糖皮质激素对海马神经元影响的体外研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
糖皮质激素为应激激素,正常浓度下对于维持机体正常的生长发育以及生理和应激状态下内环境的稳定都是极为重要的,然而在各种应激损伤条件下糖皮质激素过度分泌,血浆中高水平的糖皮质激素持续作用可以透过血脑屏障进入脑组织,危害中枢神经系统。在中枢神经系统中,海马富含糖皮质激素受体,因此海马极易受到循环中过量的糖皮质激素的攻击,使其受到损伤。这就给临床上广泛应用糖皮质激素如地塞米松、甲基强的松龙治疗脑水肿提出了质疑,大量的研究结果也支持糖皮质激素会诱导海马神经细胞损伤的推测,但是体内实验受到机体各种复杂因素的影响难以了解糖皮质激素在体内确切的作用机制,体外实验又是从各自不同的实验目的出发,提供了零散的、不是十分系统的佐证,因此对于高浓度的糖皮质激素诱导海马神经元的认识仍然还处于初期的推测阶段,尚缺乏足够的实验证据和系统的研究报告。为此,如能阐明高浓度糖皮质激素对海马神经细胞损伤的过程及机制,将为糖皮质激素在脑水肿治疗中的合理应用提供帮助。
     目的
     在体外实验条件下,观察不同浓度的地塞米松对海马神经细胞的损伤。从细胞形态学、细胞酶学以及细胞凋亡相关蛋白的表达等方面进行分析,从而加深对糖皮质激素对海马神经细胞的损伤过程及机理的了解,同时对bFGF保护糖皮质激素诱导的海马神经元损伤作用及机制进行初步探讨,为临床上合理的应用糖皮质激素治疗脑水肿提供帮助。
    
     糖皮质漱素对海马神经元形响的体外研究 医学硕士学位论文
     方 法
     本研究采用星形胶质细胞条件培养液对大鼠海马神经元原代培养进行改
     良,较成功的获得了相对单一的海马神经细胞培养物(神经细胞纯度达到95%
     左右,可见单神经细胞网络)。在此基础上,对不同浓度的地塞米松对海马神
     经细胞的损伤,应用倒置相差显微镜、Typan Blue染色及 My’检测对不同浓
     度的地塞米松对海马神经细胞损伤进行细胞形态学及细胞酶学分析;应用
     TUNEL方法原位检测不同浓度的地塞米松作用于海马神经细胞后细胞的凋
     亡情况,观察其凋亡特征;结合免疫组织化学染色对不同浓度的地塞米松作
     用于海马神经细胞后凋亡相关蛋白Bcl-2及Bax表达的改变进行观察;同时
     分组比较观察bFGF对糖皮质激素诱导海马神经细胞凋亡的影响。
     结 果
     1.应用星形胶质细胞条件培养液改良的大鼠海马神经元培养方法较成功的
     获得了相对单一的神经细胞培养物(神经细胞纯度可达95%左右,可见单神
     经细胞网络)。与未用AS条件培养液组相比胶质细胞明显减少,细胞的生理
     凋亡明显受抑制,细胞数目增多,细胞胞体增大、突起变长增粗,明显增加
     海马神经元细胞活性。培养第7天细胞中NSE阳性率为95%左右,GFAP阳
     性率3%左右。细胞生长到12l 天细胞最为丰满,胞体折光性强,有明显的
     立体感,神经突起多而粗大,网络稠密。这种改良方法是观察单一海马神经
     细胞的各项指标的理想培养方法。
     2.地塞米松对海马神经元的损伤。
     O)倒置相差显微镜观察显示经不同浓度的 DEX处理24 ’J、时后,10‘\ IO‘SM
     组神经细胞的形态与对照组相比无明显异常,10十10\10’M组部分神经
     细胞的突起变短,胞膜皱缩,折光性减弱,体积缩小,并有细胞出现核固缩
     有时可见核碎裂。
     仅)My检测发现海马神经元经不同浓度 DEX处理 24小时后,10-\ 10”SM
     组经 M17’检测 OD值与对照组相比差别无显著性意义;而 10”乙 10\ 10”’M
     天津医科大学2
    
     糖皮质溢素对海马神经元影响的体外研究 医学硕士学位论文
     组经 NlT检测 OD值与对照组相比差别有显著性意义;10刁、10\ 10”’M组
     经MTT检测OD值各组相比差别无显著性意义。
     ()IUN’--L检测显示正常培养的海马神经元TUNE染色偶见阳性核神经元
     (凋亡率为丑03士1.71%)凋亡细胞形态各异,细胞皱缩,核固缩呈棕黄色。
     DEX浓度为10久10“M组海马神经元凋亡细胞与对照组相比无明显增加;
     DEX浓度为 10\ 10人 10“’M组海马神经元凋亡细胞与对照组相比有明显
     增加;DEX浓度为 10“组海马神经元凋亡细胞与 10’M组相比进一步增加。
     10“’M组海马神经元凋亡细胞与川“M组相比无明显增加。
     K)台盼蓝染色显示不同浓度的DEX作用24小时后,在视野中各组着色神
     经元均较少(<5%),而且随着DEX浓度的着色神经元有所增加,但各组之
     间无显著性差别。
     (5)免疫组织化学凋亡相关蛋白scl-2、Bax染色发现DEX处理组10-’、10”
Glucocorticoids (GCs) are hormones released during stress, which are very important to maintain both normal growth and development of bodies and internal homeostasis in physiological conditions and stress. But in plasma sustained GCs of high concentrations from oversecretion during stress can make their access to brain through blood-brain barrier and endanger central nervous system(CNS). In CNS, hippocampus, a structure possessing high concentrations of receptors for GCs, is likely to be victims of excessive circulating GCs, that put forward a question of how to use GCs such as dexamethasone and methlprednisolone to alleviate cerebral edema. Many evidence support GCs can induce damages of hippocampal neurons, but the complexity of in vivo environment makes it difficult for the identification of the exact mechanism of effects of GCs, and unsystematic in vitro experiments aiming at different destinations are impossible to present enough evidence. At this point, the knowledge about effects of GCs on hippocampal
     neurons is still at the preliminary stage. There has been virtually no enough proofs and systematic reports. If the proccess and mechanism of insults of high-concentration GCs to hippocampal neurons can be expounded, it can present theoretical reference to proper application of GCs to cerebral edema.
    Objective
    The objectives of our experiments were to observe insults from dexamethsones of different concentrations on hippocampal neurons. Employing analysis of celluar morphology, celluar emzymology and celluar apoptosis-related proteins, these studies can make the insulting proccess and mechanism of GCs on hippocampal neurons understood more deeply. At the same time, these studies were to explore the protective mechanism of bFGF to insults of hippocampal
    
    
    neurons induced by GCs. Our experiments will provide a reasonable reference to GCs on cerebral edema.
    Methods
    In these studies, astrocyte(AS)-conditioned medium was employed to optimize primary culture of rat hippocampal neurons to obtain relatively pure culture(the ratio of neurons could reach 95% and single neural network could be observed). Microscopy, typan blue staining and MTT were used to evaluate changes of celluar morphology and celluar enzymology induced by dexamethasone of defferent concentrations. TUNEL was used to examine celluar apoptosis of hippocampal neurons induced by dexamethasone of different concentrations. By immunohistochemistry staining, the changes of apoptosis-related protein expression of Bcl-2 and Bax were examined. And at last, the effects of bFGF on apoptosis induced by dexamethasones were compared among groups.
    Results
    1. We obtained relatively pure culture through optimizing primary culture of rat hippocampal neurons with AS-conditioned medium. Compared with control, glial cells decreased significantly, the physiological apoptosis was inhibited markedly, and the quantities of cells increased, the bodies enlarged, the processes lengthened and widen. All these phenomena supported the viability of neurons were enhanced. The positive ratio of NSE in cells on day 7 in culture was about 95%, and that of GFAP was about 3%. By day 12-14, the cells reached their best states to exhibit strong refraction and third dimension and the wide neural processes formed dense network. This optimal method is a perfect one to observe various indexes of single hippocampal neuron.
    2. The injuries of dexamethasone to hippocampal neurons
    (1) After incubation with dexamethasone of different concentrations for 24 hours, the cell morphology of 10~9,10~8M groups did not change compared with control by microscopy. InlO"7, lO^lO^M groups, the processes shorten, the membranes shrinked, the refraction weakened, the bodies became smaller, and some cells presented karyopyknosis and karyorrhexis.
    (2) Incubation with dexamethasone of different concentrations for 24 hours, OD values from MTT of 10~9,10~*M groups did not vary markedly compared with control. In 10~7,10"*,10~5M groups, OD values varied significantly, while OD values between thr
引文
1. Sapolsky RM. Why stress is bad for your brain? Science, 1996,273: 749-750.
    2. Starkman MM, Gebarski SS, Berent S, et al. Hippocampal formation volume, memory dysfunction, and cortisol levels in paeients with Cushing's sydrome. Biol psychiatry, 1992,32: 756-765.
    3. Sheline YL, Wang PW, Gado MH, et al. Hippocampal atrophy in recurrent major depression. Proc Natl A cad Sci, 1996,93: 3908-3913.
    4. McEwen BS, Gould E. Adrenal steroid influnces on the survival of hippocampal neurons. Biochem Pharmacol, 1990,40(11) : 2393-2402.
    5. Landfield PW, Eldridge JC, Evolving aspects of the glucocorticoid hypotheses of brain aging: hormone modulation of neuronal calcium homeostasis, Neurobiol Aging, 1994, 15:579-588.
    6. Sapolsky RM, Zola-morgan S, Sqyuire LR. Inhibition of glucocorticoid secretion by the hippocampal form in the primate. J Neurosci, 1991,11(12) : 3695-3704.
    7. Jacobscen L, Sapolsky RM. The role of the hippocampus in feedback regulation of the Hypothalamic-Pituitary-Adrenocortical axis. Endocrine Reviews, 1991,12: 118-134.
    8. Canny BJ. Hippocampal glucocorticoid receptors and the regulation of ACTH secretion. Mol Cell Endocrinol, 1990,71: C35.
    9. Cameron HA, Gould E. Adult neurogenesis is regulated by adrenal steroids in the dentate gyrus. Neuroscience, 1994, 61(2) : 203-209.
    10. Reul JM, De Kloet ER. Two receptors systems for corticosterone in rat brain: microdistribution and differential occupation. Endocrinotogy, 1985,117:2505-2011.
    11. Coirini H, Margarinos AM, De Nicola AF, et al. Further studies of brain aldosterone binding sites employing new mineralocorticoid and glucocoticoid receptor markers in vitro. Brain Res, 1985,361:212-218.
    12. Ratka A, Sutanto W, Btoemers M, et al. On the role of brain mieralocorticoid(Type I) and glucoeorticokl (Type Ⅱ) receptors in neuroendocrine regulation. Neuroendocrinology. 1989,50:117-122.
    13. Siesjo BK. Cell damage ing the brain: a speculative synthesis, J Cereb Blood Metab, 1981,1:155-157.
    14. McEwen B, de Kloet E, Rostene W. Adrenal steroid receptors and actions in the nervous system. Phys Rev, 1986,66:1121-1189.
    15. Pavlide C, Ogawa S, McEwen BS. Role of adrenal steroid mineralocorticoid and glucoeorticokl receptors on long-term potentiation in the CA1 field of hippoeampal slices. Brain Res, 1996, 738: 229-235.
    16. Pavlides C, Watanabe Y, Magari-nos AM, McEwen BS. Opposing roles of tape I and type Ⅱ adrenal steroid receptors in hippocampal long-term potentiation. Neuroscience, 1995, 68(2) : 387-396.
    
    
    17. Sapolsky RM, Palsinelli W. Glucocorticoids potentiate ischemic injury to neurons:therapeutic implications. Science, 1985,229: 1397-1400.
    18. White-Gbadebo D, Hamm RJ. Chronci corticosterone treatment potentiates deficits following traumatic brain injury in rats: Implications for aging.J Neurotrauma, 1993, 10: 297-306.
    19. Sapolsky RM, A possible mechanism for glucocorticoids toxicity in the hippocampus: Increased neuronal vulnerability to metabolic insults. J Neurosurg, 1985, 5:1228-1232.
    20. Rey M, Carlier E, Talmi M, et al. Corticosterone effect on long-term potentitation in hippocampal slices. Neuroendocrinology,1994,60(1) : 36-41.
    21. McEwen BS. Stress and hippocampal plasticity. Amru Rev Neurosci, 1999,22:105-112.
    22. Sapolsky,R.Glucocorticoid toxicity in the hippocampus: in vitro demonstration. Brain Res, 1988, 453:367-371.
    23. Packan DR, Sapolsky RM. Glucocorticoid endangerment of the hippocampus: tissue,steroid and receptor specificity. Neuroendocrinology, 1990,51:613-618.
    24. Zhou JZ, Zhang YX. Neurotoxic effect of corticosterone on primary cultured Mppocampal cell. Chin J Neurosci, 1998,14(1) : 11-15.
    25. Quervain DJ, Roozendaal B, McGaugh JL. Stress and glucocorticoids impair retrieval of long-term spatial memory. Nature, 1998,394(6695) : 787-790.
    26. Sapolsky R, Vno H, Rebert C, et al. Hippocampal damage associated with prolong glucocorticoid exposure in primates. J Neurosci, 1990,16:2897-2904.
    27. Pang Z, James WG. Mechanisms of cell death induced by the mitochondrial toxin β-nitropropionic acid: acute excitoxic necrosis and delayed apoptosis. J Neurosci, 1997, 17(9) : 3061-3073.
    28. Bonfoce E, Krainc D, Ankarcrona M, et al. Apoptosis and necrosis: two distinct events induced, respectively, by mild and increase insults with NMDA or NO in cortical culture. Proc Natl Acad Sci USA, 1995, 92:7162-7166.
    29. Majno G, Joris I. Apoptosis, oncosis and necrosis. Am J Pathol, 1995, 146: 3-15.
    30. Mathieu J, Ferlat S, Ferrand D, et al. DNA fragmentation induced in lymphocytes by gamma irradiation or dexamethsone: inhibition by diethyldithiocarbamate (DTC), potentiated by zinc. Biochem Mol Biol Int, 1995,36: 733-744.
    31. Thompson EB. Apoptosis and steriod hormones. Mol Endocrinol, 1994,8: 665-673.
    32. Carbonari M, Cibati M, Frorilli M. Measurement of apoptotic cells in peripheral blood. Cytometry, 1995,22: 161-167.
    33. Reagan LP, Mcewen BS. Controversies surrouding glucocoticoid-mediale cell death in hippocampus. Chem Neuroanat, 1997, 13:149-167.
    34. Hassan AHS, Rosenstiel PV, Patchev VK, et al. Exacerbation of apoptosis in the dentate gyms of the aged rat by dexamethasone and the protective rote of corticosterone. 1996, 140: 43-52.
    35. Zhang L, Kokkonen G, Roth GS.Identificationof neuronal programmed cell death in situ in the striatum of normal adult rat brain and its relationship to neuronal death during aging. Brain Res, 1995, 667: 177-179.
    
    
    36. Lowy MT, Gauff L, Yamamoto BK, Adrenalectomy attenuates stress-mduced elevations in extracellular glutamate concentrations in the hippocampus. J Neurochem, 1993,61(5) : 1957-1960.
    37. Stein-Behren B, Mattson MP, Chang I, et al. Stress exacerbates neuron loss and cytoskeletal pathology in the hippocampus. J Neurosci, 1994,14(9) : 5373-5380.
    38. Lawrence MS, Sapolsky RM. Glucocorticoids accelerate ATP loss and cytoskeletal pathology in the hrppocampal neurons. Brain Res, 1994,646: 303-306.
    39. Homer H, Packan D, Sapolsky RM. Glucocorticoids inhibit glucose transport in cultured hippocampal neurons and glia. Neuroendocrinology, 1990,52: 57-64.
    40. Zhou JZ, Zhang YX. Neurotoxic effect of corticosterone on primary cultured hippocampal cell. Chin J Neurosci, 1998,14(1) ; 11-15.
    41. Wang XM, Zhu JL, Huang Y. Toxic effect of high concentration of glucocorticoid on hippocampus. Chin J Ana, 1996,19(1) : 48-50.
    42. Florkiewicz RZ, Sommer A. Human basic fibroblast growth factor gene encodes four polypeptides: three initiate translation from non-AUG codons. Proc Nan Acad Sci USA, 1989,86:3978-3981.
    43. Gospodarowicz D, Chen J, Liu GM, et al. Isolation of brain fibroblast growth factor by heparin-Sepharose affinity chromatography: identity with pituitary fibroblast growth factor. Proc Nad Acad Sci U S A, 1984,81(22) : 6963-7.
    44. Woodward WR, Nishi R, Meshul CK, et al. Nuclear and cytoplasmic localization of basic fibroblast growth factor in astrocytes and CA2 hippocampal neurons. The Journal of Neuroscience, 1992, 1: 142-152.
    45. Himmelseher S, Pfenninger E, Geo-rgieff M. Effect of basic fibroblast growth factor on bippocampal neurons after axonal injury. J Trauma, 1997,42: 659-664.
    46. Ramirez JJ, Finklestein SP, Keller J, et al. Basic fibroblast growth factor enhances axonal sprouting after cortical injury in rats. Neuroreport, 1999, 26: 1201-1204.
    47. Guluma KZ, Saatman KE, Brown A, et al. Sequential pharmacotherap with magnesium chloride and basic fibroblast growth factor after fluid percussion brain injury results in less neuromotor efficacy than that achieved with magnesium alon. J Neurotraoma, 1999, 16:311-321.
    48. Liu X, Zhu XZ. Roles of p53, c-Myc, Bcl-2, Bax and caspases in glutamate-induced neuronal apoptosis and the possible neuroprotective mechanism of basic fibroblast growth factor. Brain Res Mol Brain Res, 1999, 71(2) : 210-6.
    49. Liu X, Zhu XZ, Roles of p53, c-Myc, Bcl-2, Bax and caspases in serum deprivation-induced neuronal apoptosis: a possible neuroprotective mechanism of basic fibroblast growth factor. Neuroreport, 1999 ,10(14) : 3087-91.
    50. Desire L, Courtois Y, Jeanny JC, Endogenous and exogenous fibroblast growth factor 2 support survival of chick retinal neurons by control of neuronal neuronal bcl-xL and bcl-2 expression through a fibroblast berowth factor receptor 1-and ERK-dependent palhway. J Neurochem, 2000, 75(1) : 151-163.
    51. Marini AM, Spiga G, Mocchetti I. Toward the development of strategies to prevent
    
    ischemic neuronal injury. Ann N Y Acad Sci, 1997, 825: 209-219.
    52. Cuevas P, Carceller F, Munoz-Willery I, et al. Intravenous FGF penetrates the BBB and protects hippoeampal neurons against ischemia-reperfusion injury. Surg Neurol, 1998, 49: 77-84.
    53. Lee TT, Green BA, Dietrich WD, et al. Neuroprotective effects of bFGF following spinal cord contusion injury in the rat. J Neurotrauma, 1999, 16: 347-356.
    54. Mark P, Bincheng. Growth factors protect neurons against exictotoxic/ischemia damage by stabilizing calcium homeostasos,Stabidizirg calcium homeostasis. Stroke, 1993, 24: 138-445.
    55.姜树军,匡培根.成纤维细胞生长因子与脑缺血.国外医学脑血管疾病分册,1996,4:203-205.
    56. Albrecht PJ, Dahl JP, Stoltzfus OK, et al. Ciliary neurotrophic factor activates spinal cord astroetes, stimulating their production and release of fibroblast growth factor-2, to increase motor neuron survival. Exp Neurol, 2002, 173(1): 46-62.
    57. Banker GA. Rat hippocampal neurons in dispersed cell culture. Brain Research, 1977, 126: 397-425.
    58. Wijsman JH, Jonker RR, Keijzer R,et al. Anew method to detect apoptosis in paraffin section: In site end-labeling of fragmented DNA. J Histochem Cytochem, 1993, 41: 7-12.
    59. Harrison RG. Observations on the living developing nerve fibers. Anat Res, 1907, 1: 116-121.
    60.方健秋,赵天德,高福云等.用微环境小室培养相对单一的海马原代神经细胞.中日友好医院学报,1995,9(3):131-133.
    61.江凌晓,封志纯.神经细胞原代培养及某些物质对其的影响.国外医学儿科学分册,1998,25(3):124-1278.
    62.杨燕玲,郭勇.适于电生理研究的新生大鼠神经细胞简易培养方法.解剖科学进展,1998,4(3):272-273.
    63. Jasodhara R. Daniel A, et al. Proliferation,differentiation,and long-term culture of primary hippocampal neurons. Proe.Natl.Acad.Sci. 1993, 90: 3602-3606.
    64.洪庆涛,唐一鹏.新生大鼠大脑皮层神经细胞的体外原代培养.神经解剖学杂志,1994,10(3):259-262.
    65.华明,吴希如.大鼠胚胎大脑皮层神经细胞原代分离培养方法.北京医科大学学报,1986,18(4):288-191.
    66. Letoumeau P C.Possibie roles for cell-to-substratum adhesion in neuronal morphogenesis.Dev Biol,1975,44:77
    67. Yavin E,Yavin Z.Attachment and culture of dissociated cells from rat embryo cerebral hemispheres on polytysine-coated surface.J Cell Biol,1974,62:540
    68.丁爱石,王福庄.新生大鼠海马神经元在无血清培养液中的生长特性.细胞生物学杂志,1993,15(2):88-92.
    69. Ohgoh M, Kimura M, Ogura H, et al. Apoptotic cell death of cultured cerebral cortical neurons induced by withdrawl of astroglial trophic support. Experiment Neurology, 1998,
    
    149: 51-63.
    70. Pataky DM, Borisoff JF, Fernandes KJ, et al. Fifaroblast growth factor treatment produces differential effects on survival and neurite outgrowth from identified bulbospinal neurons in vitro. Esp Neurol, 2000,163(2) : 357-72.
    71. Tanaka J, Toku K, Zhang B, et al. Astrocytes prevent neuronal death induced by reactive oxygen and nitrogen species. Glia, 1999,28(2) : 85-96.
    72. Wang XF, Cynader MS. Effects of astrocytes on neuronal attachment and survival shown in a serum-free co-culture system. Brain Res Brain Res Protoc, 1999,4(2) : 209-16.
    73. Merlio JP, Ernfors P, Jaber M, et al. Molecular cloning of rat trkC and distribution of cells expressing messenger RNAs for members of the trk family in the central nervous system. Neuroscience, 1992,51: 513-532.
    74. Tranque P, Naftolin F, Robbins R. Differential regulation of astrocyte plasminogen activators by insulin-like growth factor-I and epidermal growth factor. Endocrinology, 1994,134(6) : 2606-13.
    75. Wang XF, Cynader MS. Pyruvate released by astrocytes protects neurons from copper-catalyzed cysteine neurotoxicity. J Neurosci, 2001,21(10) : 3322-31.
    76. Mitoma J, Furuya S, Hirabayashi Y. A novel metabolic communication between neurons and astrocytes: non-essential amino acid L-serine released from astrocytes is essential for developing hippocampal neurons. Neurosci Res, 1998,30(2) : 195-199.
    77. Koops A, Kappler J, Junghans U, et al. Cultured astrocytes express biglycan, a chondroitin/dermatan sulfate proteoglycan supporting the survival of neocortical neurons. Brain Res Mol Brain Res, 1996; 41: 65-73.
    78. Hall ED. The neuroprotective pharmacology of methlprednisotone. J Neurosurg, 1992, 76: 13-22.
    79. Ildan F, Polat S, Oner A, et al. The effect of the treatment of high-dose methylprednisolone on Na+-K+/Mg2+ ATPase activity and lipid peroxidation and ultrastructural findings following cerebral contusion in rat. Surg Neurol, 1995, 44(6) : 573-580.
    80. Sapolsky RM. Glucocorticoids and hippocampal damage. TINS, 1987,10(9) : 346-349.
    81. Lam AM, Winn HR, Cullen BF, et al. Hyperglycemia and neurologic outcome in patients with head injury. J Neurosurg, 1991,75: 545-551.
    82. Cooper PR, Moody S, Clark, et al. Dexamethasone and severe head injury. A prospective double-blind study. J Neurosurg, 1979,51: 307-316.
    83. Shapira YrArtru A,Yadid G,et al.MethylprednisoIone dose not decrease eicosanoid level or edema in brain tissue or inprove neurological outcome following headtrauma in rats. J Anesth Anal, 1992,75:238-244.
    84. Wang XM, Zhu JL, Huang Y. Toxic effect of high concentration of glucocorticoid on hippocampus. Chin J Anatomy, 1996, 19(1) : 48-51.
    85. Watanabe Y, Gould E,McEwen BS.Stress-induced atrophy of apical dendrites of hippocampal CA3 neurons. Brain Research, 1992,588: 341-345.
    86. Zhou JZ, Zhang YX. Neurotoxic effect of corticosterone on primary cultured
    
    hippocampal cell. Chin J Neurosci, 1998,14(1) : 11-15.
    87. McEwen BS, Sapolsky RM.Stress and cognitive function. Curr Opin Neurobiol, 1995, 5: 205-216.
    88. Encio IJ, Detera-Wadleigh SD. The genomic structure of the human glucocorticoid receptor. J Biol Chem, 1991,266(11) : 7182-7188.
    89. Buttgereit F, Buttgereit GR. A new hypothesis of modular glucocorticoid actions-Steroid treatment of rheumatic diseases revisited. Arthritis Rheum, 1998,41:761-766.
    90. YoussefPP, Haynes DR, Triantafillou S et al. Effects of pulse methylprednisolone on inflammatory mediators in peripheral blood, synovia! fluid and synovial membrane in rheumatoid arthritis. Arthritis Rheum, 1997,40:1400-1405.
    91. McEwen BS, Dekliet ER, William R. Adrenal steroid receptors and actions in the nervous system. Physiological Rev, 1986,66(4) : 1121-1175.
    92. Sloviter RS, Dean E, Neubort S. Adrenalectomy-induced granule cell degeneration in the rat hippocampal dentate gyms: characterization of an in vivo model of controlled neuronal death. J Comp Neurol, 1993,330: 324-336.
    93. Magari SA, McEwen BS. Stress-induced atrophy of apical CA3neurons: involvement of glucocorticoid secretion and excitatory amino acid receptors. Neuroscience, 1995, 69(1) : 89-98.
    94. McEwen BS. Corticosteroids and hippocampal plasticity. Ann New York Acad Sci, 1994, 746:134-142.
    95. Li Y, Chopp M, Jiang N, et al. In situ detection of DNA fragmentation after focal xerebral ischemia in mice. Mol Brain Res, 1995,28: 164-168.
    96. Anna Y, Olu TB, Sapolsky RM. Glucocorticoid exacerbate insult-induced declines in metabolism in selectively vulnerable hippocampal cell fields. Brain Res, 2000, 870: 109-117.
    97. Virgin C,Packan HD, Tombaugh G, et al.Glucocorticoids inhibit glucose transport and glutamate up take in hippocampal astrocytes for glucocorticoid neurotoxicity. J Neurochem,1991,57:1422-1430
    98. Packan DR, Sapolsky RM. Glucocorticoids endengerment of the hippocampus: tissue, steroid and receptor specificity. Neuroendocrinology, 1990,51: 613-620.
    99. Moghaddam B. Stress preferentially increases extraneuronal levels of excitatory amino acid in the prefrontal comparison to hippocampus and basal ganglia. J Neurochemistry, 1993,60:1650-1657.
    100. Jeansok JK, Kenneth SY. Stress:metaplastic effect in the hippocampus. TINS, 1998, 21: 505-509.
    101. Greenlund LJ, Deckwerth TL, Johnson EM. Superoxide dismutase delays neuronal apoptosis:a role for reactive oxygen apecies in programmed cell death. Neuron, 1995, 14:303-315.
    102. Raghupathi R, Fernandez SC, Murai H, et al. Bcl-2 overexpression attenuates cortical cell loss after traumatic brain injury in transgenic mice. J Cereb Blood Flow Metab, 1998, 18: 1259-1269.
    
    
    103. Marzo I, Brenner C, Zamzami N, et al. Bax and adenme nucleotide translocator coorperate in the mitochondria control of apoptosis. Science, 1998,281: 2027-2030.
    104. Yang J, Liu XS, Bhalla, et al. Prevention of apoptosis by Bcl-2:release of cytochrome c from mitochondria blocked. Science, 1997,275: 1129-1132.
    105. Kluck RM, Bossy-Wetzel E, Green DR, et al. The release of cytochrome from mitochondria: A primary site for Bcl-2 regulation of apoptosis. Science, 1997, 275: 1132-1136.
    106. Antonsson B, Conti F, Ciavatta A, et al. Inhibition of Bax channel-forming activity by Bcl-2. Science,1997,277(18) : 370-372.
    107. Green DR, Apoptosis pathways: the road to ruin. Cell, 1999, 94: 695-698.
    108. MacManus JP, Linnik MD. Gene expression induced by cerebral ischemia: an apoptotic perspective. J Cereb Flow and Metab, 1997, 17: 815-832.
    109. Almeida OF, Conde GL, Crochemore C, et al. Subtle shifts in the ratio between pro-and antiapoptotic molecules after activation of corticosteroid receptors decide neuronal fate. FASEB J, 2000, 14: 779-790.
    110. Kaya SS, Mahmood A, Yavuz E, et al. Apoptosis amd expression of p53-response proteins and cyclin D1 after cortical impact in rat brain. Brain Res, 1999,818(1) : 23-33.
    111. Schinder AF, Closon EC, Sphzer NC, et al. Mitochondrial dyfunction is a primary event in glutamate neurotoxicity. J Neurosci, 1996, 16: 6125-6133.
    112. Schulz JB, Weller M, Moskowitz MA. Caspases as treatment targets in stroke and neurodegenerative diseases. Ann Neurol, 1999,45: 421-429.
    113. Cregan SP, Maclautin JG, Craig CG, et al. Bax-dependent caspase-3 activiation is a key determinant in p53 induced apoptosis in neurons. J Neurosci, 1999,19(18) :7860-7869.
    114. Scully JL, Otten U. Neurotrophin expression modulated by glucocorticoids and oestrogen inimmortalized hippocampal neurons. Brain Res Mol Brain Res, 1995, 31(1-2) : 158-64.
    115. Schaaf MJ, De Kloet ER, Vreugdenhil E. Corticosterone effects on BDNF expression in the hippocampus. Implications formemory formation. Stress, 2000,3(3) : 201-8.
    116. Niu H, Hinkle DA, Wise PM. Dexamethasone regulates basic fibroblast growth factor, nerve growth factor and S100beta expression in cultured hippocampal astrocytes. Brain Res Mol Brain Res, 1997 ,51(1-2) : 97-105.
    117. Korada S, Zheng W, Basilico C,et al. Fibroblast growth factor 2 is necessary for the growth of glutamate projection neurons in the anterior neocortex. J Neurosci, 2002 ,22(3) : 863-75.
    118. Abe K, Saito H. Effects of basic fibroblast growth factor on central nervous system functions. Pharmacol Res, 2001,43(4) : 307-12.
    119. Muthukrishnan L,Warder E, Mcneil PL. Basic fibroblast growth factor is efficiently released from a cytolsolic storage site through plasma membrane disruptions of endothelial cells. J Cell Physiol, 1991,148: 1-16.
    120. Gannoun-zaki L, Fieri I, Badet J,et al.Internalization of basic fibroblast growth factor by Chinese hamster lung fibroblast cells: involvement of several pathways. Exp Cell Res,
    
    1991,197:272-276.
    121. Maeve AC, Give NS. Heparin but not other proteoglycans potentiates the mitogenic effects of FGF-2 on mesencecephalic precursor cells. Exp Neurol, 1998,152:1-10.
    122. Le R, Esquenazi S. Astrocytes mediate cerebral cortical neuronal axon and dendrite growth, in part, by release of fibroblast growth factor. Neurol Res, 2002,24(1) : 81-92.
    123. Cheng Y, Black IB, DiCicco-Bloom E. Hippocampal granule neuron production and population size are regulated by levels of bFGF. Eur J Neurosci, 2002,15(1) : 3-12.
    124. Szebenyi G, Dent EW, Callaway JL,et al. Fibroblast growth factor-2 promotes axon branching of cortical neurons by influencing morphology and behavior of the primary growth cone. J Neurosci, 2001,21(11) : 3932-41.
    125. Yang SY, Cui JZ. Expression of the bFGFgene in mild and more severe head injury in the rat J Neurosurg, 1998, 89: 297-302.
    126. Mitsumoto Y, Watanabe A, Miyauchi T, et al. Stimulation of the regrowth of MPP+-damaged dopaminergic fibers by the treatment of mesencephalic cultures with basigin. J Neural Transm., 2001,108(10) : 1127-34.
    127. Yamada H, Yamada E, Ando A, et al. Fibroblast growth factor-2 decreases hyperoxia-induced photoreceptor cell death in mice. Am J Pathol, 2001 ,159(3) : 1113-20.
    128. Ay I, Sugunori H, Finklestein SP. Intravenous basic fibroblast growth factor (bFGF) decreases DNA fragmentation and prevents downregulation of Bcl-2 expression in the ischemic brain following middle cerebral artery occlusion in rats. Brain Res Mol Brain Res, 2001 ,87(1) 71-80.
    129. Zhou JZ, Zheng JQ, Zhang YX, et al. Corticosterone impairs cultured hippocampal neurons and facilitates Ca2+ influx through voltage-dependent CA2+ channel. Acta Phannacol Sin, 2000,21(2) : 156-160.
    130. Matsuda S,Saito H,Nishiyama N.Effects of basic fibroblast growth factor on neurons cultured from various regions of postnatal rat brain. Brain Res.1990, 520: 310-316.
    131. Sapolsky RM, Krey LC, McEwen BS. Prolonged glucocorticoid exposure reduces hippocampal neuron number:implication for aging. J Neurosci, 1985, 5:1222-1227.
    132. Wang Y, Wang JX, Huang HD, et al. Effects of dexamethasone on intracellular Ca2+ in its sensitive cells from neonatal mouse hippocampus and cultured cortical neuroglioeytes. Acta Pham Sin, 1999,20(2) :179-184.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700