co-AL and Cu-Co-AL can be regenerated. The regeneration ratio of Co-AL is above 90%,and Cu-Co-AL’s activity can be improved during the process of regeneration. The regenerated element mercury can be collected by cold trap or react with other chemicals. The collected mercury can be sold to decrease the operation costs, and eliminate the second pollutions.
     DFT study show that N-doping can decrease the chemical adsorption activation energy (Ea) on Co3O4(110) and CuCo2O4(110) surface. There exist correlation between Ea and OVFE. Through investigating the OVFE variation of non-metal doped Co3O4(110), we find that the non-metal, which can increase the lattice oxygen activity of Co3O4(110) surface, include as follows: Si > N > Se > S > P > I > Te = C > B,and the non-metal, which can decrease the lattice oxygen activity of Co3O4(110), include as follows: Cl > F > Br。
     In conclusion, catalytic oxidation technique can not only remove element mercury pollutants effectively but also eradicate the potential second pollution. The technique might be practically applied in the field of flue gas mercury control.
引文
1.郑楚光,洁净煤技术.武汉华中理工大学出版社, 1996.
    2.任建莉,活性碳吸附烟气中气态汞的试验研究.中国电机工程学报, 2004. 2.
    3.郑楚光,燃煤痕量元素的排放与控制.湖北科学技术出版社, 2002.
    4.徐旭常,我国燃煤污染控制技术与对策的研究.苏州科技学院学报:工程技术版, 2003. 16(1): p. 8.
    5.国家环保局《水和废水监测分析方法》编委会,水和废水监测分析方法指南.北京:中国环境科学出版社, 1990.
    6. J. A. Sorensen, Airborne mercury deposition and watershed characteristics in relation to mercury concentrations in water, sediments, plankton, and fish of eighty Northern Minnesota Lakes. Environ. Sci. Technol., 1990. 24(11): p. 1716.
    7. E. B. Swain, Increasing rates of atmospheric Hg deposition in midcontinental. North America. Science, 1992. 257: p. 784.
    8. J. Burger, K.F. Gaines, M. Gochfeld, Mercury and selenium in fish from the Savannah river: species, trophic Level, and locational differences. Environ. Res., 2001. 87(2): p. 108.
    9. M. Power, G.M. Klein, Mercury accumulation in the fish community of a sub-Arctic lake in relation to trophic position and carbons. J. Appl. Ecol., 2002. 39(5): p. 819.
    10. M. Wayland, A.J. Garcia-Fernandez, H.G. Gilchrist, Concentrations of cadmium, mercury and selenium in blood, liver and kidney of common eider ducks from the Canadian Arctic. Environ. Monitor. Assess., 2001. 71(3): p. 255.
    11.于常荣,第二松花江汞污染与危害的研究.水系污染与防护, 1991. (1): p. 38.
    12.王世俊,金属中毒.人民卫生出版社, 1998: p. 135.
    13.成令忠,组织学与胚胎学.人民卫生出版社, 1994: p. 389.
    14. S.M. Siegel, B.Z. Siegel, First estimate of annual mercury. flux at the Kilauea main vent. Nature, 1984. 309: p. 146.
    15. Z.F. Xiao, J. Munthe, W.H. Schroeder, O. Lindqvist, Vertical fluxes of volatile mercury over forest soil and lake surfaces in Sweden. Tellus, 1991. 43B: p. 267.
    16. S.E. Lindberg, K.-H. Kim, T.P. Meyers, J.G. Owens, Micrometeorological gradient approach for quantifying air/surface exchange of mercury vapor: test over contaminated soils. Environ. Sci. Technol., 1995. 29: p. 126.
    17. R.P. Mason, W.F. Fitzgerald, F.M.M. Morel, The biogeochemical cycling of elemental mercury: anthropogenic influences. Geochimica Cosmochimica Acta, 1994. 58: p. 3191.
    18. J.O. Nriagu, A global assessment of natural sources of atmospheric trace metals. Nature, 1989. 338: p. 47.
    19. O. Lindqvist, H. Rodhe, Atmospheric mercury : a review. Tellus, 1985. 27B: p. 136.
    20.李香兰,环境中若千元素的自然背景值及其研究方法.科学出版社, 1982.
    21. F. Goodarzi, F.E. Huggins, H. Sanei, Assessment of elements, speciation of As, Cr, Ni and emitted Hg for a Canadian power plant burning bituminous coal. International Journal of Coal Geology, 2008. 74: p. 1.
    22. U.S. EPA, Mercury Study Report to Congress. 1997.
    23. T.D. Brown, Mercury measurement and its control: what we know, have learned, and need to further investigate, J. Air Wast. Man. Assoc., 1999. 6.
    24. L. Zhang, Mercury emissions from six coal-fired power plants in China. Fuel Proc. Technol., 2008.
    25.任建莉,燃煤过程中汞析出及模拟烟气中汞吸附脱除实验和机理研究.浙江大学博士学位论文, 2003.5.
    26. L.D. Hylander, M.E. Goodsite, Environmental costs of mercury pollution. Science of the Total Environment, 2006. 368: p. 352.
    27.周劲松,燃煤循环流化床锅炉汞排放及控制试验研究,热力发电, 2004. 1.
    28. M.A. Lo′pez-Anto′n, Evaluation of mercury associations in two coals of different rank using physical separation procedures. Fuel, 2006. 85: p. 1389.
    29. H. G. Luttrell, An evaluation of coal preparation technologies for controlling traceelement emissions. Fuel Proc. Technol., 2000. 65~66: p. 407.
    30.陆晓华,欧阳中华,曾汉才,刘晶,魏路线,煤灰中部分重金属元素含量与燃料工况的关系模型.环境化学1998. 4: p. 345.
    31.韩军,徐明厚,燃煤痕量元素排放的控制研究.动力工程, 2003. 23: p. 2744.
    32.赵毅,马双忱,华伟,庞庚林,电厂燃煤过程中汞的迁移转化及控制技术研究.环境污染治理技术与设备, 2003. 4(11): p. 59.
    33. A.J. Chandler, H.G. Rigo, Effect of temperature control and carbon injection on the control of municipal solid waste incinerator emissions - a retrofit demonstration. Proceedings of the Air & Waste Management Association's Annual Meeting & Exhibition, 1996.
    34. J.J. Mazluk, Comparison of dry sorbent injection of sodium bicarbonate, lime, and carbon and their control of dioxins/furans, mercury, chlorides, and sulfur dioxide Proceedings of the Air & Waste Management Association's Annual Meeting & Exhibition, 1996.
    35. H.S. Huang, J.M. Wu, C.D. Livengood, Development of Dry Control Technology for Emissions of Mercury in Flue Gas Systems and Applications. J. Hazard. Wast. Hazard. Mater., 1996. 13(1): p. 107.
    36. G. E. Dunham, S. J. Miller, R. Chang, P. Bergman, Mercury capture by an activated carbon in a fixed-bed bench-scale system. Environ. Prog., 1998. 17(3): p. 203.
    37. T. Broderick, Determination of dry carbon-based sorbent injection for mercury control in utility ESP and baghouses. Proceedings of the Air & Waste Management Association's Annual Meeting & Exhibition, 1998.
    38. Y. Matsumura, Adsorption of mercury vapor on the surface of activated carbons modified by oxidation or iodization. Atmos. Environ., 1974. 8: p. 1321.
    39. K. Felvang, Activated carbon injection in spray Dryer/ESP/FF for mercury and toxics control,. Proceedings of the Second International Conference on Managing Hazardous Air Pollutants, Washington, DC, 1993.
    40. T. Marshall, The use of activated carbon for flue gas treatment. First International Symposium on Incineration and Flue Gas Treatment Technologies, Sheffield, UK,1997.
    41. D. Karatza, Adsorption of metallic mercury on activated carbon. Twenty-sixth Symposiums on Combustion, Pittsburgh, PA, 1996.
    42. Y.H. Li, C.W. Lee, B.K. Gullett, Importance of activated carbon's oxygen surface functional groups on elemental mercury adsorption. Fuel, 2003. 82(4): p. 451.
    43. H. Yang, Adsorbents for capturing mercury in coal-fired boiler flue gas. J. Haz. Mater., 2007. 146: p. 1.
    44. G. Skodras, Enhanced mercury adsorption in activated carbons from biomass materials and waste tires. Fuel Proc. Technol. 2007. 88: p. 749.
    45. G. Skodras, I. Diamantopoulou, G. Pantoleontos, Kinetic studies of elemental mercury adsorption in activated carbon fixed bed reactor. J. Haz. Mater., 2008.
    46. G. Skodras, I. Diamantopoulou, G.P. Sakellaropoulos, Role of activated carbon structural properties and surface chemistry in mercury adsorption. Desalination, 2007. 210: p. 281.
    47. T.C. Ho, S. Shetty, H.W. Chu, C.J. Lin, J.R. Hopper, Simulation of mercury emission control by activated carbon under confined-bed operations. Powder Technol., 2008. 180: p. 332.
    48. L. Liberti, M. Notarnicola, V. Amicarelli, V. Campanaro, F. Roethel, L. Swanson, Mercury removal with powdered activated carbon from flue gases at the Coriano municipal solid waste incineration plant. Waste Management & Research, 1998. 16(2): p. 183.
    49. T. Masaki, T. Nobuo, F. Takeshi, K. Masato, K. Tetsuo, Control of mercury emissions from a municipal solid waste incinerator in Japan. J. Air Wast. Man. Assoc., 2002. 52(8): p. 931.
    50. T.G. Brna, J.D. Kilgroe, The impact of particulate emissions control on the control of other MWC air emissions. J. Air Wast. Man. Assoc., 1990. 40(9): p. 1324.
    51. S. J. Miller, D. L. Laudal, R. Chang, P. D. Bergman, Laboratory-scale investigation of sorbents for mercury control. The 87th Annual Meeting and Exhibition of the Air & Waste Management Association, Cincinnati, OH, 1994.
    52. S. J. Miller, D. L. Laudal, G. E. Dunham, R. Chang, P. D. Bergman, Piolt-scaleinvestigation of mercury control in baghouses, In Proceddings of the ERPI/DOE International Conference on Managing Hazardous and Particulate Pollutants, Toronto, Canada, 1995.
    53. J. Wu, et al., Evaluation of mercury sorbents in a lab-scale multiphase flowreactor, a pilot-scale slipstream reactor and full-scale power plant. Chem. Engin. Sci., 2008. 63: p. 782.
    54. W. Feng, E. Borguet, R.D. Vidic, Sulfurization of carbon surface for vapor phase mercury removal– I: effect of temperature and sulfurization protocol. Carbon, 2006. 44: p. 2990.
    55. W. Feng, E. Borguet, R.D. Vidic, Sulfurization of a carbon surface for vapor phase mercury removal– II: sulfur forms and mercury uptake. Carbon, 2006. 44: p. 2998.
    56. R.K. Sinha, P.L. Walker, Removal of mercury by sulfurized carbons. Carbon, 1972. 10: p. 754.
    57. Y. Otani, H. Emi, C. Kanaoka, Environ. Sci. Technol., 1988. 22: p. 708.
    58. S. V. Krishnan, B. K. Gullett, Sorption of elemental mercury by activated carbons. Environ. Sci. Technol., 1994. 26(8): p.1506.
    59. R. D. Vidic, J. B. Mclaughlin, Uptake of elemental mercury vapors by activated carbons. J. Air Wast. Man. Assoc., 1996. 46: p. 241.
    60. E.J. Granite, M.C. Freeman, R.A. Hargis, W.J. O’Dowd, H.W. Pennline, The thief process for mercury removal from flue gas. J. Environ. Manag., 2007. 84: p. 628.
    61. B.C. Young, J.H. Pavlish, T.R. Gerlach, C.J. Zygarlicke, Mitigation of air toxic elements from the combustion of low-rank coals in power generation plants. Proceedings of the Air & Waste Management Association's Annual Meeting & Exhibition, 1996.
    62. J. Bustard, et al., Full-Scale Evaluation of sorbent injection for mercury control on coal-fired power plants. In Proceedings of Air QualityⅢ:Mercury.,Trace Elements,and Particulate Matter Conference; Arlington, 2002.
    63. A.B. Mukherjee, R. Zevenhoven, P. Bhattachary, K.S. Sajwan, R. Kikuchi, Mercury flow via coal and coal utilization by-products: A global perspective. Resources, Conservation and Recycling, 2008. 52: p. 571.
    64. Z. Luo, C. Hu, I. Zhou, K. Cen, Stability of mercury on three activated carbon sorbents. Fuel Proc. Technol., 2006. 87: p. 679.
    65. R. Change, G.R. Offen, Mercury emission control technologies: an EPRI synopsis. Power Engineering (Barrington, Illinois), 1995. 99(11): p. 51.
    66. R. Chang, B. Hargrove, T. Carey, C. Richardson, F. Meserole, Power plant mercury control options and iIssues. Proc. Power-Gen’96 International Conference, Orlando, Fla., 1996.
    67. R.K. Srivastava, C.B. Sedman, J.D. Kilgroe, D. Smith, S. Renninger, Preliminary estimates of performance and cost of mercury control technology applications on electric utility boilers. J. Air Was. Man. Assoc., 2001. 51 (10): p. 1460.
    68. S. Sharon, et al., Assessing sorbents for mercury control in coal-combustion flue gas. J. Air Wast. Manag. Assoc., 2002. 52(8): p. 902.
    69. R.A. Hargis Jr., Plants: A preliminary cost assessment and the next steps for accurately assessing control costs. Fuel Proc. Technol., 2000. 65.
    70. P. Schager, B. Hall, Linguist, Retention of gaseous mercury on fly ashes, second international conference on mercury as a global pollutant, Monterey, C.A., 1992.
    71. E.J. Granite, H.W. Pennline, R.A. Hargis, Novel sorbents for mercury removal from flue gas. Indus. Engin. Chem. Res., 2000. 39: p. 1020.
    72. M.V. Wormer, Control of mercury emissions from combustion applications presented at 1992 AIChE National Meeting, 1992.
    73.彭苏萍,王立刚,燃煤飞灰对锅炉烟道气的吸附研究,煤碳科学技术, 2002. 30 (9): p. 33.
    74. L. Chen, et al., Mercury transformation across particulate control devices in six power plants of China: The co-effect of chlorine and ash composition. Fuel, 2007. 86: p. 603.
    75. W. D. Ovens, A. F. Sarofim, D.W. Pershing, The use of recycle for enhanced volatile metal capture, Trace elements transformation in coal-fired power systems workshop, Scottsdale, AZ, 1993.
    76. D. M. White, W. E. Kelly, M. J. Stucky, J. L. Swift, M. A. Palazzolo, Emission test report, Field test of carbon injection for mercury control, Camden county municipal wastecombustor
    77. D.M. White, K.L. Nebel, J.D. Kilgroe, Parametric evaluation of powdered activated carbon injection for control of mercury emissions from a municipal waste combustor. AWMA 85" Annual Meeting and Exhibition, Kansas City, M0, 1992.
    78. J. Bergstrom, Waste Management and Research, 1986. 4: p. 57.
    79. M.S. Devito, et al., Sampling and speciation studies at coal-fired utilities equipped wet scrubbers. Presented at the fourth EPRI international conference on managing hazardous air pollutants, Washington, SC, 1997.
    80. M.S. Devito, W. A. Rosehoover, Hg flue gas measurements from coal-fired utilities equipped wet scrubbers. Presented at the 92nd Annual Meeting and Exhibition of the Air & Waste Management Association, St. Louis, M0, 1999.
    81. T.K. Gale, B.W. Lani, G.R. Offen, Mechanisms governing the fate of mercury in coal-fired power systems. Fuel Proc. Technol., 2008. 89: p. 139.
    82. T. Sakulpitakphon, J. C. Hower, A. S. Trimble, W. H. Schram, G. A. Thomas, Mercury capture by fly ash: study of the combustion of a high-mercury coal at a utility boiler. Energy Fuel., 2000. 14: p. 727.
    83. D.J. Hassett, K.E. Eylands, Mercury capture on coal fly ash, Fuel, 1999. 78: p. 243.
    84. F. Goodarzi, J.C. Hower, Classification of carbon in Canadian fly ashes and their implications in the capture of mercury. Fuel, 2008. 87: p. 1949.
    85.王起超,马如龙,煤及灰渣中的汞,中国环境科学, 1997. 17(1): p. 76.
    86.朱珍锦,薛来,谈仪,负荷改变对煤粉锅炉燃烧产物中汞的分布特征影响研究.中国电机工程学报, 2001. 21(7): p. 87.
    87. M. A. Lo′pez-Anto′n, P. Abad-Valle, M. D?′az-Somoano, I. Sua′rez-Ruiz, M. R. Mart?′nez-Tarazona, The influence of carbon particle type in fly ashes on mercury adsorption. Fuel, 2007.
    88. D.J. Helfritch, P.L. Feldman, The use of a Circulating fluid bed for mercury adsorption and particle agglomeration, The Air & Waste Management Associations 92nd Annual Meeting & Exhibition, St. Louis; Missouri, 1999.
    89. E.G. Waugh, Mercury and acid gas control in utility baghouses through sorbent injection pilot-scale demonstration. Presented at the power-gen international’97, Dallas, TX, December9-11, 1997.
    90. K.E. Redinger, A. Evans, R. Bailey, Mercury emissions control in FGD systems. Presented at the EPRI/DOE/EPA Combined Air Pollutant Control Symposium, Washington, DC, 1997: p. 25.
    91. T.R. Carey, W. Hargrove, T.D. Brown, Enhanced control of mercury in wet FGD systems. Presented at the first joint DOE-PETC power and fuel systems contractors conference U. S. Department of energy, Pittsburgh, PA, 1996.
    92. K. C. Galbreath, C. J. Zygarlicke, Mercury transformation in coal combustion flue gas, Fuel Proc. Technol., 2000. 65-66: p. 289.
    93. S.V. Krishnan, B.K. Gullett, W. Jozewicz, Mercury control in municipal waste combustion and coal-fired utilities. Environ. Pro., 1997. 16: p. 47.
    94. A. Lancia, et al., Adsorption of mercuric chloride vapors from incinerators flue gases on calcium hydroxide particles, Com. Sci., 1993. 93: p. 277.
    95. W. Jozewicz, B.K. Gullett, Reaction mechamisms of dry Ca-based sorbents with gaseous HCl. Ind. Eng. Chem. Res., 1995. 34: p. 607.
    96. V.L. Shashkov, et al., Effect of mercury vapors on the oxidation of sulfur dioxide in a fluidized bed of vanadium catalyst, Khim. Prom-st (Moscow), 1971. 47: p. 288.
    97. L.L. Zhao, G.T. Rochelle, Mercury adsorption in aqueous oxidants catalyzed by mercury (II). Ind. Eng. Chem. Res., 1998. 37: p. 380.
    98. A.M. Rubel, J.C. Hower, S.M. Mardon, M.J. Zimmerer, Thermal stability of mercury captured by ash. Fuel, 2006. 85: p. 2509.
    99. S.B. Ghorishi, S.C. Jozewicz, W.S. Sedman, C.B. Srivastava, Simultaneous control of Hgo, SO2, and NOx by novel oxidized calcium-based sorbents. J. Air Wast. Man. Assoc., 2002. 52 (3): p. 273.
    100. M.R. Stouffer, W.A. Rosenhoover, F.P. Burke, Investigation of flue gas mercury measurement and control for coal-fired sources. Proceedings of the Air & Waste Management Association's Annual Meeting & Exhibition, 96-WP64B.06, 1996.
    101. S.V. Krishnan, H. Bakhteyav, C.B. Sedman, Mercury sorption mechanisms and control by calcium-based sorbents. Proceedings of the Air & Waste Management Association's Annual Meeting & Exhibition, 96-WP64B.05, 1996.
    102. D. Pflughoeft-Hassett, et al., Impact of mercury emission control technologies on conventional coal combustion by-product management. Proceedings of the Air & Waste Management Association's Annual Meeting & Exhibition, 96-RA114.03, 1996.
    103. S.B. Ghorishi, Low concentration mercury sorption mechanisms and control by calcium-based sorbents: Application in coal-fired processes. J. Air Wast. Manag. Assoc., 1998. 48(12): p. 1191.
    104. S.B. Ghorishi, B. K. Gullett, Sorption of mercury species by activated carbons and calcium-based sorbents: effect of temperature, mercury concentration and acid gases. Waste Manag. Res., 1998. 16(6): p. 582.
    105. T.G. Lee, P. Biswas, E. Hedrick, Comparison of Hgo capture efficiencies of three in situ generated sorbents. Aiche Journal, 2001. 47(4): p. 954.
    106.北川浩,铃木谦一郎,吸附的基础和设计.化学工业出版社,, 1983.
    107. D.W. Breck, Zeolite Molecular Sieves:structure, chemistry and use. Wiley: New York, 1974.
    108. W.M. Mieer, D.H. Olson, C. Baerlocher, Atlas of zeolite structure types, 4th ed. Elsevier: London. 1996.
    109. H.V. Bekkum, E.M. Flanigan, J.C. Jansen, Introduction to zeolite science and pratice. Amsterdam, 1991. 58.
    110. J.R. Morency, T. Panagiotou, Control of mercury emissions in utility power plants. EPRI-DOE-EPA Combined Utility Air Pollution Control Symposium, Atlanta, Georgia, 1999.
    111. S.H. Jeon, Y. Eom, T.G. Lee, Photocatalytic oxidation of gas-phase elemental mercury by nanotitanosilicate fibers. Chemosphere, 2008. 71: p. 969.
    112. Y. Li, P. Murphy, C.Y. Wu, Removal of elemental mercury from simulated coal-combustion flue gas using a SiO2–TiO2 nanocomposite. Fuel Proc. Technol., 2008. 89: p. 567.
    113. C.Y. Wu, L.T. Tyree, G. E. Arar, P. Biswas, Capture of mercury in combustion systems by in situ-generated titania particles with UV irradiation. Environ. Engin. Sci., 1998. 15 (2): p. 137.
    114. S. Rodriguez, et al., A mechanistic model for mercury capture with in situ-generated titania particles: Role of water vapor. J. Air Waste Manag. Assoc., 2004. 54(2): p. 149.
    115. T. G. Lee, P. Biswas, E. Hedrick, Overall kinetics of heterogeneous elemental mercury reactions on TiO2 sorbent particles with UV irradiation, Industrial and Engineering Chem. Res., 2004. 43(6): p. 1411.
    116. E. J. Granite, H. W. Pennline, R. A. Hargis, Novel sorbents for mercury removal from flue gas. Indus. Engin. Chem. Res., 2000. 39(4): p. 1020.
    117. S.J. Miller, E.S. Olson, G.E. Dunham, R.K. Sharma, Preparation methods and test protocol for mercury sorbents. Proceedings of the Air & Waste Management Association's Annual Meeting & Exhibition, 98-RA79B.07, 1998.
    118. J.R. Morency, T. Panagiotou, C.L. Senior, Use of a novel sorbent additive to reduce mercury emissions from fossil fuel-fired power plants. Proceedings of the Air & Waste Management Association's Annual Meeting & Exhibition, 98-RA79B.02, 1998.
    119. P.J. Martellaro, et al., Environmental application of mineral sulfides for removal of gas-phase Hg(0) and aqueous Hg2+, Sep. Sci. Technol., 2001. 36(5-6): p. 1183.
    120. S. Poulston, et al., Metal sorbents for high temperature mercury capture from fuel gas. Fuel, 2007. 86: p. 2201.
    121. C.D. Livengood, et al., Enhancement of mercury control in flue-gas cleanup systems. Proc.U. S.DOE/PETC First Joint Power&Fuel Systems Contractors Conference, Pittsburgh, Penn., 1996.
    122. S. J. Miller, D. L. Laudal, G. E. Dunham, K. Walker, H. Krigmont, Advanced hybrid particulate collector, A new concept for air toxics and fine particulate control, The EPRI-DOE-EPA Combined Utility Air Pollutant Control Symposium, Washington D. C., 1997.
    123. J.D. Kilgroe, R.K. Srivastava, Control of mercury emission from coal-fired electric utilityboilers. Tech. mem., 2000.
    124. A. Kolker, C.L. Senior, J.C. Quick, Mercury in coal and the impact of coal quality on mercury emissions from combustion systems. Appl. Geo., 2006. 21: p. 1821.
    125. Y. Wang, Y. Duan, L. Yang, Y. Jiang, C. Wu, Q. Wang, Comparison of mercury removal characteristic between fabric filter and electrostatic precipitators of coal-fired power plants. J Fuel Chem. Technol., 2008. 36(1): p. 23.
    126. F. Scala, H.L. Clack, Mercury emissions from coal combustion: Modeling and comparison of Hg capture in a fabric filter versus an electrostatic precipitator. J. Hazard. Mater., 2008. 152: p. 616.
    127. R. Meij, The fate of mercury in coal-fired power plants and the influence of wet flue-gas desulphurization, Water, Air, and Soil Pollution, 1991. 56: p. 21.
    128. R. Chang, D. Ovens, EPRI J, 1994. 46.
    129. S.B. Ghorishi, C.W. Lee, J.D. Kilgroe, Mercury speciation in combustion systems: studies with simulated flue gases and model fly ashes, Presented at the 92nd Annual Meeting of Air and Waste Management Association, St. Louis, MO, 1999.
    130. M. D?az-Somoano, S. Unterberger, K.R.G. Hein, Mercury emission control in coal-fired plants: The role of wet scrubbers. Fuel Proc. Technol., 2007. 88: p. 259.
    131. C.D. Livengood, M.H. Mendelsohn, Progress for combined control of mercury and nitric oxide. EPRI-DOE-EPA Combined Utility Air Pollution Control Symposium, Atlanta, Georgia, 1999.
    132. M.H. Mendelsohn, J.B.L. Harkness, Enhanced flue-gas denitrification using ferrous* EDTA and a polyphenolic compound in an aqueous scrubber system. Energ. Fuels, 1991. 5(2): p. 244.
    133. M.H. Mendelsohn, et al., Elemental mercury removals observed in a laboratory-scale wet FGD scrubber system. Emerging Clean Air Technologies and Business Opportunities, Toronto, Canada, 1994: p. 26.
    134. C. D. Livengood, M. H. Mendelsohn, Enhancement of mercury control in flue-gas cleanup systems, Technical report, Argonne National Laboratory.
    135. Z. Wang, et al., Simultaneous removal of NOx, SO2 and Hg in nitrogen flow in a narrow reactor by ozone injection: Experimental results. Fuel Proc. Technol., 2007. 88: p. 817.
    136. C.D. Livengood, M.H. Mendelsohn, Investigation of modified speciation for enhanced control of mercury, Technical report, Argonne National Laboratory.
    137. C. D. Livengood, M. H. Mendelsohn, H. S. Huang, J. M. Wu, Development of mercury control techniques for utility boilers. 88th Annual Meeting Air&Waste Management Association, San Antonio, Texas, 1995.
    138. D. Lu, et al., Mercury removal from coal combustion by fenton reactions– Part A: bench-scale tests. Fuel, 2007. 86: p. 2789.
    139. Y. Tan, et al., Mercury removal from coal combustion by fenton reactions. Paper B: pilot-scale tests. Fuel, 2007. 86: p. 2798.
    140. A.I. Martinez, B.K. Deshpande, Kinetic modeling of H2O2-enhanced oxidation of flue gas elemental mercury. Fuel Proc. Technol., 2007. 88: p. 982.
    141. Y. Zhuang, et al., Impact of calcium chloride addition on mercury transformations and control in coal flue gas. Fuel, 2007. 86: p. 2351.
    142. M.G. Milobowski, et al., Wet FGD enhanced mercury control for coal-fired utility. The U. S. EPA/DOE/EPRI Combined Power Plant Air Pollutant Control Symposium: "The Mega Symposium" Chicago, Illinois, U. S. A., 2001.
    143. R. Change, G.R. Offen, Mercury emission control technologies: an EPRI synopsis, Power Engin., 1995. 11: p. 51.
    144. E.戈兰特,等离子体物理基础.北京:原子能出版社, 1993.
    145.林赫,直流电晕放电诱导自由基簇射烟气脱销试验和机理研究.浙江大学博士学位论文, 2002.
    146. T. Fujii, Removal of NOx by DC corona reactor with water. J. Elec., 2001. 51: p. 8.
    147. T. Mizuno, A device for removal of sulfur dioxide exhaust gas by pulsed energixation of free electrons. Proc. of IEEE/IAS, 1984 Annual Conf., 1984: p. 1025.
    148.吴彦,占部武生,脉冲放电法消除汞蒸气的试验研究,环境科学学报, 1996. 16(2): p. 221.
    149.吴彦,增田闪一,环境科学学报,1989. 9(4): p. 381.
    150. C. McLarnon, B. Penetrante, Effect of reactor design on the plasma treatment of NOx, SAE Technical Paper Series 982434, San Francisco, CA, 1998.
    151. Y. Byun, et al., Oxidation of elemental mercury using atmospheric pressure non-thermal plasma. Chemosphere, 2008. 72: p. 652.
    152. J. Jeong, J. Jurng, Removal of gaseous elemental mercury by dielectric barrier discharge. Chemosphere, 2007. 68: p. 2007.
    153. C.R. Mclarono, M.D. Jones, Electro-catalytic oxidation process for multi-pollutant control at FirstEnergy's R.E. burger generating station. Presented at Electric Power 2000 Cincinnati Convention Center, 2000.
    154. U. Kogelschatz, B. Eliasson, W. Egli, Dielectric-barrier discharges principle and applications, International Conference on Phenomena in Ionized Gases, Toulouse. France, 1997.
    155. F. Alix, S. Neister, C. McLarnon, Barrier discharge conversion of SO2 and NOx to acids,. U. S. Patent No. 5, 871, 703, 1999.
    156. L. Monroe, et al., Testing of a combined dry and wet electrostatic precipitator for control of fine particulate emissions from a coal-fired boiler. Presented at the EPRI-DOE-EPA Combined_Utility Air Pollutant Control Symposium, Washington D. C., 1997.
    157. F. Alix, S. Neister, C. McLarnon, Barrier discharge conversion of SO2 and NOx to acids, U. S. Patent No. 5, 871, 703, 1999.
    158. C. McLarnon, Nitrogen oxide decomposition by barrier discharge, dissertation for doctor of philosophy degree in chemical engineering. University of New Hampshire, 1996.
    159. C. McLarnon, M. Horvath, Electro-catalytic oxidation technology applied to mercury and trace elements removal from flue gas. Presented at Conference on Air Quality II McLean, VA, 2000.
    160. H.M. Yang, W.P. Pan, Transformation of mercury speciation through the SCR system in power plants. J. Emviron. Sci., 2007. 19: p. 181.
    161. Y. Zhuang, et al., Impacts of acid gases on mercury oxidation across SCR catalyst. Fuel Proc. Technol., 2007. 88: p. 929.
    162. S. Straube, T. Hahn, H. Koeser, Adsorption and oxidation of mercury in tail-end SCR-DeNOx plants—Bench scale investigations and speciation experiments. Appl. Catal. B: Environ., 2008. 79: p. 286.
    163. S. Wu, et al., Development of iron-based sorbents for Hg0 removal from coal derived fuel gas: Effect of hydrogen chloride. Fuel, 2008. 87: p. 467.
    164. A. Yamaguchi, H. Akiho, S. Ito, Mercury oxidation by copper oxides in combustion flue gases. Powder Technol., 2008. 180: p. 222.
    165. C.X. Hu, et al., Effect of oxidation treatment on the adsorption and the stability of mercury on activated carbon. J. Environ. Sci., 2006. 18(6): p. 1161.
    166. S.S. Lee, J.Y. Lee, T.C. Keener, Novel sorbents for mercury emissions control from coal-fired power plants. J. Chin. Inst. Chem.. Engine., 2008. 39: p. 137.
    167. X. Xu, et al., Hg0 oxidative absorption by K2S2O8 solution catalyzed by Ag+ and Cu2+. J. Hazard. Mater., 2008.
    168. G.O. Alptekin, et al., Non-carbon sorbents for mercury removal from flue gases. Powder Technol., 2008. 180: p. 35.
    169.赵玲,二氧化锰体系下氯酚的非生物转化研究.中国科学院研究生院博士学位论文, 2006.
    170. W. Li, L. Xu, J. Chen, Nanomaterials in lithium-Ion batteries and gas sensors. Adv. Funct. Mater. , 2005. 15: p. 851.
    171. X. Wang, et al., One-dimensional arrays of Co3O4 nanoparticles: synthesis, characterization, and optical and electrochemical properties. J. Phys. Chem. B, 2004. 108: p. 16401.
    172. J. Feng, H.C. Zeng, Reduction and reconstruction of Co3O4 nanocubes upon carbon deposition. J. Phys. Chem. B, 2005. 109: p. 17113.
    173.付冬,铜钴尖晶石复合氧化物的组成对二甲苯完全氧化反应活性的影响.催化学报, 2001. 22(6) p. 589.
    174.訾凤兰,氧化物在载体表面的单层分散及结构研究.北京化工大学博士论文, 2004.
    175.訾凤兰,氧化钴在二氧化钛表面的单层分散及结构研究.化学通报, 2004. 10: p. 771.
    176. F. Kapteijin, A. D. van Langeveld, J.A. Moulijn, A. Andreini, M.A. Vuurman, A.M.Turek, J. Jehng, I.E. Wachs, J. Catal., 1994. 150: p. 94.
    177.赵秀阁, SO2对Co3O4/Al2O3选择性催化氧化NO的影响.催化学报, 2000. 21(3): p. 239.
    178. S. Angelov, Compt. Rend. Acad. Sci. Bulg., 1983. 36: p. 1403.
    179. S. Angelov, et al., Carbon monoxide oxidation on mixed spinels CuxCo3-xO4 (0< x <1) in the presence of sulphur compounds. Appl. Catal., 1985. 16: p. 431.
    180. R. Asahi, et al., Visible-light photocatalysis in nitrogen-doped titanium oxides. Science, 2001. 293 p. 269.
    181. C.D. Valentin, et al., Adsorption of water on reconstructed rutile TiO2(011)-(2×1): Ti=O double bonds and surface reactivity. J. Am. Chem. Soc., 2005. 127(27): p. 9895.
    182. H.X. Dai, C.F. Ng, C.T. Au, Perovskite-type halo-oxide La1-χSrxFeO3-δXσ(X=F, Cl) catalysts selective for the oxidation of ethane to ethene. J. Catal., 2000. 189: p. 52.
    183. H. Zeng, F. Jin, J. Guo, Removal of elemental mercury from coal combustion flue gas by chloride-impregnated activated carbon. Fuel, 2004. 83: p. 143.
    184. Z. Wang, et al., Photocatalytic degradation of phenol in aqueous nitrogen-doped TiO2 suspensions with various light sources. Appl. Catal. B: Environ., 2005. 57: p. 223.
    185. R.D. Vidic, D.P. Siler, Vapor-phase element mercury adsorption by activated carbon impregnated with chloride and chelating agents. Carbon, 2001. 39: p. 3.
    186. S.B. Ghorishi, et al., Development of a Cl-impregnated activated carbon for entrained-flow capture of element mercury. Environ. Sci. Technol., 2002. 36: p. 4454.
    187. F.E. Huggins, et al., XAFS examination of mercury sorption on three activated carbons. Energ. Fuel., 1999. 13(1): p. 114.
    188. E.J. Granite, H.W. Pennline, R.A. Hargis, Novel srobents for mercury removal from flue gas. Ind. Eng. Chem. Res., 2000. 39: p. 1020.
    189. H.Y. Lin, W.C. Chen, C.H. Hung, Determination of the adsorptive capacity and adsorption isotherm of vapor-phase mercury chloride on powdered activated carbon using thermogravimetric analysis. J. Air Wast. Manag. Assoc., 2006. 56(11): p. 1550.
    190. R. Hu, D. Fu, K. Wang, Y. Shen, Solid-phase synthesis of copper-cobalt composite oxides and their catalytic activities in xylene combustion. Petro. Tech., 2001. 30: p. 266.
    191. F. Dong, et al., Sol-gel synthesis and catalytic property for xylen combustion of copper-cobalt composite oxids. Inner Mongolin Petrochemical Industry, 2000. 04: p. 5.
    192. S. Mendioroz, et al., Mercury retrieval from flue gas by monolitihic adsorbents based on sulfurized sepiolite. Eviron. Sci. Technol., 1999. 33: p. 1697.
    193. H.X. Dai, C.F. Ng, C.T. Au, Hole-doped La1.85Sr0.15CuO4–δXσ(X=F, Cl) and electron-doped Nd1.85Ce0.15CuO4–δXσhalo-oxide catalysts for the selective oxidation of ethane to ethene. J. Catal., 2001. 197: p. 251.
    194. H. X. Dai, C.F. Ng., C. T. Au, Perovskite-type halo-oxide La1-χSrxFeO3-δXσ(X=F, Cl) catalysts selective for the oxidation of ethane to ethene. J. Catal., 2000. 189: p. 52.
    195. S.J. Lee, et al., Removal of gas-phase elemental mercury by iodine- and chlorine-impregnated activated carbons. Atmos. Environ., 2004. 38: p. 4887.
    196. O. Knop, et al., Can. J. Chem., 1968. 46: p. 3463.
    197. M. Filatov, D. Cremer, Revision of the dissociation energies of mercury chalcogenides - unusual types of mercury bonding. ChemPhysChem, 2004. 5: p. 1547 .
    198. M. Shimada, et al., Preparation of a new Cu-substituted cobaltite spinel : CuCo2O4. Mater. Res. Bull. 1975. 10(7): p. 733.
    199. N.S. Yogesh Sharma, G.V. Subba Rao, V. R. Chowdari, Lithium recycling behavior of nano-phase-CuCo2O4 as anode for lithium-ion batteries. J. Power Sour. 2007. 173(1): p. 495

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700