热压过程中刨花板甲醛散发量的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
人造板是目前室内装修中应用最为广泛的木质复合材料,生产中绝大多数用脲醛树脂作为胶粘剂。脲醛树脂人造板在生产和使用过程中会对生产车间和室内环境造成甲醛污染,严重威胁人类身体健康。因此,研究人造板的甲醛散发规律、散发机理对防治室内空气污染具有重要意义。本论文以脲醛树脂刨花板为研究对象,从生产原料、生产工艺入手,系统地研究了工艺参数对刨花板热压过程中甲醛散发量、成板甲醛后续散发规律以及板子物理力学性能的影响,分析了三者变化规律的反应机理和内在联系,主要成果如下:
     (1)设计了一套收集人造板热压过程中甲醛散发量的装置,密封性良好,可重复性好,可充分收集人造板热压过程中的甲醛散发总量。
     (2)板密度从500 kg/m3到800 kg/m3,热压过程中单位质量刨花板的甲醛散发量降低了32.4%,总体呈降低趋势,板密度对干燥器法甲醛散发影响不显著。
     (3)刨花含水率从2%到8%,热压过程中的甲醛散发量增加了175.3%,甲醛干燥器值增加了49.8%,都近似呈对数增长。
     (4)施胶量从6%到12%,热压过程中的甲醛散发量增加了81.7%,甲醛干燥器值增加了63.3%。都近似呈直线上升。
     (5)热压温度从160℃到180℃,热压过程中的甲醛散发量增加了32.5%,近似呈曲线上升趋势;甲醛干燥器值下降了41.3%,近似呈直线下降趋势。
     (6)热压时间从15 s/mm到30 s/mm,热压过程中的甲醛散发量增加了240.1%,近似呈指数趋势增加;甲醛干燥器值下降了48.2%,近似呈乘幂趋势降低。
     (7)人造板在热压过程中造成的甲醛污染非常严重,除了未施胶刨花板的甲醛MAC值小于国家规定的甲醛最高容许浓度(MAC) 0.5 mg/m3外,其他大部分都远远超标,所有板子MAC的均值为2.27 mg/m3,是国家规定限值的4.54倍。
     (8)随着工艺参数的改变,刨花板的物理力学性能与热压过程中的甲醛散发规律存在一定的相关性。
     (9)通过优化生产工艺参数,可使甲醛在热压时充分参与固化反应,从而得到物理力学性能较好同时兼顾热压过程甲醛散发量低、成板后甲醛散发也低的平衡点。
Urea-formaldehyde adhesive (UF) was widely used in the wood-based panel boards produced, which were usually applied in the furniture products and interior decoration. The workplace and indoor air pollution produced when the UF-boards were in the processing, also in the productions using, which is very harmful to the human health. Therefore, the studies on formaldehyde emission rule and the releasing mechanism had great significances on the preventing of indoor air pollution. This dissertation was focused on formaldehyde emission about particleboard which was manufactured by UF resin. The formaldehyde emission would be different when the raw materials and production technology were changed. The effects of technological parameters on the formaldehyde emission during particleboard hot-pressing, the desiccator's value, the main physical and mechanical properties were investigated. The changed rules of the three inner links and the reaction mechanism were also analyzed systemically. The main results were as follows:
     (1) A set of collecting device for formaldehyde emission during hot-pressing of wood-based panel was designed with good sealing performance and repeatability, which ensured that formaldehyde was fully collected during hot-pressing process. So far, it hadn't been seeing in the reports of china.
     (2) The value of unit mass of the particleboard formaldehyde emission during hot-pressing was reduced when the particleboard's density increasing, the formaldehyde emission value was reduced by 32.4% when the density increased from 500kg/m3 to 800kg/m3, however, the influence of density by the desiccator method was unobviously.
     (3) Along with the increasing of particleboard's moisture content, both the value of formaldehyde emission during hot-pressing and the desiccator value had a logarithmic growth. When the moisture content of particles increased from 2% to 8%, the formaldehyde emission value during hot-pressing increased by 175.3%, and the desiccator value increased by 49.8%.
     (4) Both the formaldehyde emission value during hot-pressing and the desiccator value increased linearly with the content of adhesive increased. The formaldehyde emission value during hot-pressing increased 81.7% and the desiccator value increased by 63.3% when the content of adhesive increased from 6% to 12%.
     (5) With the hot-pressing temperature increasing, the formaldehyde emission value during hot-pressing presented a curve upward trend, but the desiccator value decreased linearly. The formaldehyde emission value during hot-pressing increased 32.5% and the desiccator value dropped 41.3% when the hot-pressing temperature increased from 160℃to 180℃.
     (6) With the extension of hot-pressing time, the value of formaldehyde emission during hot-pressing presents an exponential upward trend, but the desiccator value decreased in a power function trend. The formaldehyde emission value during hot-pressing increased by 240.1% and the desiccator value dropped by 48.2%
     (7) When the hot-pressing time increased from 15 s/mm to 30 s/mm. The formaldehyde pollution was serious during wood-based panel's hot-pressing. In the experiments, all of the particleboard's maximum allowable concentration (MAC) value during hot-pressing was much more than the occupational exposure limits (MAC:0.05mg/m3) except the particleboard without resin. The MAC mean value of all the boards was 2.27mg/m3, which was 4.54 times of the national occupational exposure limits.
     (8) Along with the changes of technological parameters, the main physical mechanical properties and the formaldehyde emission value during hot-pressing had certain correlations.
     (9) If the process parameters were optimized, the formaldehyde could be reacted much more in the curing during hot-pressing, so the better-quality boards with good physical mechanical properties and lower formaldehyde emission both during hot-pressing and after the production were probably produced.
引文
[1]贾力.建材中有机挥发物的释放机理及实验研究[D].北京交通大学硕士学位论文,2008.
    [2]曾海东.干建材挥发性有机污染物散发特性及测试方法研究[D].清华大学硕士学位论文,2004.
    [3]谢振伟VOCs液态标准物质的研制及室内空气中TVOC分析方法研究[D].四川大学硕士学位论文,2006.
    [4]C.Haymore, R. Odom. Economic Effects of Poor IAQ [J]. EPA Journal.1993.19(4):28-29.
    [5]张舵.全球近一半人遭受室内空气污染.人民日报.2004-12-30.
    [6]石碧清,刘湘,闾振华.室内甲醛污染现状及其防治对策[J].环境科学与技术,2007,30(6):49-54
    [7]张建,江京辉,周瑾.人造板产品中的甲醛对室内环境的影响[J].木材加工机械.2003,6:9-11.
    [8]吴忠标,赵伟荣.室内空气污染及净化技术[M].北京:化学工业出版社,2005.
    [9]张士成,唐朝发,杜洪双等.人造板甲醛释放量限值及测试方法的发展—甲醛释放量限值[J].林产工业,2005,32(6):51-52.
    [10]王维新等.室内装饰装修材料人造板极其制品中游离甲醛释放限量,国标GB18580-2001,国家技术监督局.2001.
    [11]夏志远.人造板产品游离甲醛问题的思考[J].人造板通讯,2001(2):27.
    [12]陆军.干燥器法测定甲醛释放量的影响因素探讨[J].人造板通讯,2004(1):10-11.
    [13]陆嘉宾,孙振伦,王立斌.对低游离甲醛人造板生产中几个问题的探讨[J].人造板通讯,2004(9):11-13.
    [14]李瑜.草木复合中纤板生物降醛法的机理与应用研究[D].南京林业大学硕士学位论文,2006.
    [15]梅长彤.大室法条件下人造板的甲醛散发量[J].南京林业大学学报,2001,25(5):49-51.
    [16]王瑞娟.木质复合材料中甲醛释放量测定方法的对比研究[D].北京林业大学硕士学位论文,2007.
    [17]周定国主编.人造板甲醛散发测试方法[M].北京:中国林业出版社,1996.
    [18]冒海燕.抽吸法测试人造板甲醛释放量的研究[D].南京林业大学硕士学位论文,2009.
    [19]赵临五,王春鹏.脲醛树脂胶黏剂[M].北京:化学工业出版社,2009.1,第二版.
    [20]李东光.脲醛树脂胶黏剂[M].北京:化学工业出版社,2002.7.
    [21]王雪梅,张显权,朱丽宾.简述刨花板中甲醛释放的机理及检测[J].林业机械与木工设备,2001,29(6):6-9.
    [22]王定选,周定国等.人造板和其它材料的甲醛散发[M].北京:中国林业出版社出版,1990.
    [23]韩书广,刘启明.改性脉醛树脂甲醛与尿素的摩尔比及其影响[J].南京林业大学学报(自然科学版),2002,(3):56-60.
    [24]陆军,张吉先,柴文森.人造板的甲醛释放及其控制措施的研究进展[J].林产工业,2003,30(6):12-14.
    [25]李光东.脲醛树脂胶粘剂[M].北京:化学工业出版社,2002.
    [26]蒋爆,王春鹏,刘奕等.低甲醛释放量脉醛树脂的制备与性能研究[J].林产化学与工业,2002,22(2):39-42.
    [27]徐红,张东翔.脲醛树脂改性工艺中酸度条件控制[J].中国胶粘剂,2002,11(4):21-23.
    [28]吴自强等.环境友好型木材胶粘剂的研究现状[J].中国胶黏剂,2004,13(6):53-56.
    [29]古绪鹏,孙翠红.人造板用脲醛树脂甲醛污染及低醛化途径[J].环境与健康杂志,2007,24(9):742-744.
    [30]朱丽滨,顾继友.低毒改性脲醛树脂胶粘剂的研究[J].林产工业,2003,30(3):30-32.
    [31]姜力夫等.低游离甲醛脲醛胶的合成[J].山东化工,2003,32(3):16-17.
    [32]张应军,孙满收.低毒脉醛树脂胶粘剂的研制[J].郑州轻工业学院学报(自然科学版),2002,17(4):17-19.
    [33]陆仁书.降低人造板甲醛释放量的措施[J].人造板通讯,2002,(6):12-14.
    [34]吴自强等.室内甲醛污染控制技术进展仁[J].建筑人造板,2000,(3):11-15.
    [35]顾丽莉,罗云,刘静等.低毒脉醛树脂的合成机理[J].中国胶粘剂,1999,7(5):19-22.
    [36]杜官本.缩聚条件对脲醛树脂结构的影响[J].粘接,2000,(1):12-16.
    [37]蒋煜,王春鹏,刘奕等,低甲醛释放量脲醛树脂的制备与性能研究[J].林产化学与工业,2002,22(2):39-42.
    [38]时君友,顾继友等.淀粉基水性高分子-异氰酸酯胶黏剂性能分析及生产性试验[J].生物质化学工程.2008,42(2):1-7.
    [39]吴自强等.环境友好型木材胶粘剂的研究现状[J].中国胶黏剂,2004,13(6):53-56.
    [40]张晶等.环保淀粉胶黏剂在木材上的应用[J].黑龙江生态工程职业学院学报.2009,22(1):53-55.
    [41]韩彦雪,张求慧,赵广杰,张天昊.大豆基胶黏剂改性的研究进展[J].大豆科学.2009,28(1):164-166.
    [42]陈天全,满天焕.甲醛及在人造板制造和使用中的控制[J].研究与开发,2006,2:21-26.
    [43]谭守侠,周定国.木材工业手册[M].北京:中国林业出版社,2007.
    [44]王子奇,何灵芝,陈广新等.影响刨花板甲醛释放及其释放量的因素[J].林业科技.2002,27(6):37-41.
    [45]E.罗发埃尔著,王定选、周定国译.人造板和其它材料的甲醛散发[M].北京:中国林业出版社,1990.
    [46]赵临五,王春鹏.脲醛树脂胶黏剂——制备、配方、分析与应用[M].北京:化学工业出版社,2009.1.
    [47]杨斌峰,吕时铎,陈觉如等.脲醛树脂的结构对其刨花板甲醛释放量的影响[J].林产工业,1992,5:7-11
    [48]金春德,宋剑刚,郑春贤,杜春贵,李延军.无胶纤维板生产工艺的研究[J].林产工业.2007,34(5):18-21.
    [49]于再君.人造板工业中甲醛释放量的控制[J].龙岩学院学报,2006,24(3):38.
    [50]王福春,陈福梅.浅谈降低人造板材中甲醛释放量的有效途径[J].黑龙江生态工程职业学院学报,2007,20(5):48-49.
    [51]于晓芳,王喜明等.人造板中游离甲醛污染的防治措施[J].人造板通讯,2002,10:12-13.
    [52]徐信武,梅长彤,周晓燕,周定国.人造板氨气真空法降醛处理的理论与技术[J].木材加工机械,2007,(3):16-18.
    [53]钱小瑜.“十二五”我国人造板将再铸辉煌[J].木材工业,2011,25(1):1-5.
    [54]Brian M. Peek, Bruce M. Broline, Steven C. Tenhaeff, Jeffrey J. Wolcott, Tom C. Holloway, Steve Wendler, Gregg Hale.Development of a Standardized Laboratory VOC Test Method to Measure Hotpress Emissions.
    [55]杨瑾瑾,傅万四,于文吉.人造板热压过程中板坯内部温度、气压、含水率研究现状与分析[J].木材加工机械,2008,3:34-37.
    [56]Chul B Park, Amir H. Behravesh, Ronald D. Venter. Low density microcellular foam processing in extrusion using CO2.Polymer Engineering And Sciense,1998,38(11):1812-1823.
    [57]Bledzki AK, Gassan J, Zhang W. Impact properties of natural fiber-reinforced epoxy foams. J Cell Plast, 1999,35:550-562.
    [58]王雪梅,张显权,朱丽宾.简述刨花板中甲醛释放的机理及检测[J].林业机械与木工设 备,2001,29(6):6-9.
    [59]Sc hafer M. and Roffael E. On the formaldehyde release of wood. Holz als Roh-und Werkstoff,2000, 58:259-264.
    [60]梅长彤,周定国.几种木材甲醛释放量的测定[J].林产工业,1998,(2):34-35.
    [61]韩广萍,李庆章,程万里.影响人造板释放甲醛的因素[J],建筑人造板,1996,3:27-29.
    [62]AndrzejK,Bledzki,WenyangZhang,AndrisChate.Natural-fibre-reinforcedpolyurethanemicrofoams.Compo sites Science and Technology,2001,61:2405-2411.
    [63]张德荣,张双保,于志明等.刨花板生产中热压工艺理论的研究[J].木材加工机械.2004,2:13-15.
    [64]GBZ 2.1-2007工作场所有害因素职业接触限值-化学有害因素[S].
    [65]GB16297-1996,大气污染物综合排放标准[S].
    [66]周定国.刨花板甲醛散发的研究[D].南京林业大学博士学位论文,1996.
    [67]杨帆译.实验室定向刨花板压制过程中释放甲醛和其它有机物的研究[J].人造板通讯,1998.(06):7-9.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700