用形态标记和分子标记研究蜡梅栽培种质的遗传多样性
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
蜡梅(Chimonanthus praecox)是蜡梅科蜡梅属落叶灌木,我国的传统观赏花木,具有重要的观赏价值和经济价值。在长达千年的栽培过程中,蜡梅产生了丰富的变异。但是,由于现有的蜡梅品种记载与描述缺乏统一的标准与规范,现有的品种分类体系中选用的性状及标准不一样,造成了品种的描述与记载相当混乱,同名异物及同物异名的现象时有发生,品种分类系统也有多个,这对蜡梅种质资源的利用、保存与交流带来极大的不方便。
     武汉和南京特别适宜蜡梅的栽培与生产,而且从目前来看,所收集保存的种质资源也最为丰富,本研究对武汉和南京两地栽培的蜡梅种质资源进行了多年的调查与观测,用形态标记、RAPD标记和ISSR标记对这些种质进行了遗传多样性的研究,探寻蜡梅种质形态性状的变异规律、宏观的形态性状与分子标记之间的关系,为蜡梅的种质(或品种)鉴定、品种分类提供依据。
     1、形态学研究
     (1)蜡梅形态性状的变异幅度分析、年份间及蜡梅种质间的双因素方差检验表明:花期、花蕾色、花色、花被片是否内含、是否波皱、是否反卷、中被片长、中被片长宽比、中被片面积、内被片长、内被片长宽比、内被片面积、中内被片数目和、雄蕊数目和内被片紫纹颜色深浅这15个性状在同一蜡梅种质内表现稳定,在不同蜡梅种质之间差异显著,在不同年份之间变化小,适合用于蜡梅的鉴定和性状评价。
     (2)供试的蜡梅种质在形态上具有丰富的多样性,8个数值性状的变异系数为9.54%-28.30%,最大值与最小值之间的差距一般都在2倍以上。15个性状的平均形态多样性指数为0.59。武汉蜡梅种质的形态多样性指数比南京的高。
     (3) Q型聚类把供试蜡梅种质分为绿蕾类、卷瓣类、大花波皱类、狭瓣磬口类、大花类、大花磬口类、小花类和小花狗牙类,各类别之间在形态上差异明显。内被片紫纹颜色深浅对蜡梅聚类起的作用不是特别重要。
     (4) R型聚类中反映出花蕾是否为绿色与花被片是否波皱有一定的相关性。
     (5)主成分分析中得到前8个主成分累积贡献率达86.37%,分别反映的是蜡梅花的大小、花被片形状、花被片是否波皱、花被片数目及是否内含、花被片是否反卷、花色及花蕾色、内被片颜色和花期。这些主成分基本上体现出了Q型聚类中的各类别的主要特点。主成分聚类的结果与Q型聚类的结果相关性极高(r=0.98),表明15个形态性状选择合理,它们之间的相关性没有对形态聚类产生太多影响。
     (6)Bayes判别证明了所选的15个性状都对蜡梅的归类有极强的辨别能力。Bayes判别公式可用于今后蜡梅种质的电子数据库管理。
     2、RAPD和ISSR研究
     (1)利用19个RAPD引物得到165条扩增带,其中105(63.63%)为多态性条带。利用11个ISSR引物扩增出115条带,其中90条(78.26%)为多态性条带。RAPD或ISSR标记都可以区分出所有供试蜡梅种质。
     (2) RAPD和ISSR的Nei指数分别为h_(RAPD)=0.21,h_(ISSR)=0.25,显示出蜡梅栽培种质有较高的遗传多样性,RAPD和ISSR均表明武汉蜡梅种质的遗传多样性比南京的高。
     (3) RAPD和ISSR的聚类、主坐标分析均表明,蜡梅的聚类与其地理来源有紧密联系。
     (4) RAPD表明有86.75%的遗传变异存在于蜡梅栽培群体内部,ISSR表明有85.68%的遗传变异存在于蜡梅栽培群体内部;仅有少数遗传变异存在于武汉蜡梅群体与南京蜡梅群体之间。进一步的AMOVA和HOMOVA分析表明,两个蜡梅群体之间的遗传差异显著(RAPD的Φ_(ST)=0.132,p<0.001:ISSR的Φ_(ST)=0.143,p<0.001)。
     (5) RAPD和ISSR都显示出花蕾是否为绿色这一形态性状与花被片是否波皱这一性状存在一定相关性。内被片紫纹深浅这一性状在分子聚类中不重要。
     (6)分子标记与形态标记的相关性较低,RAPD标记与ISSR标记有较密切的相关性。
     形态标记与分子标记的综合结果表明,蜡梅在长期栽培的过程中,产生了丰富的遗传多样性。由于各地选种的标准不同,可能在不同地域形成了独特的基因库,使蜡梅栽培种质产生了一定的遗传分化。在今后的蜡梅育种中,应有意识地选择来自于应不同地域的亲本,以充分利用现有种质的遗传多样性。
Wintersweet (Calycanthaceae, Chimonanthus praecox), a kind of perennial deciduous shrub, is an traditional ornamental flowering plant endemic to China and is of great ornamental and economic value in practice. During its long history of cultivation with more than one thousand years, abundant variations arose, producing a variety of germplasms. However, at present, due to lack of uniformed standards and rules for identification and documented description of wintersweet cultivars, various characters as well as different criteria for their assessment were employed in the current cultivar classification system, which caused considerable confusions in cultivar identification and description. Furthermore, because there existed several different cultivar classification systems, homonyms and synonyms had occurred from time to time, which brought a great deal of inconvenience in the exchange, utilization and conservation of germplasms resources of wintersweet.
     Wuhan and Nanjing are two regions especially suitable for the cultivation and production of wintersweet. In addition, for the'moment, these two regions appear to hold the most abundant germplasms resources of wintersweet germplasms. In this research, the germplasms resources of wintersweet cultivated in Wuhan and Nanjing were observed and surveyed for years, and as well the genetic diversity of these germplasms was investigated by means of morphological, RAPD and ISSR markers. The purposes of this research were to explore for the rules of variations in morphological traits of wintersweet germplasms, identify the potential relationships between morphological traits and molecular markers with respect to their utilizations in cultivar classification, and eventually provide a basis for germplasm or cultivar identification and classification for wintersweet.
     Firstly, morphological research was carded out.
     (1) Based on the analysis of extent of variation and two-way ANOVA among years and genotypes of wintersweet for morphological traits, it was demonstrated that the following 15 characters were suitable to be used for identification, description and evaluation in classification system in that they exhibited significant differences among different germplasm categories but gave stable performance within a category, with minor variance between years. The 15 characters include: flower period, flower color, flower bud color, flower urn-shaped or not, tepal margin crisped or not, the tip of the tepal recurved or not, medium tepal length, medium tepal length/width, area size of medium tepal, inner tepal length, inner tepal length/width, area size of inner tepal, number of medium and inner tepals, stamen number and color of inner tepal
     (2) There were rich diversities on morphology for the wintersweet germplasms under the study. The variation of 8 numerical characters ranged from 9.54% to 28.3%, with over 2 times difference between maximum and minimum values. The average morphological diversity index for the 15 characters reached 0.59, while the morphological diversity index for the genotypes from Wuhan was higher than that for the genotypes from Nanjing.
     (3) By means of Q cluster analysis, the wintersweet germplasms collected for this study were categorized into 8 groups, i. e. green flower bud group, big-sized and crisped tepal group, urn-shaped and narrow tepal group, big-sized group, big-sized and urn-shaped group, small-sized group and patens group. They were distinctive on morphology between each other.
     (4) It was shown by R cluster that there was some degree of correlation between the characters of flower bud (green or not) and tepal margin (crisped or not).
     (5) In principal component analysis, the first 8 principal components, from which the cumulative contribution reached 86.37%, corresponded to the following 8 characters, i. e. flower size, tepal shape, tepal margin crisped or not, number of tepals and flower urn-shaped or not, tepal recurved or not, flower and flower bud color, color of inner tepal and flower period. Moreover, these principal components basically reflected the major attributes of each of the groups generated in Q cluster analysis. The extremely high correlation (r=0.98) between the results produced by principal component analysis and Q cluster analysis showed that it was reasonable to choose the 15 morphological characters and the correlation among them had little effect on morphological clustering.
     (6) It was proven by Bayes discriminant analysis that the selected 15 characters had strong discriminative power for classification of wintersweet. The discriminant formulae can be used for the management of wintersweet germplasms in the future.
     Secondly, RAPD and ISSR molecular marker analyses were carried out.
     (1) 19 RAPD primers amplified 165 bands, of which 105 (63.63%) were polymorphic, while 11 ISSR primers generated 115 bands, with 90 (78.26%) polymorphic. Either ISSR or RAPD markers were sufficient to distinguish all the genotypes surveyed.
     (2) The Nei index calculated for RAPD or ISSR was h_RAPD=0.21 or h_ISSR=0.25 respectively, showing the relatively high level of genetic diversity existing in cultivated wintersweet germplasms. Meanwhile, both analyses indicated that wintersweet from Wuhan had higher genetic diversity compared to that from Nanjing.
     (3) Clustering and principal coordinate analysis using both RAPD and ISSR data revealed that the clustering pattern of wintersweet was tightly linked with their geographical origins.
     (4) Most of the genetic variation (86.75% with RAPD data and 85.68% with ISSR data) occurred among genotypes within each region, with the remaining existing between two regions. However, it was indicated by further AMOVA and HOMOVA analyses that the genetic difference between Wuhan and Nanjing groups was statistically significant (Φ_ST =0.132, p<0.001, with RAPD data;Φ_ST=0.143, p<0.001, with ISSR data).
     (5) In consistent with the result by the morphological analysis, both RAPD and ISSR analyses revealed that the two morphological characters, flower bud color (green or not) and tepal margin shape (crisped or not), had very close relationship.
     (6) By comparison, with respect to clustering, while the correlation between morphological and each molecular marker was low, two kinds of molecular markers were closely related.
     The comprehensive results by the above analyses demonstrated that abundant genetic diversity was produced during the long history of wintersweet cultivation. Due to the distinctive criteria adopted for breeding, the unique gene pools were gradually formed in different geographical regions, resulting in the genetic differentiation of cultivated wintersweet germplasms. Consequently, in the future breeding program, parental lines from diverse regions should be utilized on purpose so as to make the most of the genetic diversity reserved in the current germplasms.
引文
1 包满珠,陈俊愉.梅及其近缘种数量分类初探.园艺学报,1995,22:67-72
    2 陈功锡,龚双姣,李菁.蜡梅群落生态学研究与展望.西北植物学报,2005,25:1906-1912
    3 陈龙清,陈俊愉,郑用琏,鲁涤非.利用RAPD分析蜡梅自然居群的遗传变异.北京林业大学学报,1999,21:86-90
    4 陈龙清,陈俊愉.蜡梅属植物的形态、分布、分类及其应用.中国园林,1999,15:76-77
    5 陈龙清,鲁涤非,陈志远.湖北省野生蜡梅种质资源研究.中国园林,1990,6:24-26
    6 陈龙清,鲁涤非.蜡梅品种分类系统.北京林业大学学报,2001,23:107-108
    7 陈龙清,鲁涤非.蜡梅品种分类研究及武汉地区蜡梅品种调查.北京林业大学学报,1995,17:103-107
    8 陈龙清,赵凯歌,周明芹.蜡梅品种分类体系探讨.北京林业大学学报,2004,26:88-90
    9 陈志秀,丁宝章,赵天榜,宋留高,李振卿,刘春元,于水中,任素兰,周风鸣,焦书道.河南蜡梅属植物的研究.河南农业大学学报,1987,21:413-425
    10 陈志秀.蜡梅17个品种过氧化物同工酶的研究.植物研究,1995,15:403-411
    11 戴丰瑞,谢青芳,冯建灿.蜡梅开花结实习性研究.北京林业大学学报,1999,21:129-131
    12 方德秋.柑橘分类研究的过去、现在及未来.武汉植物学研究,1993,11:375-382
    13 冯菊恩,陈呋琦,陈奇相,冯钢.苏州蜡梅的调查.上海农业科技,1986,6:3-4
    14 冯菊恩,李瑞华,鲁涤非,陈呋琦.蜡梅.上海:上海文化出版社,1990,167-169
    15 何定萍,喻竺,胡应铬,马跃.重庆的蜡梅资源及其产业化开发利用.西南园艺,2005,33:32-33
    16 何天明,陈学森,高疆生,张大海,徐麟,吴燕.新疆栽培杏群体遗传结构的SSR分析.园艺学报,2006,33:809-812
    17 胡良平.现代统计学与SAS应用.北京:军事医学科学出版社,2000,364-375
    18 黄宏文.保育遗传学与植物遗传资源的策略.武汉植物学研究,1998,16:346-358
    19 黄家平,戴思兰.中国兰花品种数量分类初控.北京林业大学学报,1998,20:38-43
    20 贾继增,丁寿康,李月华,张辉,齐秀改.小麦新品系宛原50-2矮秆基因的染色体定位.作物学报,1994,20:297-301
    21 贾继增.分子标记种质资源鉴定和分子标记育种.中国农业科学,1996,29:1-10
    22 江婷,苑金鹏,程传格,李淑娥,王晓,陈立宗.腊梅花挥发油化学成分分析.光谱试验室,2005,22:1329-1332
    23 蒋英,李秉滔,李廷辉.中国植物志第三十卷(第二分册)蜡梅科.北京:科学出版社,1979,5-10
    24 金则新,李钧敏,顾奇萍.云锦杜鹃自然居群遗传多样性的ISSR分析.园艺学报,2006,33:1263-1267
    25 康明,黄宏文.湖北海棠的等位酶变异和遗传多样性研究.生物多样性,2002,10:376-385
    26 康明,叶其刚,黄宏文.植物迁地保护中的遗传风险.遗传,2005,27:160-166
    27 孔秋生,李锡香,向长萍,王海平,宋江萍.萝卜种质资源亲缘关系的RAPD分析.植物遗传资源学报,2004,5:156-160
    28 李根有,金水虎,楼炉焕,陈征海,孙孟军.浙江省野生蜡梅数量及群落学研究.北京林业大学学报,2003,25:30-33
    29 李惠成,张兵.蜡梅种子油化学成分研究.宝鸡文理学院学报(自然科学版),2006,26:43-45
    30 李晓东,黄宏文,李建强.孑遗植物水杉的遗传多样性研究.生物多样性,2003,11:100-108
    31 刘春迎,王莲英.芍药品种的数量分类研究.武汉植物学研究,1995,13:116-126
    32 刘洪谔,徐耀良,杨逢春.蜡梅科植物的开花与传粉.北京林业大学学报,1998,21:121-123
    33 刘家栋,翟兴礼,王启明.蜡梅扦插繁殖技术研究.河南大学学报(自然科学版),2001,31:87-88
    34 刘丽,蒋志宏,褚婕.中药腊梅花对正常小鼠免疫系统作用的研究.天津药学,2005,12:29
    35 马丹炜,王胜华,罗通,王文国,庄国庆,陈放.岩生植物金发草遗传多样性的ISSR与AFLP比较研究.应用与环境生物学报,2006,12:605-608
    36 马克平,钱迎倩,王晨.生物多样性研究的现状与发展趋势.科技导报,1995,1:27-30
    37 彭隽敏,孔青,徐乃瑜.云南小麦、西藏半野生小麦和普通小麦叶绿体DNA限制性内切酶图谱的研究.遗传,1995,17:4-6
    38 阮成江,何祯祥,周长芳.植物分子生态学.北京:化学工业出版社,2005,31
    39 盛爱武,郭维明,孙智华.蜡梅切花内源激素动态及衰老有关因子的研究.北京林业大学学报,1999,21:48-53
    40 盛爱武,郭维明.不同预处液及贮藏方式对蜡梅切花瓶插品质的影响.仲恺农业技术学院学报,2000,13:1-4
    41 王述民,曹永生,Redden R J,胡家蓬,Usher T.我国小豆种质资源形态多样性鉴定与分类研究.作物学报,2002,28:727-733
    42 王苏玲,齐莉莉,陈佩度,刘大钧.大赖草及近缘种染色体C-分带的研究.植物学报,1999,41:258-262
    43 王晓,李福伟,耿岩玲,孙庆雷,时新刚.腊梅花提取物抗氧化作用研究.食品科学,2005,26:518-520
    44 王支槐.腊梅开花过程中的生现变化.西南师范大学学报(自然科学版),1994,19:646-650
    45 吴昌陆,陈卫元,杜庆平.蜡梅枝芽特性的研究.园艺学报,1999,26:37-42
    46 吴昌陆,胡南珍.蜡梅花部形态和开花习性研究.园艺学报,1995,22:277-282
    47 吴建忠.蜡梅的生物学特性和新品种选育.北京林业大学学报,1992,14:107-111
    48 徐文跃,姜平,翁伟俭.腊梅止咳露的研制及临床应用.苏州医学院学报,2000,20:122-123
    49 杨康民,季瑞溶,陈连东,许锦林,邱莉萍,唐丽华.腊梅切花保鲜贮藏技术的初步研究.上海交通大学学报(农业科学版),1989,4:273-278
    50 余家林.农业多元试验统计.北京:北京农业大学出版社,1993,188-191
    51 张春英,戴思兰,张秀英.桃花种质资源的数量分类学研究.北京林业大学学报,1999,21:41-45
    52 张富民,葛颂.群体遗传学研究中的数据处理方法Ⅰ.RAPD的AMOVA分析.生物多样性,2002,10:438-444
    53 张继文,杨春平,潘朝,吴文君.蜡梅种子抑菌成分研究.西北植物学报,2005,25:2068-2071
    54 张莉俊,秦红梅,王敏,戴思兰.二月兰形态性状的变异分析.生物多样性,2005,13:535-545
    55 张礼凤,李伟,王彩洁,徐冉,戴海英.山东大豆种质资源形态多样性分析.植物遗传资源学报,2006,7:450-454
    56 张林,田兴范,张经芬.蜡梅组织培养和植株再生.植物生理学通讯,1990,3:42-43
    57 张灵南,沈雪华,陈忠英.腊梅品种、类型的花部性状编码鉴别法.上海农业科技,1988,1:7-8
    58 张宇和.观赏植物遗传多样性及品种分类浅谈.北京林业大学学报,1998,20:6-11
    59 张忠义,赵天榜,孙启水.鄢陵素心腊梅类品种的模糊聚类研究.河南农业大学学报,1990,24:310-318
    60 赵浩如,戢群芳,王明时,赵守训,王幼鹏.蜡梅根化学成分的研究.中国药科大学学报,1993,24:76-77
    61 赵建伟,黄燕文.蜡梅大孢子发生和雌配子体形成的研究.华中农业大学学报,1994a,13:204-206
    62 赵建伟,黄燕文.蜡梅小孢子发生和花粉形成的研究.武汉植物学研究,1994b,12:101-104
    63 赵凯歌,虞江,晋芳,陈龙清.蜡梅品种的数量分类和主成分分析.北京林业大学学报,2004,26:79-83
    64 赵天榜,陈志秀,高炳振,李振卿,宋留高.中国蜡梅.郑州:河南科学技术出版社,1993,4-11
    65 郑均宝,张玉满,王雪蕊,裴东.蜡梅的组织培养.北京林业大学学报,1995,17:108-113
    66 郑瑶青,朱芸,张瑞燕,孙亦梁,吴筑平,刘密新.蜡梅鲜花香气成分的研究.北京大学学报,1990,26:667-672
    67 钟扬,陈家宽,黄德世.数量分类的方法与程序.武汉:武汉大学出版社,1990,25-30
    68 周莉花,郝日明,吴建忠.蜡梅传粉生物学研究.园艺学报,2006,33:323-327
    69 周明芹,向林,陈龙清.蜡梅花香及花色色素成分的初步研究.北京林业大学学报,2007,29:22-25
    70 周颂东,何兴金,余岩,许介眉.葱属根茎组8种21居群植物的核型研究.植物分类学报,2007,45:207-216
    71 庄萍萍,马昭才,张志清,魏育明,郑有良.波斯小麦醇溶蛋白遗传多样性分析.广西植物,2007,27:231-235
    72 Akagi H, Yokozeki Y, lnagaki A, Fujimura T. Microsatellite DNA markers for rice chromosomes. Theor Appl Genet, 1996, 93:1071-1077
    73 Akkaya M S, Bhagwat A A, Cregan P B. Length polymorphisms of simple sequence repeat DNA in soybean. Genetics, 1992, 132:1131-1139
    74 Arnau G, Lallemand J, Bourgoin M. Fast and reliable strawberry cultivar identification using inter simple sequence repeat (ISSR) amplification. Euphytica, 2003, 129:69-79
    75 Bartish I V, Garkava L P, Rumpunen K, Nybom H. Phylogenetic relationships and differentiation among and within populations of Chaenomeles Lindl. (Rosaceae) estimated with RAPDs and isozymes. Theor Appl Genet, 2000, 101:554-563
    76 Belaj A, Satovic Z, Trujillo I, Rallo L. Genetic relationships of Spanish olive cultivars using RAPD markers. HortScience, 2004, 39:948-951
    77 Bennett S J, Hayward M D, Marshall D F. Morphological differentiation in four species of the genus Lolium. Genet Resour Crop Evol, 2000, 47:247-255.
    78 Bernardo R, Romero-Severson J, Ziegle J, Hauser J, Joe L, Hookstra G, Doerge R W. Parental contribution and coefficient of coancestry among maize inbreds: pedigree, RFLP, and SSR data. Theor Appl Genet, 2000, 100:552-556
    79 Bert P F, Charmet G, Sourdille P, Hayward M D, Balfourier F. A high-density molecular map for ryegrass (Lolium perenne) using AFLP markers. Theor Appl Genet, 1999, 99:445-452
    80 Blair M W, Panaud O, McCouch S R. Inter-simple sequence repeat (ISSR) amplification for analysis of microsatellite motif frequency and fingerprinting in rice (Oryza sativa L.). Theor Appl Genet, 1999, 98:780-792
    81 Botstein D, White R L, Skolnick M, Davis R W. Construction of a genetic linkage map in man using restriction fragment length polymorphisms. Am J Hum Genet, 1980, 32:314-31
    82 Brookes A J. The essence of SNPs. Gene, 1999, 234:177-186
    83 Bryan G J, Collins A J, Stephenson P, Orry A, Smith J B, Gale M D. Isolation and characterisation of microsatellites from hexaploid bread wheat. Theor Appl Genet, 1997, 94:557-563
    84 Cervera M T, Gusmao J, Steenackers M, PetemanJ, Storme V, Broeck A V, Montagu M V, Boerjan W. Identification of AFLP molecular markers for resistance against Melampsora larici-populina in Populus. Theor Appl Genet, 1996, 93:733-737
    85 Chemda D, Jiusheng D, Avigdor B, Ruth E B, Moshe G, Shmuel G Identifying lychee (Litchi chinensis Sonn.) cultivars and their genetic relationships using inter simple sequence repeat (ISSR) markers. J Am Soc Hortic Sci, 2003, 128:838-845
    86 Comes H P, Abbott R J. Random amplified polymorphic DNA (RAPD) and quantitative trait analyses across a major phylogeographical break in the Mediterranean ragwort Senecio gallicus Vill.(Asteraceae). Mol Ecol, 2000, 9:61-76
    87 Debener T, Mattiesch L. Construction of a genetic linkage map for roses using RAPD and AFLP markers. Theor Appl Genet, 1999, 99:891-899
    88 Debnath S C. An assessment of the genetic diversity within a collection of wild cranberry (Vaccinium macrocarpon Ait.) clones with RAPD-PCR. Genet Resour Crop Evol, 2007, 54:509-517
    89 Deng C H, Song G, Hu Y M. Rapid determination of volatile compounds emitted from Chimonanthus praecox flowers by HS-SPME-GC-MS. Z. Naturforsch, 2004, 59:636-640
    90 Depeiges A, Goubely C, Lenoir A, Cocherel S, Picard G, Raynal M, Grellet F, Delseny M. Identification of the most represented repeated motifs in Arabidopsis thaliana microsatellite loci. Theor Appl Genet, 1995, 91:160-168
    91 Eckardt N A. Cytoplasmic male sterility and fertility restoration. Plant Cell, 2006, 18:515-517
    92 Excoffier L, Smouse P E, Quattro J M. Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction site. Genetics, 1992,131:479-491
    93 Fang D Q, Roose M L, Krueger R R, Federici C T. Fingerprinting trifoliate orange germplasm accessions with isozymes, RFLPs, and inter-simple sequence repeat markers. Theor Appl Genet, 1997, 95:211-219
    94 Fang D Q, Roose M L. Identification of closely related citrus cultivars with inter-simple sequence repeat markers. TheorAppl Genet, 1997, 95:408-417
    95 Feng J, Zhang Q. Exploring the commercial value of winter-sweet. J Beijing Forestry Univ, 2001,23:102-104
    96 Friebe B, Jiang J, Tuleen N, Gill B S. Standard karyotype of Triticum umbellulatum and the characterization of derived chromosome addition and translocation lines in common wheat. Theor Appl Genet, 1995, 90:150-156
    97 Fufa H, Baenziger P S, Beecher B S, Dweikat I, Graybosch R A, Eskridge K M. Comparison of phenotypic and molecular marker-based classifications of hard red winter wheat cultivars. Euphytica, 2005, 145:133-146
    98 Galvan M Z, Bornet B, Balatti P A, Branchard M. Inter simple sequence repeat (ISSR) markers as a tool for the assessment of both genetic diversity and gene pool origin in common bean (Phaseolus vulgaris L.). Euphytica, 2003, 132:297-301
    99 Gauthier P, Gouesnard B, Dallard J, Redaelli R, Rebourg C, Charcosset A, Boyat A. RFLP diversity and relationships among traditional European maize populations. Theor Appl Genet, 2002, 105:91-99
    100 Ge S, Sang T, Lu B, Hong D. Rapid and reliable identification of rice genomes by RFLP analysis of PCR-amplified Adh genes. Genome, 2001,44:1136-1142
    101 Gemas V J V, Almadanim M C, Tenreiro R, Martins A, Fevereiro P. Genetic diversity in the olive tree (Olea europaea L. subsp. europaea) cultivated in Portugal revealed by RAPD and ISSR markers. Genet Resour Crop Evol, 2004, 51:501-511
    102 George N, Byrne M, Maslin B, Yan G J. Genetic differentiation among morphological variants of Acacia saligna (Mimosaceae). Tree Genet Genomes, 2006, 2:109-119
    103 Gill B S, Friebe B, Endo T R. Standard karyotype and nomenclature system for description of chromosome bands and structural aberrations in wheat (Triticum aestivum). Genome, 1991, 34:830-839
    104 Godwin I D, Aitken E A, Smith L W. Application of inter simple sequence repeat (ISSR) markers to plant genetics. Electrophoresis, 1997, 18:1524-1528
    105 Greene S L, Gritsenko M, Vandemark G. Relating morphologic and RAPD marker variation to collection site environment in wild populations of red clover (Trifolium pratense L.). Genet Resour Crop Evol, 2004, 51:643-653
    106 Gustine D L, Huff D R. Genetic variation within and among white clover populations from managed permanent pastures of the northeastern USA. Crop Sci, 1999, 39:524-530
    
    107 Guthridge K M, Dupal M P, Kolliker R, Jones E S, Smith K F, Forster J W. AFLP analysis of genetic diversity within and between populations of perennial ryegrass (Lolium perenne L.). Euphytica, 2001, 122:191-201
    108 Hagidimitriou M, Katsiotis A, Menexes G, Pontikis C, Loukas M. Genetic diversity of major Greek olive cultivars using molecular (AFLPs and RAPDs) markers and morphological traits. J Amer Soc Hort Sci, 2005, 130:211-217
    
    109 Hamrick J L, Godt M J W. Allozyme diversity in plant species. In: Brown A H D, Clegg M T, Kahler A L ans Weir B S (eds.). Plant population genetics, breeding and genetic resources. Sinauer Associates, Inc., Publ., 1989, Sunderland, 43-63
    110 Hansen M, Hallden C, Sall T. Error rates and polymorphism frequencies for three RAPD protocols. Plant Mol Biol Rep, 1998, 16:139-146
    111 Hasan M, Seyis F, Badani A G, Pons-Kuhnemann J, Friedt W, Luhs W, Snowdon R J. Analysis of genetic diversity in the Brassica napus L. gene pool using SSR markers. Genet Resour Crop Evol, 2006, 53:793-802
    112 Hashizume T, Shimamoto I, Hirai M. Construction of a linkage map and QTL analysis of horticultural traits for watermelon [Citrullus lanatus (THUNB.) MATSUM & NAKAI] using RAPD, RFLP and ISSR markers. Theor Appl Genet, 2003, 106:779-785
    113 Hedden P. The genes of the Green Revolution. Trends Genet, 2003, 19:5-9
    114 Huang H, Layne D R, Kubisiak T L. Molecular characterization of cultivated pawpaw (Asimina triloba) using RAPD markers. J Am Soc Hortic Sci, 2003, 128:85-93
    115 Ishikawa R, Yamanaka S, Fukuta Y, Chitrakon S, Bounphanousay C, Kanyavong K, Tang L H, NakamuraI, Sato T, Sato Y I. Genetic Erosion from Modern Varieties into Traditional Upland Rice Cultivars (Oryza sativa L.) in Northern Thailand. Genet Resour Crop Evol, 2006, 53:245-252
    116 Johns M A, Skroch P W, Nienhuis J, Hinrichsen P, Bascur G, Munoz-Schick C. Gene pool classification of common bean landraces from Chile based on RAPD and morphological data. Crop Sci, 1997, 37:605-613.
    117 Jones C J, Edwards K J, Castaglione S, Winfield M O, Sala F, Wiel C V D, Bredemeijer G, Vosman B, Matthes M, Daly S. Reproducibility of RAPD, AFLP and SSR markers in plants by a network of European laboratories. Mol Breed, 1997, 3:381-390
    118 Khanuja S P S, Shasany A K, Pawar A, Lal R K, Darokar M P, Naqvi A A, Rajkumar S, Sundaresan V, Lal N, Kumar S. Essential oil constituents and RAPD markers to establish species relationship in Cymbopogon Spreng. (Poaceae). Biochem Syst Ecol, 2005, 33:171-186
    119 Kijas J M H, Fowler J C S, Thomas M R. An evaluation of sequence tagged microsatellite site markers for genetic analysis within Citrus and related species. Genome, 1995, 38:349-355
    120 Komori T, Ohta S, Murai N, Takakura Y, Kuraya Y, Suzuki S, Hiei Y, Imaseki H, Nitta N. Map-based cloning of a fertility restorer gene, Rf-1, in rice (Oryza sativa L.). Plant J, 2004,37:315-325
    121 Kuroda Y, Sato Y I, Bounphanousay C, Kono Y, Tanaka K. Genetic structure of three Oryza AA genome species (O. rufipogon, O. nivara and O. sativa) as assessed by SSR analysis on the Vientiane Plain of Laos. Conserv Genet, 2007, 8:149-158
    122 La Rosa R, Angiolillo A, Guerrero C, Pellegrini M, Rallo L, Besnard G, Berville A, Martin A, Baldoni L. A first linkage map of olive (Olea europaea L.) cultivars using RAPD, AFLP, RFLP and SSR markers. Theor Appl Genet, 2003, 106:1273-1282
    123 Labra M, Miele M, Ledda B, Grassi F, Mazzei M, Sala F. Morphological characterization, essential oil composition and DNA genotyping of Ocimum basilicum L. cultivars. Plant Sci, 2004, 167:725-731
    124 Lagercrantz U, Ellegren H, Andersson L. The abundance of various polymorphic microsatellite motifs differs between plants and vertebrates. Nucleic Acids Res, 1993, 21:1111-1115
    125 Lamboy W F, Yu J, Forsline P L, Weeden N F. Partitioning of allozyme diversity in wild populations of Malus sieversii L. and implications for germplasm collection. J Am Soc Hortic Sci, 1996, 121:982-987
    126 Levi A, Thomas C E, Newman M, Reddy O U K, Zhang X, Xu Y. ISSR and AFLP markers differ among American watermelon cultivars with limited genetic diversity. J Am Soc Hortic Sci, 2004, 129:553-558
    127 Levi A, Thomas C E, Simmons A M, Thies J A. Analysis based on RAPD and ISSR markers reveals closer similarities among Citrullus and cucumis species than with Praecitrullus fistulosus (Stocks) Pangalo. Genet Resour Crop Evol, 2005, 52:465-472
    128 Levinson G, Gutman G A. Slipped-strand mispairing: a major mechanism for DNA sequence evolution. Mol Biol Evol, 1987,4:203-221
    129 Linhart Y B, Grant M C. Evolutionary significance of local genetic differentiation in plants. Annu Rev Ecol Syst, 1996, 27:237-277
    130 Liu H U I, Yan G, Shan F, Sedgley R. Karyotypes in Leucadendron (Proteaceae): evidence of the primitiveness of the genus. Bot J Linn Soc, 2006, 151:387-394
    131 Liu Z, Furnier G R. Comparison of allozyme, RFLP, and RAPD markers for revealing genetic variation within and between trembling aspen and bigtooth aspen. Theor Appl Genet, 1993, 87:97-105
    132 Mahmood T, Rahman M H, Stringam G R, Yeh F, Good A G Identification of quantitative trait loci (QTL) for oil and protein contents and their relationships with other seed quality traits in Brassicajuncea. Theor Appl Genet, 2006, 113:1211 -1220
    133 Mantel N. The detection of disease clustering and a generalised regression approach. Cancer Res, 1967,27:209-220
    134 McCouch S R, Kochert G, Yu Z H, Wang Z Y, Khush G S, Coffman W R, Tanksley S D. Molecular mapping of rice chromosomes. Theor Appl Genet, 1988, 76:815-829
    135 Metakovsky E V, Branlard G Genetic diversity of French common wheat germplasm based on gliadin alleles. Theor Appl Genet, 1998, 96:209-218
    136 Metakovsky E V, Gomez M, Vazquez J F, Carrillo J M. High genetic diversity of Spanish common wheats as judged from gliadin alleles. Plant Breed, 2000, 119:37-42
    137 Mijangos-Cortes J O, Corona-Torres T, Espinosa-Victoria D, Munoz-Orozco A, Romero-Penaloza J, Santacruz-Varela A. Differentiation among Maize (Zea mays L.) Landraces from the Tarasca Mountain Chain, Michoacan, Mexico and the Chalqueno Complex. Genet Resour Crop Evol, 2007, 54:309-325
    138 Milbourne D, Meyer R, Bradshaw J E, Baird E, Bonar N, Provan J, Powell W, Waugh R. Comparison of PCR-based marker systems for the analysis of genetic relationships in cultivated potato. Mol Breed, 1997,3:127-136
    139 MirAli N, Nabulsi I. Genetic diversity of almonds (Prunus dulcis) using RAPD technique. Sci Hortic, 2003, 98:461-471
    140 Moreno S, Martin J P, Ortiz J M. Inter-simple sequence repeats PCR for characterization of closely related grapevine germplasm. Euphytica, 1998, 101:117-125
    141 Mueller U G, Wolfenbarger L L. AFLP genotyping and fingerprinting. Trends Ecol Evol, 1999, 14:389-394
    142 Muminovic J, Merz A, Melchinger A E, Lubberstedt T. Genetic structure and diversity among radish varieties as inferred from AFLP and ISSR analyses. J Am Soc Hortic Sci, 2005, 130:79-87
    143 Murakeozy E P, Ainouche A, Meudec A, Deslandes E, Poupart N. Phylogenetic relationships and genetic diversity of the Salicornieae (Chenopodiaceae) native to the Atlantic coasts of France. Plant Syst Evol, 2007,264:217-237
    144 Nagaoka T, Ogihara Y. Applicability of inter-simple sequence repeat polymorphisms in wheat for use as DNA markers in comparison to RFLP and RAPD markers. Theor Appl Genet, 1997,94:597-602
    145 Nebauer S G, Castillo-Agudo L D, Segura J. RAPD variation within and among natural populations of outcrossing willow-leaved foxglove (Digitalis obscura L.). Theor Appl Genet, 1999, 98:985-994
    146 Nybom H. Comparison of different nuclear DNA markers for estimating intraspecific genetic diversity in plants. Mol Ecol, 2004,13:1143-1155
    147 Ohmori T, Murata M, Motoyoshi F. Molecular characterization of RAPD and SCAR markers linked to the Tm-1 locus in tomato. Theor Appl Genet, 1996, 92:151-156
    148 Oliveira C M, Mota M, Monte-Corvo L, Goulao L, Silva D M. Molecular typing of Pyrus based on RAPD markers. Sci Hortic, 1999,79:163-174
    149 Oraguzie N C, Gardiner S E, Basset H C M, Stefanati M, Ball R D, Bus V G M, White A G Genetic diversity and relationships in Malus sp. germplasm collections as determined by randomly amplified polymorphic DNA. J Am Soc Hortic Sci, 2001, 126:318-328
    150 Palombi M A, Damiano C. Comparison between RAPD and SSR molecular markers in detecting genetic variation in kiwifruit (Actinidia deliciosa A. Chev). Plant Cell Rep, 2002,20:1061-1066
    151 Paran I, Michelmore R W. Development of reliable PCR-based markers linked to downy mildew resistance genes in lettuce. Theor Appl Genet, 1993, 85:985-993
    152 Perry M C, McIntosh M S, Stoner A K. Geographical patterns of variation in the USDA soybean germplasm collection. II. Allozyme frequencies. Crop Sci, 1991, 31:1356-1360
    153 Perry M C, McIntosh M S. Geographical patterns of variation in the USDA soybean germplasm collection. I. Morphological traits. Crop Sci, 1991, 31:1350-1355
    154 Persson H A, Rumpunen K, Mollerstedt L K. Identification of culinary rhubarb (Rheum spp.) cultivars using morphological characterization and RAPD markers. J Hortic Sci Biotechnol, 2000, 75:684-689
    155 Polignano G B, Alba E, Uggenti P, Scippa G Geographical patterns of variation in Bari faba bean germplasm collection. Genet Resour Crop Evol, 1999,46:183-192
    156 Posto A L, Prather L A. The evolutionary and taxonomic implications of RAPD data on the genetic relationships of Mimulus michiganensis (comb. et stat. nov.: Scrophulariaceae). Syst Bot, 2003, 28:172-178
    157 Powell W, Morgante M, Andre C, Hanafey M, Vogel J, Tingey S, Rafalski J A. The comparison of RFLP, RAPD, AFLP and SSR (microsatellite) markers for germplasm analysis. Mol Breed, 1996, 2:225-238
    158 Prevost A, Wilkinson M J. A new system of comparing PCR primers applied to ISSR fingerprinting of potato cultivars. Theor Appl Genet, 1999, 98:107-112
    159 Prohens J, Blanca J M, Nuez F. Morphological and molecular variation in a collection of eggplants from a secondary center of diversity: Implications for conservation and breeding. J Am Soc Hortic Sci, 2005, 130:54-63
    160 Quero-Garcia J, Courtois B, Ivancic A, Letourmy P, Risterucci A M, Noyer J L, Feldmann P, Lebot V. First genetic maps and QTL studies of yield traits of taro (Colocasia esculenta (L.) Schott). Euphytica, 2006, 151:187-199
    161 Rafalski J A. Novel genetic mapping tools in plants: SNPs and LD-based approaches. Plant Sci, 2002, 162:329-333
    162 Raina S N, Rani V, Kojima T, Ogihara Y, Singh K P, Devarumath R M. RAPD and ISSR fingerprints as useful genetic markers for analysis of genetic diversity, varietal identification, and phylogenetic relationships in peanut (Arachis hypogaea) cultivars and wild species. Genome, 2001,44:763-772
    163 Rodino A P, Santalla M, Montero I, Casquero P A, Ron A M D. Diversity of common bean (Phaseolus vulgaris L.) germplasm from Portugal. Genet Resour Crop Evol, 2001, 48:409-417
    164 Rodino A P, Santalla M, Ron A M D, Singh S P. A core collection of common bean from the Iberian peninsula. Euphytica, 2003, 131:165-175
    165 Rohlf F J. NTSYS: Numerical taxonomy and multivariate analysis system version 2.1. ExeterSoftware, 2000, Setauket, N.Y.
    166 Roldan-Ruiz I, Calsyn E, Gilliland T J, Coll R, Eijk M J T V, Loose M D. Estimating genetic conformity between related ryegrass (Lolium) varieties. 2. AFLP characterization. Mol Breed, 2000, 6:593-602
    167 Roldan-Ruiz I, Eeuwijk F A V, Gilliland T J, Dubreuil P, Dillmann C, Lallemand J, Loose M D, Baril C P. A comparative study of molecular and morphological methods of describing relationships between perennial ryegrass (Lolium perenne L.) varieties. Theor Appl Genet, 2001, 103:1138-1150
    168 Rongwen J, Akkaya M S, Bhagwat A A, Lavi U, Cregan P B. The use of microsatellite DNA markers for soybean genotype identification. Theor Appl Genet, 1995, 90:43-48
    169 Rumpunen K, Bartish I V. Comparison of differentiation estimates based on morphometric and molecular data, exemplified by various leaf shape descriptors and RAPDs in the genus Chaenomeles (Rosaceae). Taxon, 2002, 51:69-82
    170 Sarri V, Baldoni L, Porceddu A, Cultrera N G M, Contento A, Frediani M, Belaj A, Trujillo I, Cionini P G Microsatellite markers are powerful tools for discriminating among olive cultivars and assigning them to geographically defined populations. Genome, 2006,49:1606-1615
    171 Sharma I K, Jones D L, Young A G, French C J. Genetic diversity and phylogenetic relatedness among six endemic Pterostylis species (Orchidaceae; series Grandiflorae) of Western Australia, as revealed by allozyme polymorphisms. Biochem Syst Ecol, 2001, 29:697-710
    172 Sinclair J W, Park S O, Lester G E, Yoo K S Crosby K M. Identification and confirmation of RAPD markers and andromonoecious associated with quantitative trait loci for sugars in melon. J Am Soc Hortic Sci, 2006,131:360-371
    173 Singh M, Chaudhary K, Singal H R, Magill C W, Boora K S. Identification and characterization of RAPD and SCAR markers linked to anthracnose resistance gene in sorghum [Sorghum bicolor(L.) Moench]. Euphytica, 2006, 149:179-187
    174 Singh S P, Gutierrez J A, Molina A, Urrea C, Gepts P. Genetic diversity in cultivated common bean: II. Marker-based analysis of morphological and agronomic traits. Crop Sci, 1991,31:23-29.
    175 Siragusa M, De Pasquale F, Abbate L, Tusa N. Identification of sour orange accessions and evaluation of their genetic variability by molecular marker analyses. HortScience, 2006,41:84-89
    176 Smith J S C, Chin E C L, Shu H, Smith O S, Wall S J, Senior M L, Mitchell S E, Kresovich S, Ziegle J. An evaluation of the utility of SSR loci as molecular markers in maize (Zea mays L.): comparisons with data from RFLPs and pedigree. Theor Appl Genet, 1997,95:163-173
    177 Souframanien J, Gopalakrishna T. A comparative analysis of genetic diversity in blackgram genotypes using RAPD and ISSR markers. Theor Appl Genet, 2004, 109:1687-1693
    178 Steiner J J, Beuselinck P R, Greene S L, Kamm J A, Kirkbride J H, Roberts C A. A description and interpretation of the NPGS birdsfoot trefoil core subset collection. Crop Sci, 2001,41:1968-1980
    179 Stephan W, Cho S. Possible role of natural selection in the formation of tandem-repetitive noncoding DNA. Genetics, 1994,136:333-341
    180 Stirling B, Newcombe G, Vrebalov J, Bosdet I, Bradshaw H D. Suppressed recombination around the MXC3 locus, a major gene for resistance to poplar leaf rust. Theor Appl Genet, 2001,103:1129-1137
    181 Sudupak M A, Akkaya M S, Kence A. Genetic relationships among perennial and annual Cicer species growing in Turkey assessed by AFLP fingerprinting. Theor Appl Genet, 2004, 108:937-944
    182 Suo Z L, Li W Y, Yao J, Zhang H, Zhang Z, Zhao D. Applicability of leaf morphology and inter simple sequence repeat markers in classification of tree peony (Paeoniceae) cultivars. HortScience, 2005,40:329-334
    183 Syvanen A, Soderlund H. Accessing genetic variation: genotyping single nucleotide polymorphisms. Nat Biotechnol, 2002,20:349-350
    184 Szalanski A L, Steinauer G, Bischof R, Petersen J. Origin and conservation genetics of the threatened Ute ladies'-tresses, Spiranthes diluvialis (Orchidaceae). Am J Bot, 2001, 88:177-180
    185 Taberner A, Dopazo J, Castanera P. Genetic characterization of populations of a de novo arisen sugar beet pest, Aubeonymus mariaefranciscae (Coleoptera, Curculionidae) by RAPD analysis. J Mol Evol, 1997,44:24-31
    186 Thormann C E, Ferreira M E, Camargo L E A, Tivang J G, Osborn T C. Comparison of RFLP and RAPD markers to estimating genetic relationships within and among cruciferous species. Theor Appl Genet, 1994, 88:973-980
    187 Tuna M, Vogel K P, Gill K S, Arumuganathan K. C-banding analyses of Bromus inermis genomes. Crop Sci, 2004,44:31-37
    188 Ude G, Pillay M, Ogundiwin E, Tenkouano A. Genetic diversity in an African plantain core collection using AFLP and RAPD markers. Theor Appl Genet, 2003, 107:248-255
    189 Vos P, Hogers R, Bleeker M, Reijans M, Lee T V D, Hornes M, Frijters A, Pot J, Peleman J, Kuiper M, Zabeau M. AFLP: a new technique for DNA fingerprinting. Nucleic Acids Res, 1995,23:4407-4414
    190 Wang Y, Reighard G L, Layne D R, Abbott A G, Huang H. Inheritance of AFLP markers and their use for genetic diversity analysis in wild and domesticated pawpaw [Asimina triloba (L.) Dunal]. J Am Soc Hortic Sci, 2005,130:561-568
    191 Wang Z, Weber J L, Zhong G, Tanksley S D. Survey of plant short tandem DNA repeats. Theor Appl Genet, 1994, 88:1-6
    192 Williams J G, Kubelik A R, Livak K J, Rafalski J A, Tingey S V. DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Res, 1990, 18:6531-6535
    193 Zarkadas C G, Gagnon C, Gleddie S, Khanizadeh S, Cober E R, Guillemette R J D. Assessment of the protein quality of fourteen soybean [Glycine max (L.) Merr.] cultivars using amino acid analysis and two-dimensional electrophoresis. Food Res Intern, 2007, 40:129-146
    194 Zhang D P, Ghislain M, Huamán Z, Golmirzaie A, Hijmans R. RAPD variation in sweet potato (Ipomoea batatus (L.) Lam) cultivars from South America and Papua New Guinea. Genet Resour Crop Evol, 1998, 45:271-277
    195 Zietkiewicz E, Rafalski A, Labuda D. Genome fingerprinting by simple sequence repeat (SSR)-anchored polymerase chain reaction amplification. Genomics, 1994, 20:176-183
    196 Zizumbo-Villarreal D, Fernandez-Bah'era M, Torres-Hemandez N, Colunga-GarciaMarin P. Morphological variation of fruit in Mexican populations of Cocos nucifera L. (Arecaceae) under in situ and ex situ conditions. Genet Resour Crop Evol, 2005, 52:421-434
    197 Zizumbo-Villarreal D, Pifiero D. Pattern of morphological variation and diversity of Cocos nucifera (Arecaceae) in Mexico. Am J Bot, 1998, 85:855-865

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700