燃煤汞形态识别及其脱除的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
燃煤电站是全球最大的人为汞排放源,其汞排放与控制已经成为愈来愈受关切的热点。本文在燃煤电厂汞排放形态及分布、煤中汞的形态识别和燃烧前脱除、煤燃烧过程中汞的形态、气相单质汞脱除等方面进行了研究,促进煤燃烧过程中汞污染控制技术的发展。
     用Ontario Hydro法对2台配备ESP的200MW燃煤电站锅炉汞排放形态和分布进行测试分析。汞平衡计算得,输出汞与输入汞质量比在113%到125%之间,表明结果可信。大部分输出的汞在飞灰和排放的烟气中,只有不到2%的汞保留在锅炉灰渣和省煤器底灰中。因为ESP除尘效率高达99%以上,所以几乎100%的颗粒态汞都被除掉了。超过总汞量55%的汞以气态汞的形式排放入大气,其中超过65%是氧化态汞。提高低NOx燃烧器锅炉负荷可以提高ESP入口的颗粒态汞比例,从而降低ESP出口烟气中的汞浓度。传统燃烧器比低NOx燃烧器锅炉向大气中排放的氯少而汞多。低NOx燃烧器的飞灰汞含量比传统燃烧器高,这归因于较高的烟气氯含量、飞灰含碳量和比表面积。
     通过程序升温热解、浮沉分离、硝酸浸提、选择性连续浸提识别煤中汞的赋存形态,同时考察了它们对煤中汞的脱除效率。首次建立了煤程序升温热解过程中汞释放的温度区间和汞形态的对应关系:<150℃是Hg~0,150-250℃是HgCl_2/有机结合态Hg,250-400℃是HgS/硅酸盐结合态汞,400-600℃是黄铁矿结合态汞。煤中汞的赋存形态影响各种燃前脱汞技术的效率。对于黄铁矿结合态汞含量高的煤种,浮沉分离然后低温热解是相对经济和环境友好的一种方法。煤的快速升温热解实验表明,提高温度,加快汞的脱除速率和提高汞的脱除率。降低压力热解可以提高汞脱除速率。
     通过化学热力学平衡计算、化学动力学计算和管式炉煤燃烧实验,研究了影响煤燃烧过程中汞形态转化的因素。化学热力学平衡计算结果表明,Cl_2对汞的氧化能力比HCl强得多。H_2O的存在会抑制汞的氧化。汞氧化生成的产物主要是HgCl_2,也可能存在少量HgO和HgSO_4。化学动力学计算结果表明,HgCl_2的生成速率受温度影响很大,在900K左右达到了峰值,而当温度高于1200K或低于700K时很低。敏感性分析表明:在793K时,HgCl_2主要通过反应HgCl+HOCl=HgCl_2+OH生成。当温度升到900K时,除了上述反应外,反应Hg+Cl_2=HgCl+Cl也变得敏感。但是,该温度下反应Hg+Cl+M=HgCl+M的逆反应导致HgCl的分解而抑制了HgCl_2的生成。1100K时,反应Hg+Cl+M=HgCl+M和反应HgCl+HCl=HgCl_2+H的逆反应对抑制HgCl_2生成起主要作用。通过石英管式炉的煤燃烧实验研究了影响汞氧化的因素。较强的氧化性气氛有利于汞氧化物的生成。燃烧温度影响汞的氧化,在燃烧温度900℃达到汞的最大氧化率。延长降温段停留时间可以略微促进汞的氧化,但效果不明显。不同密度段的煤燃烧汞氧化率依次为中密度段>高密度段>低密度段。Na对Hg氧化有较强抑制作用。热水洗煤和氨水洗煤都可以得到很好的脱氯效果。氯含量的降低大大降低了汞的氧化率。煤中添加CaCl_2可以促进汞的氧化反应,但是促进程度对煤种的依赖性高。
     吸附剂吸附是有效控制燃煤烟气汞污染,尤其是单质汞排放的有效途径。合成了一种新型可再生吸附剂载银纳米碳管(Ag-CNT),并测试其作为吸附剂脱除或作为汞阱检测燃煤电厂烟气中的单质汞的性能。实验表明,Ag-CNT在从室温到150℃的温度范围内能彻底的捕集汞,可加热再生,汞吸附容量高,记忆效应极小。应用Ag-CNT制作汞阱用做CVAFS测汞仪的汞富集单元时,检测荧光结果对CO_2,O_2,SO_2和NO_x不敏感,标定获得标准曲线线性相关性高。实验表明Ag-CNT值得进一步测试其作为商用汞阱吸附剂的潜力。成功对高岭土、沸石、石灰石进行浸溴改性,并对吸附剂的汞吸附性能分别在固定床和沉降炉反应器上进行了测试。浸溴处理可以提高三种吸附剂的汞吸附效率。未改性吸附剂汞吸附效率随温度升高而降低,表现出明显的物理吸附。而浸溴改性吸附剂汞吸附效率随着温度升高而升高,表现出化学吸附特性。
Worldwide,coal-fired power plants are known to be the largest anthropogenic source of mercury emissions.Mercury emission is a significant environmental concern due to its toxicity and high volatility.Identification of mercury occurrences in coal and mercury removal before coal utilization,mercury oxidation during coal combustion,elemental mercury capture by sorbents,and mercury speciation and distribution in full scale power plants have been studied,providing useful information for selecting/developing mercury emission control technologies.
     Two 200MW utilities without any differences besides burner type,low-NOx burners versus conventional burners,were studied on emission and behavior of mercury by Ontario-Hydro Method.The out/in mercury balance ranged from 113%to 125%was obtained in this study.Major mercury outgoing was fly ash in hopper and flue gas in stack as well as negligible minor amount of mercury<2%was remained in boiler slag and economizer bottom ash.Nearly 100%of Hg_p could be removed by ESP due to its>99% high dust removal efficiency.More than 55%of total mercury was released into the atmosphere as vapor phase,of which>65%of total mercury was in oxidized form. Increasing operation load of boiler with low-NOx burners leads to higher Hg_p proportion in flue gas at ESP inlet and lower mercury concentration of flue gas at ESP outlet.More mercury and less chlorine were released into the atmosphere from boiler with conventional burners than with low-NOx burners.There was a weak correlation among mercury species, HCl and Cl_2.The fraction of elemental mercury decreased slightly with increasing concentration of HCl and Cl_2.Higher mercury contents were detected in fly ash from boiler with low-NOx burner than from conventional one due to higher carbon content and specific surface area.
     Mercury emission control technology in the combustion flue gas of coal-fired power plants has been under intensive development,but none has been implemented commercially because of the high cost.Treatment of coal before combustion provides an alternative option for Hg emission control.Samples of one anthracite,one lignite and three bituminous coals were investigated to determine the feasibility of precombustion Hg emission control. Density separation,temperature-programmed pyrolysis,HNO_3 extraction and sequential selective extraction(SSE) were used to determine the occurrence and species of mercury in the different types of coal.The results showed that the characteristic temperature range for Hg release is<150℃for Hg~0,150-250℃for HgCl_2/organic-bound Hg,250-400℃for HgS/silicate-bound Hg,and 400-600℃for pyrite-bound Hg.The mercury removal of different technologies are dependent on mercury occurrence in coal.HNO_3 extraction and sink-float were found to be effective for the removal of pyrite bound Hg and then the coal can be pyrolysed at 400℃to remove other forms of Hg.Experiments of rapid pyrolysis of coal showed that higher temperature led to higher rate and efficiency of mercury removal. In addition,decreasing pyrolysis pressure can increase mercury removal rate.
     The effects of different factors on mercury oxidation were investigated by thermodynamic calculations,kinetic calculations,and tests of coal combustion in a horizontal electrically heated tube furnace.Thermodynamic calculations suggested that HCl is a very weak oxidizer of mercury,while Cl_2 is a very strong one.The presence of H_2O may inhabit mercury oxidation.The dominating product of mercury oxidation was HgCl_2, as well as minor amount of HgO and HgSO_4.Kinetic calculations showed that HgCl,Cl_2, and HOCl formation is important in producing the oxidized mercury during combustion of coal.A suitable temperature for Hg oxidization when Cl_2 is the oxidization resource is 700-1200 K.Results of batch combustion of coal in the tube furnace showed that many factors could influence mercury oxidation.Stronger oxidizing atmosphere was propitious to mercury transformation to oxidized form.The highest degree of mercury oxidation was attained at the combustion temperature of 900℃.Extending residence time in the cooling zone can slightly promote mercury oxidation.Mercury oxidation factions during combustion of density fractionated coal are high>medium>light density.Na has obvious inhabitation effect on mercury oxidation via completion reaction with chlorine species. Coal leaching by hot water and ammonia got a high chlorine removal fraction,resulting in a lower oxidized mercury fraction.By cofiring CaCl_2 with coal,more elemental mercury was converted to oxidized gaseous species.
     Capture by sorbents is effective method to control mercury emission form coal combustion,especially for elemental mercury.A simple method combining wet-chemistry and thermal reduction was adopted to synthesize silver on the surface of carbon nano tube (CNT).The synthesized Ag-CNT was tested as sorbents for the removal of of elemental mercury from flue gases of coal-fired power plants and as a mercury trap for elementary mercury analysis.A complete capture of mercury by Ag-CNT was achieved up to a capture temperature of 150℃.The captured mercury could be quickly and completely released by simple heating at 330℃,to restore its mercury adsorption capacity.Silver on Ag-CNT were shown to be the main active component for mercury capture via amalgamation mechanism in contrast to simple physical adsorption on undoped CNT.Compared with silver-coated quartz beads(Ag-Beads) and gold-coated quartz beads(Au-Beads),which is conventionally used as mercury trap for mercury measurements,Ag-CNT showed a much higher mercury capture capacity and a minimal memory effect.With Ag-CNT as mercury preconcentration trap,calibration results showed a satisfactory linear coefficient of≥0.9998 between known amounts of standard mercury and their corresponding fluorescence signals of a Cold Vapor Atomic Fluorescence Spectrophotometry(CVAFS).The presence of SO_2,NO_x,CO_2 or O_2 showed a negligible impact on the mercury capture performance of Ag-CNT.A fixed bed and and drop tube reactor were used to test the performances of mercury capture by kaolin, zeolite,lime stone and their corresponding bromine impregnated sorbents.Bromination can obviously promote mercury adsorption efficiency.Capture efficiency of origin sorbents decreased with increasing temperature,exhibiting a physical adsorption.In contrast,capture efficiency of brominated sorbents increased with increasing temperature,exhibiting a chemisorption.
引文
[1]R Li,X.B.Feng,G.L.Qiu,et al.Mercury pollution in Asia:A review of the contaminated sites.Journal of Hazardous Materials,2009,168(2-3):591-601
    [2]National Research Council,Toxicological Effects of Methyl Mercury,National Academy Press,Washington,DC,2000,Library of Congress Card Number 00-108382.
    [3]U.S.EPA,Mercury Study Report to Congress;EPA-452/R-97-003;U.S.EPA Office of Air Quality Planning and Standards,U.S.Government Printing Office:Washington,DC,1997,Dec.
    [4]Winfrey,M.R.,J.W.M.Rudd.1990.Review—Environmental Factors Affecting the Formation of Methylmercury in Low pH Lakes.Environ.Yoxicol.Chem.9:853-869.
    [5]迟清华.汞在地壳、岩石和疏松沉积物中的分布.地球化学,2004,33(6):641-648
    [6]Mason,R.P.Fitzgerald,W.F.,et al.The Biogeochemical Cycling of Elemental Mercury:Anthropogenic Influences.Geochem.Cosmochim.Acta,1994,58(15):3191-3198.
    [7]US EPA,Human Expose.[2006]http://www.epa.gov/mercury/exposure.htm
    [8]K.Vijayaraghavan,K.Lohman,P.Karamchandani.Global source attribution for mercury deposition in the United States.Environ.Sci.Technol.,2004,38(2):555-569
    [9]US EPA.EPA's Roadmap for Mercury.[2006]http://www.epa.gov/mercury/roadmap/htm
    [10]Elisabeth G.Pacyna,Jozef M.Pacyna,Frits Steenhuisen,et al.Global anthropogenic mercury emission inventory for 2000.Atmospheric Environment,2006,40(22):4048-4063
    [11]Leonard Levin,Addressing the Global Nature of Mercury Emissions,U.S./China Conference on Applied Combustion Technology Park City,Utah,2007
    [12]BP statistical review of world energy full review 2008.[2008]http://www.bp.com/liveassets/bpinternet/china/bpchina_chinese/STAGING/local_assets/downloads_pdf s/BPStatsReview2008_chi.pdf
    [13]王起超,沈文国,麻壮伟.中国燃煤汞排放量估算.中国环境科学,1999,19(4):318-321.
    [14]张明泉,朱元成,邓汝温.中国燃煤大气排放汞量的估算与评述.人类环境杂志,2002,31(6):482-484
    [15]Pacyna,E.G.,Pacyna,et al.Global anthropogenic mercury emission inventory for 2000.Atmospheric Environment,2006,40:4048-4063.
    [16]David G.Streets,Jiming Hao,YeWu,et al.Anthropogenic mercury emissions in China.Atmospheric Enviromnent.2005,39:7789-7806
    [17]任建莉,周劲松,骆仲泱等.燃煤电站汞排放量的预测模型.动力工程,2005,25(4):587-592.
    [18]U.S.Environmental Protection Agency,Method 29—Determination of Metals Emissions from Stationary.Sources,U.S.EPA,Emission Measurement Technical Information Center,TM-029,April 25,1996.
    [19]American Public Health Association,Standard Methods for the Examination of Water and Wastewater,15th ed.,American Public Health Association,Washington,DC,1980.
    [20]U.S.Environmental Protection Agency,Methods of Chemical Analysis of Water and Wastes,U.S.Environmental Protection Agency,Cincinnati,OH,1983,EPA-600/4-82-05.
    [21]U.S.Environmental Protection Agency,Test Methods for Evaluating Solid Waste:Physical/Chemical Methods,3rd ed.,U.S.Environmental Protection Agency,Washington,DC,1988,Sept.,SW-846.
    [22]P.Chu,N.Goodman,G.Behrens,et al.Total and speciated mercury emissions from U.S.coalfired power plants,Proceedings of the Air Quality Ⅱ:Mercury,Trace Elements,and Particulate Matter Conference,McLean,VA,2000.34.
    [23]J.H.Pavlish.Center for Air Toxic Metals Final Technical Report,Energy and Environmental Research Center:Grand Forks,North Dakota,vol.Ⅲ,2000,Sept.
    [24]Olmez,M.Ames,N.K.Aras.Presented at the Annual Meeting of the American Nuclear Society,San Diego,CA,1993,June.
    [25]Olmez,X.Huang,M.R.Ames.Presented at the 88th Annual Meeting and Exhibition of the Air and Waste Management Association,San Antonio,TX,1995,June,Paper 95-MP21.02.
    [26]L.J.Blanchard,J.D.Robertson.Determination of mercury in coal using radiochemical methods.Analysis,1997,122:1261-1264.
    [27]L.Jian,W.Goessler,K.J.Irgolic.Mercury determination with ICP-MS:signal suppression by acids,Fresenius' J.Anal.Chem.2000,366:48-53.
    [28]黄志,刘英萍,张宏.氢化物发生ICP-AES法同时测定纯净水中的砷和汞.光谱实验室,2001,03:103-105
    [29]EPA,EPA ICR No.1858:Information Collection Request for Electric Utility Steam Generating Unit Mercury Emissions Information Collection Effort,1999.
    [30]D.L.Laudal,K.C.Galbreath,M.K.Heidt.A state-of-the-art review of flue gas mercury speciation methods,Electric Power Research Institute,Palo Alto,CA,1996,Nov.,1997,Oct.,EPRI Report No.TR-107080.
    [31]D.L.Laudal,M.K.Heidt,B.R.Nott,et al.Evaluation of Flue Gas Mercury Speciation Methods,Electric Power Research Institute/U.S.Department of Energy Final Report,1997,December,EPRI TR-108988.
    [32]D.Laudal,B.Nott,T.Brown,et al.Mercury speciation methods for utility flue gas,Fresenius'J.Anal.Chem.1997,358:397-400.
    [33]D.L.Laudal.Field Validation of the Ontario Hydro Mercury Speciation Sampling Method at Site E-29,Electric Power Research Institute/U.S.Department of Energy Final Report,1999,Jan.
    [34]D6784-02 Standard test method for elemental,oxidized,particle-bound and total mercury in flue gas generated from coal-fired stationary sources(Ontario Hydro Method)[S/OL]http://www.astm.org/cgibin/SoftCart.exe/DATAB ASE.CART/PAGES/D6784.htm?E+ystore.
    [35]E.M.Prestbo,D.L.Laudal.Investigation of the fate of mercury in a coal combustion plume using a static plume dilution chamber,Proceedings of Air Quality Ⅱ:Mercury,Trace Elements,and Particulate Matter Conference,McLean,VA,Sept.19-21,2000,Paper A5-5.
    [36]D.L.Laudal,N.B.French.State-of-the-art of mercury continuous emission monitors for coal-fired systems,Proceedings of Air Quality Ⅱ:Mercury,Trace Elements,and Particulate Matter Conference,McLean,VA,Sept.19-21,2000,Paper A3-2.
    [37]R.Roberson,C.Deane.Status of mercury CEM systems,Presented at the Electric Utilities Environmental Conference,2001,Jan.
    [38]T.R.Carey,O.W.Hargrove,C.F.Richardson,et al.Factors affecting mercury control in utility flue gas using activated carbon.J.Air Waste Manage.Assoc.1998,48:1166-1174.
    [39]W.Corns.The development of a continuous emission monitor for mercury speciation and its utilization in mercury removal studies,Presented at the Conference on Air Quality Ⅱ:Mercury,Trace Elements,and Particulate Matter,McLean,VA,Sept.19-21,2000,Paper A3-1.
    [40]Toole-O'Neil,B.,Tewalt,S.J.,Finkelman,R.B.,et al.Mercury Concentration In Coal-Unraveling The Puzzle.Fuel,1999,78:47-54.
    [41]Finkelman,R.B.,Palmer,C.A.,Krasnow,M.R.,et al.Combustion And Leaching Behavior Of Elements In Argonne Premium Coal Samples.Energy and Fuels,1990,(4):755-66.
    [42]F.Goodarzi.Mineralogy,elemental composition and modes of occurrence of elements in Canadian feed-coals.Fuel,2002,81:1199-1213
    [43]Belkin,H.E.,Finkelman,R.B.,Zheng,B.Mercury in People's Republic of China coal.Geol.Soc.Am.Abstr.2005,37(7):48-55
    [44]王起超,马如龙.煤及其灰渣中的汞.中国环境科学,1997,17(1):76-78
    [45]郑刘根,刘桂建,齐翠翠等.中国煤中汞的环境地球化学研究.中国科技大学学报,2007,37(8):953-962
    [46]Luttrell,G.H.,Kohmuench,J.N.,Roe-Hoan Yoon.An Evaluation Of Coal Preparation Technologies For Controlling Trace Element Emissions.Fuel Processing Technology,2000,65-66:407-422.
    [47]Senior,C.L.,Huggins,F.,Huffman,G.P.et al.Toxic Substances From Coal Combustion -A Comprehensive Assessment,Final Report,DOE Contract No.DE-AC22-95PC95101,U.S.Department of Energy,July 2001.
    [48]Senior,C.L.,Zeng,T.,Che,J.et al.Distribution Of Trace Elements In Selected Pulverized Coals As A Function Of Particle Size And Density.Fuel Processing Technology,2000,63:215-241.
    [49]Cheng Zhang,Gang Chen,Ting Yang et al.An Investigation on Mercury Association in an Alberta Sub-bituminous Coal.Energy & Fuels,2007,21:485-490
    [50]Merriam;Norman W.,Grimes;R.et al.Process for low mercury coal:US,5403365[P].April 30,1995.
    [51]Min Wang,Keener Tim.The effect of coal volatility on mercury removal from bituminous coal during mild pyrolysis.Fuel Processing Technology,2000(67):147-161.
    [52]Akira Iwashita,Shomei Tanamachi,Tsunenori Nakajima,et al.Removal of mercury from coal by mild pyrolysis and leaching behavior of mercury.Fuel.2004.83:631-638
    [53]Zhenghe Xu,Guoqing Lu,On Yi Chan.Fundamental Study on Mercury Release Characteristics during Thermal Upgrading of an Alberta Sub-bituminous Coal.EnergyFuels.2004.18:1855-1861
    [54]D.Guffey,A.E.Bland.Thermal pretreatment of low-ranked coal for control of mercury emissions.Fuel Processing Technology,2004,85:521-531.
    [55]kira Ohki,Kota Sagayama,Shomei Tanamachi,et al.Release behavior of mercury during mild pyrolysis of coals and nitric acid-treated coals.Powder Technology,2008,180:30-34.
    [56]张宇宏.煤中硫、氟、汞、砷的常压迁移特征的研究[硕士论文].煤炭科学研究总院,2004.
    [57]白向飞.中国煤中微量元素赋存特征极其迁移规律实验研究[博士论文].煤炭科学研究总院,2003.
    [58]Meij,R..The Fate of Mercury in Coal-Fired Power Plants and The Influence of Wet Flue-Gas Desulphurization.Water,Air,and Soil Pollution,1991,56:21-33
    [59]Yao H.,G Luo,M Xu,et al.Mercury Emission and Species during Combustion of Coal and Waste.Energy Fuels,2006,20:1946-1950
    [60]Galbreath K.C,Zygarlicke C.J.Mercury transformations in coal combustion flue gas.Fuel Process Technol,2000,65:289-310
    [61]F.Frandsen,K.Dom-Johansen,P.Rsmussen.Trace Elements from Combustion and Gasification of Coal:An Equilibrium Approach.Progress In Energy And Combustion Science, 1994, 20: 115-138
    [62] Mojtahedi, W. Trace Metals Volatilization in Fluidized-Bed Combustion and Gasification of Coal. Combustion Science & Technology, 1989,63:209-227
    [63] K. Larjava, PhD Dissertation, Helsinki University, 1993.
    [64] SRI International, Final report to the U.S. Department of Energy under Contract No. DE-AC21-86MC23261, Report No. DE89 011687, Morgantown Energy Technology Center: Morgantown, West Virginia, 1989.
    [65] Linak, W.P., Wendt, J.O.L. Toxic Metal Emissions from Incineration: Mechanisms and Control. Progress in Energy and Combustion Science, 1993, 19 :145-85
    [66] Wu, C.Y., Biswas, P. An Equilibrium Analysis To Determine The Speciation Of Metals In An Incinerator. Combustion and Flame, 1993, 93:31-40
    [67] Senior, C.L., Sarofim, A.F., Zeng, T.et al. Gas-Phase Transformations Of Mercury In Coal-Fired Power Plants. Fuel Processing Technology, 2000, 63: 197-213
    [68] D. Verhulst, A. Buekens, P.J. Spencer, etal. Environ. Sci. Technol., 1996,30:50-56
    [69] R.N. Sliger, J.C. Kramlich, N.M. Marinov. Development of an elementary homogeneous mercury oxidation mechanism. Proceedings of the Air and Waste Management Associations 93rd Annual Meeting, Salt Lake City, UT, 2000, Paper AE1A429.
    
    [70] C.W. Lee, J.D. Kilgroe, S.B. Ghorishi. Proceedings of the 6th Annual Waste-to-Energy Conference, Miami Beach, FL, Solid Waste Association of North America, Silver Spring, MD, 1998, pp. 221-238.
    
    [71] J.A. Gaspar, N.C. Widmer, J.A. Cole, et al. Proceedings of the International Conference on Incineration and Thermal Treatment Technologies, IT3 ConferencePublications, College Park, MD, 1997, pp. 661-665.
    [72] B. Hall, P. Schager, E. Lindqvist. Chemical reactions of mercury in combustion flue gases. Water Air Soil Pollut., 1991,56: 3-14
    
    [73] K.C. Galbreath, C.J. Zygarlicke, D.L. Toman. Proceedings of the Air and Waste Management Association 91st Annual Meeting and Exhibition, June 14-18, 1998, San Diego, CA, 1998.
    
    [74] Sliger, R.N., Kramlich, J.C., Marinov, N.M.. Towards The Development Of A Chemical Kinetic Model For The Homogeneous Oxidation Of Mercury By Chlorine Species. Fuel Processing Technology, 2000,65-66:423-438
    [75] Niksa, S., Fujiwara, N. Predicting extents of mercury oxidation in coal-derived flue gases. J. Air Waste Manage. Assoc. 2005, 55:930
    [76] Wang, J.,Anthony, E. An analysis of the reaction rate for mercury vapor and chlorine. Chem. Eng. Technol. 2005, 28:569
    [77] Niksa, S., Helble, J.J., Fujiwara, N. Kinetic Modeling of Homogeneous Mercury Oxidation: The Importance of NO and H_2O in Predicting Oxidation in Coal-Derived Systems. Environmental Science and Technology, 2001,35 : 3701-3706
    [78] Widmer, N.C., et al. Practical Limitation of Mercury Speciation in Simulated Municipal Waste Incinerator Flue Gas. Combustion Science and Technology , 1998, 134:315-326
    
    [79] Sliger, R.N. Ph.D. thesis, University of Washington, 2001.
    [80] Lissianski, V. Preliminary Field Evaluation Of Mercury Control Using Combustion Modifications. Presented at DOE/NETL Mercury Control Technology R&D Program Review Meeting, Pittsburgh, August 12-13 (2003). Project supported under DOE Contract No.: DEFC26-03NT41725.
    [81] Lissianski, V. Mercury Control Using Combustion Staging. Presented at DOE/NETL Mercury Control Technology R&D Program Review Meeting,Pittsburgh, July 14 (2004). Project supported under DOE Contract No.: DE-FC26-03NT41725.
    [82] Lissianski, V., Maly, P., Seeker, R. Combustion Staging-First Step in Reduction of Mercury Emissions. Presented at the Combined Power Plant Air Pollution Control, Mega Symposium, Washington, DC (2004).
    [83] Richardson, C., Machalek, T., Miller, S., et al. Effect Of NO_X Control Processes On Mercury Speciation In Utility Flue Gas, Journal of the Air & Waste Management Association, 2002:52:941-947
    [84] Senior, C.L., Linjewile, T. Oxidation Of Mercury Across SCR Catalysts In Coal-Fired Power Plants Burning Low Rank Fuels. Quarterly Report, Jul 1- Sep 30, 2003. DOE Cooperative agreement No.: DE-FC26-03NT41728, November (2003).
    [85] Senior, C.L., Linjewile, T. Oxidation Of Mercury Across SCR Catalysts In Coal-Fired Power Plants Burning Low Rank Fuels. Quarterly Report, Apr 1-Jun 30, 2003. DOE Cooperative agreement No.: DE-FC26-03NT41728, July (2003).
    [86] Richardson, C.F., Blythe, G., Rhudy, R.G. Pilot Evaluation of the Catalytic Oxidation of Mercury for Enhanced Removal in Wet FGD Systems.Presented at the Air Quality Ⅲ Conference,Arlington,Virginia,September 10-12(2002).
    [87]Withum,J.A.,Tseng,S.C.,Locke,J.E.Evaluation of Mercury Emissions from Coal-Fired Facilities with SCR-FGD Systems.Presented at the 2002 Conference on SCR and SNCR for NOx Control,Pittsburgh,May 15-16(2002).
    [88]Withum,J.A.,Tseng,S.C.,Locke,J.E.Evaluation of Mercury Emissions from Coal-Fired Facilities with SCR-FGD Systems.Presented at the 2002 Conference on SCR and SNCR for NOx Control,Pittsburgh,May 15-16(2002).
    [89]Hocquel,M.,Unterberger,S.,Hein,K.R.G..Effects of Mercury on SCR-Catalysts.Presented at the 2002 Conference on SCR and SNCR for NOx Control,Pittsburgh,May 15-16(2002).
    [90]Senior,C.L.Oxidation of Mercury Across SCR Catalysts in Coal-Fired Power Plants Burning Low Rank Coals Presented at DOE/NETL Mercury Control Technology R&D Program Review Meeting,Pittsburgh,August 12-13(2003).
    [91]Liu XiaoWei,Xu MingHou,Yao Hong,et al.Characteristics and composition of particulate matter from coal-fired power plants.Science in China Series E-Technological Sciences,2009,52(6):1521-1526
    [92]郭欣,郑楚光,贾小红等.300MW煤粉锅炉烟气中汞形态分析的实验研究.中国电机工程学报,2004,24(6):185-188.
    [93]朱锦珍,薛来,谈仪等.300MW煤粉锅炉燃烧产物中汞的分布特性研究.动力工程,2002,22(1):1594-1607
    [94]Luo G.,Yao H.,Xu M..Distribution of Mercury Speciation in Coal-fired Power Plants.Proceedings of the 6th International Symposium of Coal Combustion,1-4,Dec.2007,Wuhan,China,883-889
    [95]McDonald,D.K.,Amrhein,G.T.,Kudlac,G.A.,et al.Full-Scale Testing Of Enhanced Mercury Control Technologies For Wet FGD Systems.Final Report (2003),U.S.Department of Energy Contract:DE-FC26-00NT41006,Ohio Coal DeveIopment Office Grant Agreement:CDO/D-99-03,McDermott Technology,Inc.Contract:CRD 1427.
    [96]Farthing,G.Full-Scale Testing of Enhanced Mercury Control Technologies for Wet FGD Systems.Presented at DOE/NETL Mercury Control Technology R&D Program Review Meeting,Pittsburgh(2003).
    [97]Nolan,P.S.,Redinger,K.E.,Amrhein,G.T.,et al.Mercury Emissions Control in Wet FGD Systems.Presented at the Air Quality Ⅲ Conference,Arlington,VA (2002).
    [98]Zhuang,Y.,Zygarlicke,C.J.,Oalbreath,K.C.,et al.Impact of calcium chloride addition on mercury transformations and control in coal flue gas.Fuel,2007,86(15),2351-2359
    [99]Cao Yan,Wang QuanHai,Chen ChienWei,et al.Investigation of Mercury Transformation by HBr Addition in a Slipstream Facility with Real Flue Gas Atmospheres of Bituminous Coal and Powder River Basin Coal.Energy & Fuels,2007,21:2719-2730
    [100]Cao Yan,Gao Zhengyang,et al.Impact of Halogen Additions on Mercury Oxidation in a Slipstream Selective Catalyst Reduction(SCR),Reactor When Burning Sub-Bituminous Coal.Environmental Science & Technology,2008,46:256-261.
    [101]岑可法,周俊虎,王智化,刘建忠,杨卫娟,周志军,黄镇宇,程军.燃煤锅炉烟气臭氧氧化除汞方法.中国专利:CN1768904,2005年
    [102]晏乃强,吴忠标,贾金平,徐新华,汪大翚.强化湿法烟气脱硫系统除汞作用的方法.中国专利:CN1895745,2006年
    [103]Christopher R.,McLarnon.Electro-Catalytic Oxidation Technology Applied to Mercury and Trace Elements Removal from Flue Gas.Conference on Air Quality McLean,VA September 20,2000.
    [104]C.J.Bustard,M.Durham,C.Lindsey.Results of activated carbon injection for mercury control upstream of a COHPAC fabric.[2006]http://www.icac.com/files/public/MEGA03 82 Hg.pdf.
    [105]M.Durham,J.Bustard,T.Starns.Full-scale evaluation of mercury control by injecting activated carbon upstream of ESPs.[2006]http://www.netl.doe.gov/technologies/coalpower/ewr/mercury/controltech/pubs/A5-B2.pdf.
    [106]W.Sun,N.Yan,J.Jia.Removal of elemental mercury in flue gas by brominated activated carbon.Zhongguo Huanjing Kexue(China Environ.Sci.),2006,26: 257-261
    [107] T. Machalek, C. Richardson, K. Dombrowski. Full-scale activated carboninjection for mercury control in flue gas derived from North Dakota lignite. [2006]http://www.netl. doe.gov/technologies/coalpower/ewr/mercury/controltech/pubs /MEGA 41989 stanton.pdf.
    [108] D. Karatza, A. Lancia. Study of mercury absorption and desorption on sulfur impregnated carbon. Exp. Thermal Fluid Sci. 2000,21:150—155
    [109] H. Hsi, MJ. Rood, M. Rostam-Abadi. Effects of sulfur impregnation temperature on the properties and mercury adsorption capacities of activated carbon fibers (ACFs). Environ. Sci. Technol. 2000,25: 2785-2791
    [110] H. Hsi, M.J. Rood, M. Rostam-Abadi.Mercury adsorption properties of sulfur-impregnated adsorbents, J. Environ. Eng. 2002,128:1080-1089
    [111] S.B. Ghorishi, C.B. Sedman. Low concentration mercury sorption mechanisms and control by calcium-based sorbents: application in coal-fired processes. J. Air Waste Manage. Assoc. 1998,48:1191-1198
    [112] S.H. Lee, Y.J. Rhim, S.R Cho. Carbon-based novel sorbent for removing gas-phase mercury. Fuel, 2006,85:219-226
    [113] J.R. Morency, T. Panagiotou, C.L. Senior. Zeolite sorbent that effectively removes mercury from flue gases. Filtrat, 2002,39:24-26
    [114] T.R. Carey, C.F. Richardson, R. Chang. Assessing sorbent injection mercury control effectiveness in flue gas streams.Environ. Prog. 2000,19:167-174
    
    [115] C.S. Turchi, R.M. Stewart, T.E. Broderick. Removal and recovery of vapor-phase mercury from flue gas using regenerable sorbents. [2006]http://www.netl.doe.gov/publications/ proceedings/98/98ps/pspa-16.pdf.
    [116] Bustard, J., Durham, M., Lindsey, C., et al. Full-Scale Evaluation of Mercury Control with Sorbent Injection and COHPAC at Alabama Power E.C., Gaston. Presented at the A&WMA Specialty Conference on Mercury Emissions: Fate, Effects, and Control, Chicago, IL, August (2001).
    [117] Bustard, J., Lindsey, C., Brignac, P., et al. Long-Term Operation of a COHPAC System for Removing Mercury from Coal-Fired Flue Gas. Presented at PowerGen Orlando, FL (2004).
    [118] Starns, T., Bustard, J., Durham, M., et al. Results of Activated Carbon Injection Upstream of Electrostatic Precipitators for Mercury Control.Presented at the Combined Power Plant Air Pollutant Control,Mega Symposium,Washington,DC (2003).
    [119]Vidic,R.D.,Chang,M.T.,Thurnau,R.C.Kinetics Of Vapor-Phase Mercury Uptake By Virgin And Sulfur Impregnated Activate Carbons.Journal of the Air & Waste Management Association,1998,48:247-255
    [120]Sjostrom,S.,Ebner,T.,Ley,T.,Slye,R.Assessing Sorbents for Mercury Control in Coal-Combustion Flue Gas.Journal of the Air & Waste Management Association.2002,52:902-911
    [121]Sjostrom,S.,T.Ebner,R.Slye,et al.Full-Scale Evaluation of Mercury Control at Great River Energy's Stanton Generating Station usingInjected Sorbents and a Spray Dryer/Baghouse.Air Quality Ⅲ Conference,Arlington(2003)
    [122]骆仲泱,周劲松,王勤辉,岑可法,方梦祥.以半干法为基础的燃煤汞排放控制方法.中国专利:CN1488423,2003年
    [123]朱珍锦,薜来,谈仪等.负荷改变对煤粉锅炉燃烧产物中汞的分布特征影响的研究.中国电机工程学报,2001,21(7):87-90
    [124]周劲松,王光凯,骆仲泱,等.600MW煤粉锅炉汞排放的试验研究.热能动力工程,2006,21(6):569-572.
    [125]Chert Lei,Duan Yufeng,Zhuo Yuqun,et al.Mercury transformation across particulate control devices in six power plants of China:The co-effect of chlorine and ash composition(J).Fuel,2007,86:603-610
    [126]刘小伟.燃煤特性和燃烧工况对可吸入颗粒物形成的影响[博士学位论文].华中科技大学,2008.
    [127]Qichao Wang,Wenguo Shen,Zhuangwei Ma.Estimation of mercury emission from coal combustion in China.Environ.Sci.Technol.,2000,34(13):2711-2713
    [128]Yakabisa Yokoyama,Kazuo Asakura.Mercury emissions from a coal-fired power plant in Japan.The Science of the Total Environment,2000,259:97-103.
    [129]Hassett,D.J.,Eylands,K.E.Mercury capture on coal combustion fly ash.Fuel,1999,78:243-248
    [130]Hwang,Jiann-yang.Li,Zhenglong.Control of mercury emissions using unburned carbon from combustion by-products: United States,6027551[P]. 2000-02-22
    [131] Dastoor AP, Larocque Y. Global circulation of atmospheric Hg: a modeling study. Atmos Environ, 2004,38:147-61
    [132] Luttrell GH, Kohmuench JN, Yoon RH. An evaluation of coal preparation technologies for controlling trace element emissions. Fuel Process Technol, 2000,65-66:407-22
    
    [133] Issaro N, Abi-GhanemC, Bermond A. Fractionation studies of Hg in soils and sediments: A review of the chemical reagents used for Hg extraction. Anal Chim Acta, 2009, 631:1-12
    [134] Querol X, Juan R, Lopez-Soler A, et al. Mobility of trace elements from coal and combustion wastes. Fuel, 1996,75:821-38
    [135] Feng X, Hong Y. Modes of occurrence of Hg in coals from Guizhou, People's Republic of China. Fuel, 1999,78:1181-8
    [136] Davidson RM. Modes of occurrence of trace elements in coal. CCC/36, London: IEA Coal Research; 2000:1-36.
    [137] Hoffart A, Seames W, Kozliak E, et al. A two-step acid Hg removal process for pulverized coal. Fuel, 2006,85: 1166-73.
    [138] Dronen LC, Moore AE, Kozliak El, et al. An assessment of acid wash and bioleaching pre-treating options to remove Hg from coal. Fuel, 2004,83:181-6
    [139] Ohki A, Sagayama K, Tanamachi S,et al. Release behavior of Hg during mild pyrolysis of coals and nitric acid-treated coals. Powder Technol, 2008,180:30-4
    [140] Iwashita A, Tanamachi S, Nakajima T, et al. Removal of Hg from coal by mild pyrolysis and leaching behavior of Hg. Fuel, 2004,83:631-8
    [141] Raask E. Mineral impurities in coal combustion, Behavior, Problems and Remedial Measures. New York; 1985.
    [142] Bloom NS, Preus E, Katon J, et al. Selective extractions to assess the biogeochemically relevant fractionation of inorganic mercury in sediments and soils. Analy Chim Acta 2003,479:233-48
    [143] Biester H, Scholz C. Determination of Hg binding forms in contaminated soils: Hg pyrolysis versus sequential extractions. Environ Sci Technol, 1997,31: 233-239
    [144] Constance L. Senior. Behavior of Mercury in Air Pollution Control Devices on Coal-Fired Utility Boilers. Power Production in the 21st Century: Impacts of Fuel Quality and Operations,Engineering Foundation Conference,Snowbird,UT,October 28-November 2,2001.
    [145]Mamani-Paco R.M.,Helble J.J.,Bench-scale examination of mercury oxidation under non-Isothermal conditions,Annual Air & Waste Management Association Meeting,June,Utah,2000
    [146]Gaspar J.A.,Widmer N.C,Cole J.A.,and Seeker W.R.,Proceedings of the International Conference on Incineration and Thermal Treatment Technologies,1997,661-665
    [147]Helble.J.J.,Qiu,J.,Sterling,R.,4~(th) Trace Element Workshop,2003,p65.
    [148]Widmer,N.C.,West,J.,and Cole,J.A.,Proc.A & WMA Annual Conference,2000
    [149]Niksa S.,Helble J.J.,Fujiwara N.Kinetic modeling of homogeneous mercury oxidation:the importance of NO and H_2O in predicting oxidation in coal-derived systems,Environ.Sci.Yechnol.2001,35:3701-3706
    [150]李寒旭,Pan Weiping,Jennifer Keene.TGA-FTIR联用技术对煤燃烧过程中氯的析出特性的研究.煤炭转化,1996,19(3):40-50
    [151]Granite,E.J.;Pennline,H.W.;Hargis,R.A.Sorbents for mercury removal form flue gas.[2009]http://www.osti.gov/bridge/servlets/purl/1165-JmEHyv/webviewable/1165.P DE
    [152]Yang,Z.P.,Ci,L.J.,Bur,J.A.,et al.Experimental Observation of an Extremely Dark Material Made By a Low-Density Nanotube Array.NANO LETTERS.2008,8:446-451
    [153]Ebbesen,T.W.,Lezec,H.J.,Hiura,H.,et al.Electrical conductivity of individual carbon nanotubes.Nature,1996,382:54-56
    [154]Cheng,C.M.,Lin,H.T.,Wang,Q.,et al.Experiences in Long-Term Evaluation of Mercury Emission Monitoring Systems.Energy & Fuels,2008,22:3040-3049
    [155]Liu,Y.Ph.D.Thesis,Department of Chemical and Material Engineering,University of Alberta,2008.
    [156]Cui,X.,Wei,W.,Harrower,C.,et al.Effect of catalyst particle interspacing on the growth of millimeter-scale carbon nanotube arrays by catalytic chemical vapor deposition.Carbon,2009,47:3441-3451
    [157] Liu, Y., Kelly, D., Yang, H., et al. Novel regenerable sorbent for mercury capture from flue gases of coal fired-power plant, Environ. Sci. Technol., 2008, 42:6205-6210
    [158] Li, Y.H., Lee, C.W., B.K. Gullett. Importance of activated carbon s oxygen surface functional groups on elemental mercury adsorption. Fuel, 2003, 82:451-457
    [159] Guo, X,Zheng, C. G., Xu M. H. Characterization of mercury emissions from a coal-fired power plant. Energy Fuels, 2007, 21: 898-902
    [160] Dong, J., Xu, Z., Kuznicki, S. M. Mercury Removal from Flue Gases by Novel Regenerable Magnetic Nanocomposite Sorbents. Environ. Sci. Technol. 2009, 43: 3266-3271
    [161] Sabri, Y.M., Ippolito, S.J., Tardio,J., et al. Mercury diffusion in gold and silver thin film electrodes on quartz crystal microbalance sensors. Sensor. Actuat. B, 2009, 137: 246-252
    [162] Dietz, C., Madrid, Y., Camara, C.,et al. The Capillary Cold Trap as a Suitable Instrument for Mercury Speciation by Volatilization, Cryogenic Trapping, and Gas Chromatography Coupled with Atomic Absorption Spectrometry. Anal. Chem. 2000,72:4178-4184
    [163] Alemozafar, A. R., Madix, R. J. Surface reorganization accompanying the formation of sulfite and sulfate by reaction of sulfur dioxide with oxygen on Ag(111). THE JOURNAL OF CHEMICAL PHYSICS, 2005, 122:214718.
    [164] Akolekar, D. B., Bhargava, S. K. Adsorption of NO and CO on silver-exchanged microporous materials. Journal of Molecular Catalysis A: Chemical , 2000, 157:199-206
    [165] Varghese, O. K., Kichamber, P. D., Gong, D., et al. Gas sensing characteristics of multi-wall carbon nanotubes. Sens. Actuators, B, 2001, 81: 32-41

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700