可重构机械系统变形原理与调控方法的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
现代机电产品正在变得越来越复杂,这使得机电产品在对功能和性能要求越来越高的同时,对其可靠性和安全性的要求也越来越高。本文以提高机械系统的可靠性和安全性的方法与技术的研究为主线,对可重构机械系统的变形原理、重构方法及其DSP控制的实现技术进行了较为深入系统的研究。
     可调机构通过对传统机构杆长调节、铰链点的调节来完成多个任务,解决了传统机构任务单一性的问题,同时也为机构的重构容错提供了一条新思路。本文结合球面五杆机构来对可调机构的容错重构进行了研究,由于球面五杆机构具有两个自由度,所以要有确定运动就必须有两个输入,冗余的自由度使球面五杆机构的容错重构成为可能。本文对球面五杆机构容错重构前后的机构进行了仿真分析,并给出了故障重构为球面四杆机构的容错算法,并进行了容错重构后的仿真分析,通过调节铰链点的位置与杆长达到了重构后仍能完成重构前任务的目的。
     设计了一种具有容错能力的探测车,该探测车可通过冗余关节的重构来实现探测车的变形,可采用轮、腿相结合的策略来完成不同路面状况下的行走任务,并且可以通过重构变形来达到车身宽窄变换以及整车高低变换以适应不同的探测环境。讨论了轮式和腿式两种故障情况下的容错策略,推导了相关的容错重构算法,在ADAMS平台中建立了虚拟样机并进行仿真试验,验证了轮式和腿式两种容错重构规划的可行性,并为探测车的控制提供了理论基础。
     提出了一种机械系统可重构的混联机床,研究了混联机床机械系统的容错重构策略,提出了基于机构类型演化的机械系统重构容错新方法,给出了球铰演化为虎克铰的实施方案。导出了故障和非故障状态下混联机床的位置反解算法,在ADAMS平台中进行了仿真分析和研究,得到了容错重构前后自旋角的变化曲线以及各驱动腿的长度和工作台位移的变化曲线,仿真结果表明,利用混联机床的机械系统可重构性能可以提高混联机床的可靠性和安全性。
     研究了基于DSP的机械系统重构策略的控制实现方法,针对可重构机械系统中的直流伺服电机的控制,研究了其PID控制实现方法,以混联机床的一条驱动腿的轨迹跟踪为例,进行了PID控制的仿真和实验研究。
Nowadays, electro-Mechanical-Products (EMPs) are getting more and more complex, this brings the growing demands on function and performance with simultaneously growing requirements on reliability and safety for EMPs. This paper takes research on technology and methodology for enhancing reliability and safety of mechanical system as the main clue, transformation principle, reconfiguration method and DSP control technology for reconfigurable mechanical system are studied deeply and systemly in this paper.
     Adjustable mechanism can realize several tasks by changing length of mechanism bars or position of joints, it presents a new idea for fault-tolerant reconfiguration for mechanism. A fault-tolerant reconfigurable spherical five-bar mechanism is studied in this paper. Because it has two DOFs, this spherical five-bar mechanism offers possibility for fault-tolerant. Simulation analysis is conducted for both normal state and fault state, fault-tolerant algorithm for the spherical five-bar mechanism transforming into spherical four-bar mechanism is deduced. Simulation analysis for spherical mechanism after reconfiguration is done, the spherical four-bar mechanism can continue complete the pre-defined task of the spherical five-bar mechanism by changing the length of bars or position of joints.
    
     A new wheel-leg type rover is proposed and designed in this paper, this rover can change its structure by reconfiguration of its redundancy joints, and it can move with wheel-mode as well as leg-mode under different road conditions, by changing configuration, the body of the rover can transform in both width direction and height direction in order to adapt different environment. The fault-tolerant strategies for wheel-mode and leg-mode of the rover are discussed, and related reconfiguration algorithms are deduced, virtual prototype is built on ADAMS desktop, and simulation experiments are carried out.
     A novel hybrid machine tool(HMT) with mechanical system reconfigurable ability is present in this paper, fault-tolerant reconfiguration strategies for HMTs are studied, a novel fault-tolerant reconfiguration approach for mechanical system faults of hybrid machine tools is proposed based on mechanism type transformation, implementation strategy for spherical joints transforming into huke joints is given. Inverse displacement analysis algorithms are deduced for both fault and non-fault status of HMTs, simulation analysis and research are conducted based on ADAMS desktop, self-rotation angle curve as well as joint space trajectory curves for before and after reconfiguration are obtained, simulation results show that the safety and reliability of HMTs can be enhanced utilizing the reconfiguration characteristics of mechanical system
     Implementation method for mechanical system reconfiguration based on DSP controller is studied in this paper. Aiming at DC servo motor control of reconfigurable mechanical system, a DSP based PID controller is presented, taking the trajectory tracking control of one driving leg of HMTs as an example, related simulation and experiment researches are conducted.
引文
[1] http://www.ccf.org.cn/web/resource/yangxiaozong.pdf
    [2]李欢,覃征,焦建民.可重构空间故障容错机械臂设计.机械设计,2004, 21(3) :33-36
    [3] E. Wu, M. Diftler, J. Hwang. A fault tolerant joint drive system for the Space Shuttle remote manipulator system. Proceedings of 1991 IEEE International Conference on Robotics and Automation, 1991, 3:2504-2509
    [4] Schmitz Donald, Khosla Pradeep, Kanade Takeo. The CMU reconfigurable modular manipulaor system. Proceedings of the international Symposium and Exposition on Robots, 1988: 473-488
    [5] K. H. Wurst. The conception and construction of a modular robot system. Proceedings of the 16th International Symposium on industrial Robotics, ISIR, 1986: 37-44
    [6] Fukuda Toshio, Nakagawa Seiya. Dynamically reconfigurable robotic system. Proceedings IEEE conference on Robotics and Automation, 1988, 3: 1581-1586
    [7] Y. Kawauchi, M. Inaba, T. Fukuda. Dynamically reconfigurable intelligent system of cellular robotic system (CEBOT) with entropy min/max hybrid algorithm. Proceedings IEEE conference on Robotics and Automation, 1994: 464 -469
    [8] T. Fukuda, M. Buss, Y. Kawauchi. Communication System of Cellular Robot: CEBOT. Proc. of IEEE Int. Conf. on Industrial Electronics Control and Instrumentation, 1989: 634-639
    [9] G. Chirikjian. Kinematics of a metamorphic robotic system. Proceedings IEEE conference on Robotics and Automation, 1994: 449-455
    [10] M. Yim, D. G. Duff, K. D. Roufas. Walk on the Wild Side [modular robot motion]. IEEE Robotics and Automation Magazine, 2002,9:49-53
    [11] A. Castano, Shen Wei-Min, P. Will. CONRO: Towards deployable robots with inter-robot metamorphic capabilities. Autonomous Robots Journal, 2000,3 (8):309-324
    [12] H. B. Brown, J. M. Vande Weghe, C. A. Bererton. Millibot Trains for Enhanced Mobility. IEEE/ASME Transactions on Mechatronics, 2002,7:452-461
    [13] S. Murata, E. Yoshida, A. Kamimura. M-Tran: Self-Reconfigurable Modular Robotic System. IEEE/ASME Transactions on Mechatronics, 2002,7(4):431-441
    [14]王卫忠,赵杰,高永生,等.基于螺旋理论的可重构机器人动力学分析.机械工程学报, 2008, 44(11):99-104
    [15]王明辉,马书根,李斌,等.可重构机器人体系结构及模块化控制系统的实现.仪器仪表学报, 2006,27(10):1178-1182
    [16]徐威,孙斌,王石刚.具有容错性的重构机器人变形原理.宇航学报,2004,25 (3):305-311
    [17]赵杰,赵剑,张玉华.一种模块化重构机器人的设计与实现.机床与液压,2007,35 (3):51-53
    [18]费燕琼,夏振兴,夏平.重构机器人的基本模块结构设计与分析.中国机械工程,2007,18(9):1085-1087
    [19]夏振兴.模块化重构机器人结构设计及自变形方法的研究:[硕士学位论文].上海:上海交通大学,2007
    [20]唐见兵.模块化可重组机器人运动规划方法研究:[硕士学位论文].长沙:国防科学技术大学,2003
    [21]马建军.模块化可重组机器人自动对接技术研究:[硕士学位论文].长沙:国防科学技术大学,2004
    [22] K. Sty, W. M. Shen, P. M. Will. A simple approach to the control of locomotion in self-reconfigurable robots. Robotics and Autonomous Systems, 2003, 44:191-199
    [23]李瑞琴,邹慧君.可控机构的分类及应用.机械设计与研究,2002,18(4):17-19
    [24]邹慧君,蓝兆辉,王石刚.机构学研究现状、发展趋势和应用前景.机械工程学报,1999,35(5):1-4
    [25] B. HONG, A. G. ERDMAN. A method for adjustable planar and spherical four-bar linkage synthesis. Journal of Mechanical Design, 2005, 127(3): 456-463
    [26]杨忠福,徐礼矩.球面六杆机构轨迹再现综合.四川大学学报(工程科学版), 2001,32(3):45-50
    [27] C. M. Gosselin, F. Caron. Two degree-of-freedom spherical orienting device. United States Patent, Patent No. 596691, 1999
    [28]张立杰,牛跃伟,李永泉,等.基于工作空间的球面5R并联机器人机构设计.机械工程学报,2007, 43(2): 55-58
    [29]王进戈,张均富,王强,等.球面五杆机构的运动学与性能分析.机械工程学报,2008,44(8):34-38
    [30]张均富,徐礼矩,王杰.可调球面六杆机构轨迹综合.机械工程学报,2007,43(11):50-55
    [31] Richard Hooper, Dev Sreevijayan. Implementations of a four-level mechanical architecture for fault-tolerant robots. Reliablity Engineering and System Safety, 1996 , 53(3):237~246
    [32] Zack Butler, Keith Kotay. Generic Decentralized Control for a Class of Self-Reconfigurable Robots. Proceedings of the 2002 IEEE International Conference on Robotics and Automation, 2002:809~816
    [33] Akiya Kamimura, Haruhisa Kurokawa. Automatic Locomotion Pattern Generation for Modular Robots. Proceedings of the 2003 IEEE International Conference on Robotics and Automation, 2003:714~720
    [34]田娜,丁希仑,戴建生.一种新型的变结构轮/腿式探测车机构设计与分析.第十四届全国机构学学术研讨会暨第二届海峡两岸机构学学术交流会论文集,2004:268~270
    [35]张克涛,方跃法,房海蓉.基于变胞原理的一种探测车机构设计与分析.北京航空航天大学学报,2007,33(7):838~841
    [36] Dai J S, Rees J J. Mobility in metamorphic mechanisms of foldable/erectable kinds. Journal of Mechanical Design, 1999, 121(3):375-382
    [37]戴建生,丁希伦,邹慧君.变胞原理和变胞机构类型.机械工程学报,2005,41(6):7-10
    [38]李端玲,戴建生,张启先,等.基于构态变换的变胞机构结构综合.机械工程学报,2002,38(7):12-16
    [39] Dai J S, Zhang Q X. Metamorphic Mechanism and Their Configuration Models. Chinese Journal of Mechanical Engineering(English Edition), 2000,13(3): 212-218
    [40]张秀丽.四足机器人节律运动及环境适应性的生物控制研究:[博士学位论文].北京:清华大学,2004
    [41]范成建,熊光明,周明飞.MSC.ADAMS应用与提高.北京:机械工业出版社,2006,162-167
    [42]汪劲松,黄田.并联机床--机床行业面临的机遇与挑战.中国机械工程,1999,10(10):1103-1107
    [43] Z. M. Bi, S. Y. T. Lang. Kinematics and dynamic models of a tripod system with a passive leg. IEEE/ASME Transactions on Mechatronics, 2006,11(1):108-116
    [44]唐晓强,汪劲松,段广洪,等.新型并联机床作业空间与奇异性分析.中国机械工程, 2002,13(10):817-819
    [45]徐礼钜,范守文.基于混联机构的虚拟轴机床.中国发明专利,00120604, 2003-07-09
    [46]范守文,徐礼钜,甘泉.一种新型并联机床的最优轨迹规划.电子科技大学学报,2003,30(1):54-55
    [47] Notash Leila, Huang Li. On the Design of fault tolerant parallel manipulators. Mechanism and Machine Theory, 2003, 38(1): 85-101
    [48] R. Tinos, M. H. Terra, Berqerman Marcel. A fault tolerance framework for cooperative robotic manipulators. Control Engineering Practice, 2007, 15(5):615-625
    [49]范守文,黄洪钟,杨玻玻.机电产品的容错纠错设计系统及其基本框架研究.计算机集成制造系统, 2007,13(7): 1275-1281
    [50]韩安太,刘峙飞,黄海.DSP控制器原理及其在运动控制系统中的应用.北京:清华大学出版社,2005,11-21
    [51]潘晓晟,郝世勇.MATLAB电机仿真精华50例.北京:电子工业出版社.2007,47-48
    [52]刘和平,王维俊,江喻,等. TMS320LF240x DSP C语言开发应用.北京:北京航空航天大学出版社,2003,84-95

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700