用户名: 密码: 验证码:
西藏日喀则地区雅鲁藏布蛇绿岩地球化学及构造环境研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
雅鲁藏布蛇绿岩带是当今世界上著名的蛇绿岩带之一,代表了中生代以来新特提斯洋岩石圈的残片,对其开展详细的野外地质、岩石学和地球化学研究,有助于揭示新特提斯洋演化、发展历史和构造属性。出露在雅鲁藏布蛇绿岩带中段的日喀则蛇绿岩发育完好,本文对其中的夏鲁、群让和白朗三个蛇绿岩剖面的基性岩石(玄武岩、辉绿岩和辉长岩)开展了野外工作、室内主量、微量元素和Sr-Nd-Os-O同位素地球化学的系统研究工作,揭示了基性岩石的地球化学特征、形成的构造环境和地幔域的地球化学特征。论文获得如下结论:
     1.日喀则蛇绿岩的基性岩为典型的玄武质岩石,具有富Mg、高Al,高Ca,富Na、低Ti、低K的特征,岩石属于亚碱性玄武质系列,绝大多数为低钾(拉斑)系列。岩石烧失量较高,说明其普遍遭受到蚀变作用。
     2.岩石稀土元素和微量元素特征与正常的大洋中脊玄武岩(N-MORB)相似,但富集大离子亲石元素,亏损高场强元素,岩石具有从洋脊玄武岩向具有俯冲组分加入的岛弧玄武岩过渡的特征。
     3.岩石具有亏损地幔的Nd-Sr同位素特征(εNd(t)为+6.2至+8.7,87Sr/86Sr为0.70313-0.70546)。Sr同位素向着高值方向漂移显示了海水蚀变作用,岩石Re、Os含量较低,Os同位素具有火山弧玄武岩的特征,并受到海水蚀变的影响,岩石δ18O高达10.3~12.8‰,同样经受了海水蚀变和俯冲的影响,但其源区并未受到大陆地壳物质的混染。Sr-Re-Os-O同位素由于受到海水蚀变及俯冲的影响,其组成已经无法指示源区的特征。
     4.揭示了日喀则蛇绿岩的构造环境和地幔域特征。属于非典型的洋中脊成因,应为SSZ型蛇绿岩,可能形成于与洋内俯冲有关的SSZ型弧后或者弧前盆地中;雅鲁藏布蛇绿岩与现今印度洋地幔域特征吻合,表明现今印度洋地幔继承了特提斯洋的地球化学特征。
     5.将本文结果与已有研究结合,识别出东西延伸超过1500km的雅鲁藏布蛇绿岩至少存在大陆岛弧型、地幔柱—洋内热点型、洋中脊—大洋岛弧型和典型大洋岛弧型等四种类型的洋壳,揭示了特提斯洋存在多种构造环境的特征,有利于恢复和还原一个长期演化的、丰富的特提斯洋。
The Yarlung Zangpo ophiolite is one of the best preserved ophiolites in the world. They are remnants of the Neo-Tethys ocean-floor, marking a suture within Gondwanan in Mesozoic era. The study of petrology and geochemistry may reveal the evolution history and tectonic features. The Xigaze ophiolite in the center of the Yarlung Zangpo ophiolite is intact and has important implication on the research of evolution of Tethyan. In this paper, major and trace elements, as well as Sr-Nd, Re-Os and O isotopic compositions for the basic rocks (basalts, diabases and gabbros) from three sections of ophiolites in Xialu, Qunrang and Bailang of Xigaze area were studied.
     These rocks are charactered by low Ti, K, high Mg, Al, Ca, Na and LOI, implying the metasomatic process after the rocks formed in the ocean; the rocks are sub-alkaline basaltic rocks. Most of them is low-K tholeiitic, few of them is calc alkali basaltic rock.
     Their REE and trace elements are very similar to the N-MORB, but with enrichment of large ion lithophile elements (LILE) and depletion of high field strength elements (HFSE). The rocks show the characteristics from middle ocean ridge basalts to island arc basalts.
     These rocks are characterized by deleted mantle Sr-Nd isotopes (εNd (t):+6.2~+8.7,87Sr/86S:0.70313~0.70546). Strontium isotopic value toward to the high direction, lower rhenium and osmium content, volcanic arc basalt-like osmium isotope and high δ18O value (10.3~12.8‰) indicated that these rocks had undergone the seawater alteration, but without the contamination of continental crust. Sr-Re-Os-O isotopic compositions can't reveal the Characteristic of the source region because of the seawater alteration and oceanic slab subduction..
     The Xigaze ophiolite is Supra Subduction Zone (SSZ) type oceanic crust, instead of the typical N-MOR type ophiolite. It may have occurred in back-arc or fore-arc tectonic settings in an oceanic slab subduction-related system.
     There are at least four different types of tectonic environment within the1500km-long Yalung Zangpo ophiolite. The four-type basalts are (1) continental arc,(2) mantle plume or hot spot,(3) MORB and Oceanic arc, and (4) typical oceanic arc. The presence of multiple tectonic settings rusulting from geochemical signatures which associated with the basaltic rocks within the Yalung Zangpo suture zone reconstructs a long-evolutional history of the Tethyan Ocean.
引文
Agrinier P, Javoy M and Girardeau J. Hydrothermal activity in a peculiar oceanic ridge:Oxygen and hydrogen isotope evidence in the Xigaze ophiolite (Tibet, China). Chemical Geology,1988,71 (4): 313-335.
    Aitchison JC, Badengzhu, Davis AM, et al. Remnants of a cretaceous intra-oceanic subduction system within the Yarlung-Zangbo suture (southern Tibet). Earth and Planetary Science Letters,2000,183: 231-244.
    Alabaster T, Pearce JA and Malpas J. The volcanic stratigraphy and petrogenesis of the Oman ophiolite complex. Contrib. Mineral Petrol,1982,81:168-183.
    Allegre CJ and Luck JM. Osmium isotopes as petrogenetic and geological tracers. Earth and Planetary Science Letters,1980,48:148-154.
    Allegre CJ and Turcotte DL. Implications of a two component marble-cake mantle. Nature,1986,323: 123-127.
    Allegre CJ, Coutillot V, Tapponier P, et al. Structure and evolution of the Himalaya-Tibet orogenic belt. Nature,1984,307:17-22.
    Becker H. Re-Os fractionation in eclogites and blueschists and the implications for recycling of oceanic crust into the mantle. Earth and Planetary Science Letters,2000,177:287-300.
    Bedard E, Hebert R, Guilmette C, et al. Petrology and geochemistry of the Saga and Sangsang ophiolitic massifs, Yarlung Zangbo Suture Zone, Southern Tibet:Evidence for an arc-back-arc origin. Lithos, 2009,113 (1-2):48-67.
    Bennett VC, Nutman AP and Esat TM. Constraints on mantleevolution from 187Os/188Os isotopic compositions of Archean ultramafic rocks from southern West Greenland (3.8 Ga) and Western Australia (3.46 Ga). Geochim Cosmochim Acta,2002,66:2615-2630
    Besse J, Courtillot V, Pozzi JP, et al. Palaeomagnetic estimates of crustal shortening in the Himalayan thrusts and Zangbo suture.1984, Nature,311:621-626.
    Bezard R, Hebert R, Wang CS,et al. Petrology and geochemistry of the Xiugugabu ophiolitic massif western Yarlung Zangbo suture zone, Tibet. Lithos,2011,125 (1-2):347-367.
    Bienvenu P, Bougault H, Joron J, et al. MORB alteration:rare-earth element/non-rare-earth hygromagmaphile element fractionation. Chemical Geology,1990,82:1-14.
    Boynton WV. Geochemistry of the rare earth elements:Meteorite studies. In:Henderson P, Rare earth element geochemistry. Elsevier,1984,63-114.
    Brandon AD, Creaser RA, Shirey SB, et al. Os recycling in subdution zones. Science,1996,272:861-864.
    Brenan JM, McDonough WF and Dalpe C. Experimental constraints on the portioning of rhenium and some platinum-group elements between olivine and silicate melt. Earth and Planetary Science Letters, 2003,212 (1-2):135-150.
    Briqueu L and Lancelor JR. Rb-Sr systematics and crustal contamination models for calc-alkaline igneous rocks. Earth Planet Science Letters,1979.43:381-396.
    Brongniart AT. Essai d'une classification mineralogique des roches melangees, Bossande.1813.
    Brongniart AT. Memoire sur la generation et le developpement de l'embryon dans les vegetaux phanerogames, Impr. C. Thuau.1827.
    Brongniart AT. Sur le gisement ou position relative des ophiolites, euphotides, jaspes, etc. dans quelques parties des Apennins. Annales des Mines, Paris,1821,6:177-238.
    Buchl A, Brugmann GE, Batanova VG, et al. Os mobilization during melt percolation:The evolution of Os isotope heterogeneities in the mantle sequence of the Troodos ophiolite, Cyprus. Geochimica et Cosmochimica Acta,2004,68 (16):3397-3408.
    Cameron WE. Petrology and origin of primitive lavas from the Troodos ophiolite, Cyprus. Contributions to Mineralogy and Petrology,1985,89:239-255.
    Cawood PA, Kroner A, Collins WJ, et al. Accretionary orogens through Earth history. Geological Society, London, Special Publications,2009,318 (1):1-36.
    Chan GHN, Crowley Q, Searle M, et al. U-Pb zircon ages of the Yarlung Zangbo suture zone ophiolites, south Tibet.22th Himalaya-Karakoram-Tibet Workshop, Hong Kong, China.2007, Workshop abstract, v.12.
    Chen L, Sun Y, Pei XZ, et al. Northernmost paleo-tethyan oceanic basin in Tibet:Geochronological evidence from 40Ar/39Ar age dating of Dur'ngoi ophiolite. Chinese Science Bulletin,2001,46 (14): 1203-1205.
    Chesley JT and Ruiz J. Crust-mantle interaction in large igneous provinces:Implications from the Re-Os isotope systematics of the Columbia River flood basalts. Earth and Planetary Science Letters,1998,154: 1-11.
    Chiu HY, Chung SL, Wu FY, et al. Zircon U-Pb and Hf isotopic constraints from eastern Transhimalayan batholiths on the precollisional magmatic and tectonic evolution in southern Tibet. Tectonophysics, 2009,477:3-19.
    Chu MF, Chung SL, O'Reilly SY, et al. India's hidden inputs to Tibetan orogeny revealed by Hf isotopes of Transhimalayan zircons and host rocks. Earth and Planetary Science Letters,2011,307 (3-4):479-486.
    Chu MF, Chung SL, Song B, et al. Zircon U-Pb and Hf isotope constraints on the Mesozoic tectonics and crustal evolution of southern Tibet. Geology,2006,34 (9):745-748.
    Chung SL, Chu MF, Zhang YQ, et al. Tibetan tectonic evolution inferred from spatial and temporal variations in post-collisional magmatism. Earth-Science Reviews,2005,68:173-196.
    Cocker JD, Griffin BJ and Muehlenbachs K. Oxygen and carbon isotope evidence for seawater-hydrothermal alteration of the Macquarie Island ophiolite Earth and Planetary Science Letters, 1982,61 (1):112-122.
    Coffin MF and Eldholm O. Large igneous provinces:Progenitors of some ophiolites? In:Ernst, Buchan (Eds.), Mantle Plumes:Their identification through Time. Special Paper-Geological Society of America, 2001,352:59-70.
    Coleman RG. Ophiolite-ancient oceanic lithosphere.1977, Berlin. Heidelberg, New York:Springer-Verlag.
    Coleman RG. Plate Tectonic Emplacement of Upper Mantle Peridotites along Continental Edges. Geophysical Research,1971,76 (5):1212-1222.
    Criss HP and Taylor JR. An 18O/16O and D/H study of Tertiary hydrothermal systems in the southern half of the Idaho Batholith. Geol. Soc. Amer. Bull.,1983,94:640-663.
    Dai JG, Wang CS, Hebert R, et al. Late Devonian OIB alkaline gabbro in the Yarlung Zangbo Suture Zone: Remnants of the Paleo-Tethys? Gondwana Research,2011a,19:232-243.
    Dai JG, Wang CS, Hebert R, et al. Petrology and geochemistry of peridotites in the Zhongba ophiolite, Yarlung Zangbo Suture Zone:Implications for the Early Cretaceous intra-oceanic subduction zone within the Neo-Tethys. Chemical Geology,2011b,288 (3-4):133-148.
    Dai JG, Yin A, Liu W, et al. Nd isotopic compositions of the Tethyan Himalayan Sequence in southeastern Tibet. Science in China Series D:Earth Sciences,2008,51 (9):1306-1316.
    Dale CW, Gannoun A, Burton KW, et al. Rhenium-osmium isotope and elemental behaviour during subduction of oceanic crust and the implications for mantle recycling. Earth and Planetary Science Letters,2007.177:211-225.
    Deng WM, Yang RY, Huang ZX, et al. Geochimie des elements en traces du complexe ophiolitique de la region de Xigaze au Xizang (Tibet). Mercier JL, Li GC. Misson Franco-Chinoise au Tibet. Paris:Centre National de la Recherche Scientifique,1980,239-240.
    DePaolo DJ. Neodymium isotopes in the Colorado Front Range and crust-mantle evolution in the Proterozoic. Nature,1981,291:193-196.
    Dewey JF and Bird JM. Origin and Emplacement of the Ophiolite Suite:Appalachian Ophiolites in Newfoundland. Geophysical Research,1971,76 (14):3179-3206.
    Dick, H. and Bullen, T. Chromian spinel as a petrogenetic indicator in abyssal and alpine-type peridotites and spatially associated lavas. Contributions to Mineralogy and Petrology,1984,86 (1):54-76.
    Dilek Y and Flower MFJ. Arc-trench rollback and forearc accretion:2. A model template for ophiolites in Albania, Cyprus, and Oman. In:Dilek Y, Robinson PT (Eds.), Ophiolites in Earth History. Geological Society, London,2003,43-68.
    Dilek Y and Fumes H. Ophiolite genesis and global tectonics:Geochemical and tectonic fingerprinting of ancient oceanic lithosphere. Geological Society of America Bulletin,2011,123 (3-4):387-411.
    Dilek Y and Furnes H. Structure and geochemistry of Tethyan ophiolites and their petrogenesis in subduction rollback systems. Lithos,2009,113 (1-2):1-20.
    Dilek Y, Thy P and Moores EM. Episodic dike intrusions in the northwestern Sierra Nevada, California: Implications for multistage evolution of a Jurassic arc terrane. Geology,1991,19 (2):180-184.
    Dilek Y. Ophiolite concept and its evolution. Ophiolite concept and the evolution of geological thought. Dilek Y and Newcomb S. Boulder, Colo., Geological Society of America,2003,373:1-16.
    Dubois-C6te V, Hebert R, Dupuis C, et al. Petrological and geochemical evidence for the origin of the Yarlung Zangbo ophiolites, southern Tibet. Chemical Geology,2005,214 (3-4):265-286.
    Dupr6 B and Allegre CJ. Pb-Sr isotope variation in Indian Ocean basalts and mixing phenomena. Nature, 1983,303:142-146.
    Dupuis C, Hebert R, Dubois-Cote V, et al. Petrology and geochemistry of mafic rocks from melange and flysch units adjacent to the Yarlung Zangbo Suture Zone, southern Tibet. Chemical Geology,2005,214 (3-4):287-308.
    Eiler JM. Oxygen isotope variations of basaltic lavas and upper mantle rocks. In:Valley JW, Cole DR (Eds.), Stable Isotope Geochemistry. Reviews in Mineralogy and geochemistry,2001,43:319-364.
    Eisele J, Sharma M, Galer SJG, et al. The role of sediment recycling in EM-1 inferred from Os, Pb, Hf, Nd, Sr isotope and trace element systematics of the Pitcairn hotspot. Earth and Planetary Science Letters, 2002,196:197-212.
    Ellam RM, Carlson RW and Shirey SB. Evidence from Re-Os isotopes for plume-lithosphere mixing in Karoo flood basalt genesis.1992, Nature,359:718-721.
    Elthon D, Casey JF and Komor S. Mineral chemistry of ultramafic cumulates from the North Arm Mountain massif of the Bay of Islands ophiolite:evidence for high pressure crystal fractionation of oceanic basalts. Geophysical Research,1982,87 (B10):8717-8734.
    Elthon D, Stewart M, Ross DK. Compositional Trends of Minerals in Oceanic Cumulates. Geophysical Research,1992,97 (B11):15189-15199.
    Elthon D. Geochemical evidence for formation of the Bay of Islands Ophiolite above a subduction zone. Nature,1991,354:140-143.
    Escrig S, Capmas F, Dupre B, et al. Osmium isotopic constraints on the nature of the DUPAL anomaly from Indian mid-ocean-ridge basalts. Nature,2004,431:59-63.
    Escrig S, Schiano P, Schilling JG, et al. Rhenium-Osmium isotope Systematics in MORB from the Southern Mid-Atlantic Ridge (40°-50°S). Earth and Planetary Science Letters,2005,235:528-548.
    Esser BK, and Turekian KK. The osmium isotopic composition of the continental crust. Geochimica et Cosmochimica Acta,1993,57 (13):3093-3104.
    Ewart A, Bryan WB, Chappel BW et al. Regional geochemistry of the Lau-Tonga arc and backarc systems. In:Hawkins JW, Parson LM, Allan JF, et al. Proceeding of the Ocean Drilling Program.1994a. College Station, TX (Ocean Drilling Program). Scientific results,135:385-425.
    Ewart A, Hergt JM and Hawkins JW. Major element, trace element, and isotope (Pb, Sr, and Nd) geochemistry of site 839 basalts and basaltic andesites:Implications for arc volcanism. In:Hawkins JW, Parson LM, Allan JF, et al. Proceeding of the Ocean Drilling Program.1994b. College Station, TX (Ocean Drilling Program). Scientific results,135:519-531.
    Faure G. Origin of Igneous Rocks-the Isotope Evidence.2001. New York:Springer-Verlag Berlin Heidelberg,
    Fitton JG, Saunders AD, Norry MJ, et al. Thermal and chemical structure of the Iceland Plume. Earth and Planetary Science Letters,1997,153:197-208.
    Gannoun A, Burton KW, Parkinson IJ et al. The scale and origin of the osmium isotope variations in mid-ocean ridge basalts. Earth and Planetary Science Letters,2007,259:541-556.
    Gannoun A, Burton KW, Thomas LE et al. Osmium Isotope Heterogeneity in the Constituent Phases of Mid-Ocean Ridge Basalts. Science,2004,303:70-72.
    Gao S, Liu XM, Yuan HL, et al. Determination of forty two major and trace elements in USGS and NISTSRM glasses by laser ablation inductively coupled plasma mass spectrometry Geostandards. News letter Journal of Geostandards and Geoanalysis,2002,26:191-196.
    Garcia MO, Foss DJP, West HB, et al. Geochemical and isotopic evolution of Loihi volcano, Hawaii. Journal of Petrology,1995,36 (6):1647-1674.
    Garcia MO, Jorgenson BA, Mahoney JJ, et al. An evaluation of temporal geochemical evolution of Loihi summit lavas:results from Alvin submersible dives. Journal of Geophysical Research-Solid Earth,1993, 98:537-550.
    Gass IG Is the Troodos Massif of Cyprus a Fragment of Mesozoic Ocean Floor? Nature,1968,220 (5162): 39-42.
    Girardeau J and Mercier JCC. Petrology and texture of the ultramafic rocks of the Xigaze ophiolite (Tibet): constraints for mantle structure beneath slow-spreading ridges. Tectonophysics,1988,147:33-58.
    Girardeau J, Mercier JCC and Wang XB. Petrology of the mafic rocks of the Xigaze ophiolite, Tibet: implications for the genesis of the oceanic lithosphere. Contributions to Mineralogy and Petrology, 1985a,90 (4):309-321.
    Girardeau J, Mercier JCC and Zao YG. Origin of the Xigaze ophiolite, Yarlung Zangbo suture zone, southern Tibet. Tectonophysics,1985b,119 (1-4):407-433.
    Gopel C, Allegre CJ, Xu RH. Lead isotopic study of the Xigaze ophiolite (Tibet):the problem of the relationship between magmatites (gabbros, dolerites, lavas), and tectonites (harzburgites). Earth and Planetary Science Letters,1984,69:301-310.
    Gregory RT and Criss RE. Isotopic exchange in open and closed systems. Reviews in Mineralogy and Geochemistry,1986,16:91-127.
    Gregory RT and Taylor HP. An oxygen isotope profile in a section of Cretaceous oceanic crust, Samail Ophiolite, Oman:Evidence for δ18O buffering of the oceans by deep (>5 km) seawater-hydrothermal circulation at mid-ocean ridges. Geophys. Res.,1981,86:2737-2756.
    Guilmette C, Hebert R, Dupuis C, et al. Metamorphic history and geodynamic significance of high-grade metabasites from the ophiolitic melange beneath the Yarlung Zangbo ophiolites, Xigaze area, Tibet. Journal of Asian Earth Sciences,2008,32(5-6):423-437.
    Guilmette C, Hebert R, Wang CS, et al. Geochemistry and geochronology of the metamorphic sole underlying the Xigaze Ophiolite, Yarlung Zangbo Suture Zone, South Tibet. Lithos,2009,112(1-2): 149-162.
    Hanson GN. Geochemical evolution of the suboceanic mantle. Journal of the Geological Society,1977,134: 1-19.
    Harrison TM, Yin A, Grove M, et al. The Zedong Window:A record of superposed Tertiary convergence in southeastern Tibet. Geophysical Research,2000,105 (B8):19211-19230.
    Hart SR and Ravizza GE. Os partitioning between phases in lherzolite and basalt. In:Basu A, Hart SR (Eds.), Earth processes:reading the isotopic code. Washington D.C., American Geophysical Union. Geophysical monograph,1996,95:123-34.
    Hauri EH and Hart SR. Rhenium abundances and systematics in oceanic basalts. Chemical Geology,1997, 139:185-205.
    Hauri EH. Osmium isotopes and mantle convection. Philosophical Transactions of the Royal Society of London,2002,360(1800):2371-2382.
    Hawkins JW, Bloomer SH, Evans CA, et al. Evolution of intra-oceanic arc-trench systems. Tectonophysics, 1984,102(1-4):175-205.
    Hawkins JW. Geology of supra-subduction zones-Implications for the origin of ophiolites. Geological Society of America Special paper,2003,373:227-268.
    Hawkins J W. Petrology and geochemistry of basaltic rocks of the Lau Basin. Earth and Planetary Science Letters,1976,28 (3):283-297.
    Hawkins JW. Petrology of back-arc basins and island arcs. Parayion A. Ophiolites, Proceedings International Symposium. Cyprus,1980,244-254.
    Heaton THE and Sheppard SMF. Hydrogen and oxygen isotope evidence for sea-water-hydrothermal alteration and ore deposition, Troodos complex, Cyprus. Geological Society, London, Special Publications,1977,7:42-57.
    Hebert R, Bezard R, Guilmette C, et al. The Indus-Yarlung Zangbo ophiolites from Nanga Parbat to Namche Barwa syntaxes, southern Tibet:First synthesis of petrology, geochemistry, and geochronology with incidences on geodynamic reconstructions of Neo-Tethys. Gondwana Research,2012,22 (2): 377-397.
    Hebert R, Huot F, Wang CS, et al. Yarlung Zangbo ophiolites (Southern Tibet) revisited:Geodynamic implications from the mineral record. In:Dilek Y, Robinson PT (Eds.), Ophiolites in Earth History. Geological Society Special Publication,2003,165-190.
    Hess HH. Serpentines, orogeny and epeirogeny, in Poldevaart, A., ed., Crust of the Earth (A Symposium): New York, Geological Society of America Special Paper,1955,62:391-408.
    Hoefs J. Stable Isotope Geochemistry, Springer-Verlag Berlin Heidelberg, New York,1980,89-120.
    Hofmann AW. Chemical differentiation of the Earth:the relationship between mantle, continental crust, and oceanic crust. Earth and Planetary Science Letters,1988,90 (3):297-314.
    Hofmann AW. Mantle geochemistry:the message from oceanic volcanism. Nature,1997,385:219-229.
    Hou QY, Zhao ZD, Zhang HF, et al. Indian Ocean-MORB-type isotopic signature of Yushigou ophiolite in North Qilian Mountains and its implications. Science in China (Series D),2006,49 (6):561-572.
    Hugh P and Taylor JR. The oxygen isotope geochemistry of igneous rocks. Contributions to Mineralogy and Petrology,1968,19 (1):1-71.
    Huot F, Hebert R, Varfalvy V, et al. The Beimarang Melange (southern Tibet) brings additional constraints in assessing the origin, metamorphic evolution and obduction processes of the Yarlung Zangbo ophiolite. Journal of Asian Earth Sciences,2002,21:307-322.
    Ito E and Clayton RN. Submarine metamorphism of gabbros from the Mid-Cayman rise:An oxygen isotopic study. Geochimica et Cosmochimica Acta,1983,47 (3):535-546.
    Ito E, White WM and Gopel C. The O, Sr, Nd and Pb isotope geochemistry of MORB. Chemical Geology, 1987,62(3-4):157-176.
    Jacobsen SB and Wasserburg GJ. Nd and Sr isotopic study of Bay of Islands Ophiolite Complex and the evolution of the source of mid-ocean ridge basalt. Journal of Geophysical Research,1979,84: 7429-7445.
    Ji WQ, Wu FY, Chung SL, et al. Zircon U-Pb geochronology and Hf isotopic constraints on petrogenesis of the Gangdese batholith, southern Tibet. Chemical Geology,2009a,262 (3-4):229-245.
    Ji WQ, Wu FY, Liu CZ, et al. Geochronology and petrogenesis of granitic rocks in Gangdese batholith, southern Tibet. Science in China Series D:Earth Sciences,2009b,52 (9):1240-1261.
    Jian P, Liu D, Kroner A, et al. Devonian to Permian plate tectonic cycle of the Paleo-Tethys Orogen in southwest China (Ⅰ):Geochemistry of ophiolites, arc/back-arc assemblages and within-plate igneous rocks. Lithos,2009a,113 (3-4):748-766.
    Jian P, Liu D, Kroner A, et al. Devonian to Permian plate tectonic cycle of the Paleo-Tethys Orogen in southwest China (Ⅱ):Insights from zircon ages of ophiolites, arc/back-arc assemblages and within-plate igneous rocks and generation of the Emeishan CFB province. Lithos,2009b,113 (3-4):767-784.
    Kay R, Hubbard NJ and Gast PW. Chemical characteristics and origin of oceanic ridge volcanic rocks. Geophysical Research,1970,75:1585-1614.
    Kerr AC, Pearson DG and Nowell GM. Magma source evolution beneath the Caribbean oceanic plateau: new insights from elemental and Sr-Nd-Pb-Hf isotopic studies of ODP Leg 165 Site 1001 basalts. Geological Society, London, Special Publications,2009,328 (1):809-827.
    Kyser TK. Stable isotope variations in the mantle. Reviews in Mineralogy and Geochemistry,1986,16: 141-164.
    Lee HY, Chung SL, Lo CH, et al. Eocene Neotethyan slab breakoff in southern Tibet inferred from the Linzizong volcanic record. Tectonophysics,2009,477:20-35.
    Li GW, Liu XH, Pullen A, et al. In-situ detrital zircon geochronology and Hf isotopic analyses from Upper Triassic Tethys sequence strata. Earth and Planetary Science Letters,2010,297 (3-4):461-470.
    Liu CZ, Snow JE, Hellebrand E, et al. Ancient, highly hetero-geneous mantle beneath Gakkel ridge, Arctic Ocean. Nature,2008,452:311-316.
    Luck JM and Allegre CJ. 187Re-187Os systematics in meteorites and cosmochemical consequences. Nature, 1983,302:130-132.
    Luck JM and Allegre CJ. Osmium isotopes in ophiolites. Earth and Planetary Science Letters,1991,107: 406-415.
    Mahoney JJ, Frei R, Tejada MLG, et al. Tracing the Indian Ocean mantle domain through time:isotope results from old west Indian, East Tethyan, and South Pacific seafloor. Journal of Petrology,1998,39 (7):1285-1306.
    Malpas J, Zhou MF, Robinson PT, et al. Geochemical and geochronological constraints on the origin and emplacement of the YarlungZangbo ophiolites, Southern Tibet. In:Dilek Y, Robinson PT (Eds.), Ophiolites in Earth History. London:Geological Society Special Publication,2003,218:191-206.
    Manatschal G and Muntener O. A type sequence across an ancient magma-poor ocean-continent transition: the example of the western Alpine Tethys ophiolites. Tectonophysics,2009,473 (1-2):4-19.
    Marcoux J, Wever PD, Nicolas A, et al. In:Christa Gopel, Claude J (Eds.), Lead isotopic study of the Xigaze ophiolite (Tibet):the problem of the relationship between magmatites (gabbros, dolerites. Lavas) and tectonites (harzburgites). Earth and Planetary Science Letters,1984,69:301-310.
    Martin CE. Osmium isotopic characteristics of mantle-derived rocks, Geochimica et Cosmochimica Acta, 1991,55:1421-1434.
    McCulloch MT, Gregory RT, Wasserburg GJ, et al. Sm-Nd, Rb-Sr, and 18O/16O isotopic systematics in an oceanic crustal section:Evidence from the Samail Ophiolite. Journal of Geophysical Research,1981, 86:2721-2735.
    McDermid I, Aitchison J, Davis A, et al. The Zedong terrane:a Late Jurassic intra-oceanic magmatic arc within the Yarlung-Tsangpo suture zone, southeastern Tibet. Chemical Geology,2002,187(3-4): 267-277.
    McDonough WF and Sun SS. The composition of the Earth. Chemical Geology,1995,120 (3-4):223-253.
    Meisel T, Biino GG and Nagler TF. Re-Os, Sm-Nd, and rare earth element evidence for Proterozoic oceanic and possible subcontinental lithosphere in tectonized ultramafic lenses from the Swiss Apls. Geochimica et Cosmochimica Acta,1996,60:2583-2593.
    Meisel T, Walker RJ, Irving AJ, et al. Osmium isotopic compositions of mantle xenoliths:A global perspective. Geochimica et Cosmochimica Acta,2001,65 (8):1311-1323.
    Meschede M. A method of discriminating between different types of mid-ocean ridge basalts and continental tholeiites with the Nb-Zr-Y diagram. Chemical Geology,1986,56:20-218.
    Metcalfe I. Palaeozoic and Mesozoic tectonic evolution and palaeogeography of East Asian crustal fragments:The Korean Peninsula in context. Gondwana Research,2006,9 (1-2):24-46.
    Metcalfe I. Permian tectonic framework and palaeogeography of SE Asia. Journal of Asian Earth Sciences, 2002,20 (6):551-566.
    Middlemost EAK. Magmas and Magmatic Rocks.1985. London:Longman.
    Miller C, Thoni M, Framk W, et al. Geochemistry of tectonomagmatic affinity of the Yungbwa ophiolite, SW Tibet. Lithos,2003,66:155-172.
    Miller JA, Cartwright I, Buick IS. An O-isotope profile through the HP-LT Corsican ophiolite, France and its implications for fluid flow during subduction. Chemical Geology,2001,174:43-69.
    Miyashiro A. The Troodos ophiolitic complex was probably formed in an island arc. Earth and Planetary Science Letters,1973,19 (2):218-224.
    Mo XX, Dong GC, Zhao ZD, et al. Timing of magma mixing in Gangdise magmatic belt during the India-Asia collision:Zircon SHIRMP U-Pb dating. Acta Geologica Sinica,2005,79:66-76.
    Mo XX, Hou ZQ, Niu YL, et al. Mantle contributions to crustal thickening during continental collision: Evidence from Cenozoic igneous rocks in southern Tibet. Lithos,2007,96:225-242.
    Mo XX, Niu Y, Dong GC, et al. Contribution of syn-collisional felsic magmatism to continental crust growth:A case study of the Paleogene Linzizong volcanic succession in southern Tibet. Chemical Geology,2008,250:49-67.
    Mo XX, Dong GC, Zhao ZD, et al. Mantle input to the crust in southern Gangdese, Tibet, during the Cenozoic:Zircon Hf isotopic evidence. Journal of Earth Science,2009,20 (2):241-249.
    Mojzsis SJ, Harrison TM and Pidgeon RT. Oxygen-isotope evidence from ancient zircons for liquid water at the Earth's surface 4,300 Myr ago. Nature,2001,409:178-181.
    Molnar P and Tapponier P. Cenozoic tectonics of Asia:effects of a continental collision. Science,1975,189: 419-426.
    Moores EM and Jackson ED. Ophiolites and oceanic crust. Nature,1974,250:136-139.
    Moores EM and Vine FJ. The Troodos Massif, Cyprus and other Ophiolites as Oceanic Crust:Evaluation and Implications. Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences,1971,268 (1192):443-467.
    Muehlenbachs and Clayton. Oxygen isotope composition of the oceanic crust and its bearing on seawater. Journal of Geophysical Research, Solid Earth and Planets,1976,81 (23):4365-4369.
    Miintener O and Piccardo GB. Melt migration in ophiolitic peridotites:the message from Alpine-Apennine peridotites and implications for embryonic ocean basins. In:Dilek Y, Robinson PT (Eds), Ophiolites in earth history. Geological Society of London,2003,218:69-89.
    Nicolas A and Boudier F. Large mantle upwellings and related variations in crustal thickness in the Oman ophiolite, In:Dilek Y, Moores EM (Eds.), Ophiolite and Oceanic Crust:New Insights from Field Studies and the Ocean Drilling Program:Boulder, Colorado, Geological Society of Amercian Special Paper, SP349.2000,67-74.
    Nicolas A and Violette J. Mantle flow at oceanic spreading centers:models derived from ophiolites. Tectonophysics,1982,81 (3-4):319-339.
    Nicolas A, Girardeau J, Marcoux J, et al. The Xigaze ophiolite (Tibet):a peculiar oceanic lithosphere. Nature,1981,294:414-417.
    O'Nions RK, Hamilton PJ and Evenson AM. Variations in 143Nd/144Nd and 87Sr/86Sr ratios in oceanic basalts. Earth Planet Science Letters,1977,34:13-22.
    Palme H and O'Neill HSC. Comsmochemical estimates of mantle composition. Treat Geochem,2003,2: 1-38.
    Palmer KK and Turekian MR.187Os/186Os in marine manganese nodules and the constraints on the crustal geochemistries of rhenium and osmium Nature,1986,319:216-220.
    Pearce JA and Deng WM. The ophiolites of the Tibet Geotraverse, Lhasa to Golmud (1985) and Lhasa to Kathmandu (1986). In:Chang C (Eds.), The Geological Evolution of the Tibet. London:The Royal Society,1988,327 (1594):215-238.
    Pearce JA and Norry MJ. Petrogenetic implications of Ti, Zr, Y, and Nb. Variations in volcanic rocks. Contributions to Mineralogy and Petrology,1979,69:33-37.
    Pearce JA and Robinson PT. The Troodos ophiolitic complex probably formed in a subduction initiation, slab edge setting. Gondwana Research,2010,18 (1):60-81.
    Pearce JA, Lippard SJ and Roberts S. Characteristics and tectonic significance of supra-subduction zone ophiolites. Marginal Basin Geology,1984,16:77-94.
    Pearce JA. A user's guide to basaltic discrimination diagrams. In: Wyman DA (Eds.), Trace Element Geochemistry of Volcanic Rocks:Applications for Massive Sulphide Exploration. Geological Association of Canada Short Course Notes,1996,12:79-113.
    Pearce JA. Basalt geochemistry used to investigate past tectonic environments on Cyprus. Tectonophysics, 1975,25:41-67.
    Pearce JA. Geochemical fingerprinting of oceanic basalts with applications to ophiolite classification and the search for Archean oceanic crust. Lithos,2008,100 (1-4):14-48.
    Pearce JA. Supra-subduction zone ophiolites:The search for modern analogues. Special Papers-Geological Society of America,2003:269-294.
    Pearce, JA and Cann J. Tectonic setting of basic volcanic rocks determined using trace element analyses. Earth and Planetary Science Letters,1973,19 (2):290-300.
    Pearson DG, Shirey SB, Carlson RW, et al. Re-Os, Sm-Nd, and Rb-Sr isotope evidence for thick Archean lithospheric mantle beneath the Siberian craton modified by multistage metasomatism. Geochimica et Cosmochimica Acta,1995,59:959-978.
    Peccerill R and Taylor SR. Geochemistry of Eocene calc-alkaline volcanic rocks from the Kastamonu area, Northern Turkey. Contributions to Mineralogy and Petrology,1976,58:63-81.
    Puchtel IS, Humayun M. Highly siderophile element geochemistry of 187Os-enriched 2.8 Ga Kostomuksha komatiites, Baltic Shield. Geochimica et Cosmochimica Acta,2005,69 (6):1607-1618.
    Pullen A, Kapp P, Gehrels GE, et al. Gangdese retroarc thrust belt and foreland basin deposits in the Damxung area, southern Tibet. Journal of Asian Earth Sciences,2008,33 (5-6):323-336.
    Rampone E, Romairone A, Abouchami W, et al. Chronology, Petrology and Isotope Geochemistry of the Erro-Tobbio Peridotites (Ligurian Alps, Italy):Records of Late Palaeozoic Lithospheric Extension. Journal of Petrology,2005,46 (4):799-827.
    Ravizza G, Martin CE, German CR, et al. Os isotopes as tracers in seafloor hydrothermal systems; metalliferous deposits from the TAG hydrothermal area,26 degrees N Mid-Atlantic Ridge. Earth and Planetary Science Letters,1996,138:105-119.
    Reisberg L and Meisel T. The Re-Os isotope system:A review of analytical techniques. Geostandards Newsletter,2002,26 (3):249-267.
    Righter K, Chesley JT and Ruiz J. Genesis of primitive arc basalt:constraints from Re, Os and C1 on the depth of melting and the role of fluids. Geology,2002,30:619-622.
    Righter K and Hauri EH. Rhenium is compatible in garnet during mantle melting and magma genesis. Seventh Annual VM Goldschmidt Conference. LPI Contribution,1997,921:175.
    Robinson PT, Malpas J, Dilek Y, et al. The significance of sheeted dike complexes in ophiolites. GSA Today,2008,18 (11):4-10.
    Rollinson H. Using geochemical data:evaluation, presentation, interpretation. Longmans, Singapore,1993, pp.352.
    Roy-Barman M and Allegre CJ.187Os/186Os ratios of mid-ocean ridge basalts and abyssal peridotites. Geochimica et Cosmochimica Acta,1994,58:5043-5054.
    Roy-Barman M, Wasserburg GJ, Papanastassiou DA, et al. Osmium isotopic composition and Re-Os concentrations in sulfide globules from basaltic glasses. Earth and Planetary Science Letters,1998,154: 331-347.
    Rudnick RL and Gao S. Composition of the Continental Crust. Treatise of Geochemistry,2003,3:1-64.
    Saunders AD, Norry MJ and Tamey J. Origin of MORB and chemically depleted mantle reservoirs:trace element constraints. Journal of Petrol Special Lithosphere,1988,29 (special lithosphere issue): 425-445.
    Saunders AD, Tarney J, Stern CR, et al. Geochemistry of Mesozoic marginal basin floor igneous rocks from southern Chile. Geological Society of America Bulletin,1979,90 (3):237-258.
    Savin SM and Epstein S. The oyxgen and hydrogen isotope geochemistry of ocean sediments and shales. Geochimica et Cosmochimica Acta,1970,34 (1):43-63.
    Schiano P, Birck JL, Allegre CJ. Osmium-strontium-neodymium-lead isotopic covariations in mid-ocean ridge basalt glasses and the heterogeneity of the upper mantle. Earth and Planetary Science Letters, 1997,150:363-379.
    Schiffman P and Smith BM. Petrology and Oxygen Isotope Geochemistry of a Fossil Seawater Hydrothermal System Within the Solea Graben, Northern Troodos Ophiolite, Cyprus Journal of Geophysical Research,1988,93 (B5):4612-4624.
    Schiffman P, Williams AE and Evarts RC. Oxygen isotope evidence for submarine hydrothermal alteration of the Del Puerto ophiolite, California. Earth and planetary science letters,1984,70:207-220.
    Sharma M, Papanastassiou DA and Wasserburg G J. The concentration and isotopic composition of osmium in the oceans. Geochimica et Cosmochimica Acta,1997,61:3287-3299.
    Shi RD, Alard O, Zhi XC, et al. Multiple events in the Neo-Tethyan oceanic upper mantle:Evidence from Ru-Os-Ir alloys in the Luobusa and Dongqiao ophiolitic podiform chromitites, Tibe. Earth and Planetary Science Letters,2007,261:33-48.
    Shirey SB and Walker RJ. The Re-Os isotope system in cosmochemistry and high-temperature geochemistry. Annual Review of Earth and Planetary,1998,26:423-500.
    Sinton JM and Fryer P. Mariana Trough Lavas from 188 N:implications for the origin of back-arc basin basalts. Geophysical Research,1987,92:12782-12802.
    Snow JE and Regisberg L. Os isotopic systematics of the MORB mantle:results from altered abyssal peridotites. Earth and Planetary Science Letters,1995,133:411-421.
    Stakes DS and O'Neil JR. Mineralogy and stable isotope geochemistry of hydrothermally altered oceanic rocks. Earth and Planetary Science Letters,1982,57 (2):285-304.
    Steinmann G, Bernoulli D, Friedman GM. Die ophiolitischen Zonen in den mediterranean Kettengebirgen. In:Dilek Y, Newcomb S (Eds.), Ophiolite concept and the evolution of geological thought. Geological Society of America Special Papers, Boulder, Colorado,2003,77-91.
    Steinmann G. Die ophiolitischen Zonen in den Mediterranean Kettengebirgen:Compte Rendu, XIVe Congres Geologique International,1926, Madrid. Graficas Reunidas,1927,2:637-667.
    Stern CR and De Wit MJ. Rocas Verdes ophiolites, southernmost South America:remnants of progressive stages of development of oceanic-type crust in a continental margin back-arc basin. Geological Society, London, Special Publications,2003,218 (1):665-683.
    Stille P, Unruh DM and Tatsumoto. Pb, Sr, Nd and Hf isotopic evidence of multiple sources for Oahu, Haweii basalts. Nature,1983,304:25-29.
    Sun SS and McDonough WF. Chemical and isotopic systematics of oceanic basalts:implications for mantle composition and processes. Geological Society London Special Publications,1989,42 (1):313-345.
    Sun SS. Chemical composition and origin of the earth's primitive mantle. Geochim Cosmochim Acta,1982, 46:179-192.
    Tang GJ, Wyman DA, Wang Q, et al. Asthenosphere-lithosphere interaction triggered by a slab window during ridge subduction:Trace element and Sr-Nd-Hf-Os isotopic evidence from Late Carboniferous tholeiites in the western Junggar area (NW China), Earth and Planetary Science Letters,2012, (329-330):84-96.
    Tatsumoto M. Genetic relations of oceanic basalts as indicated by lead isotopes. Science,1966,153: 1094-1101.
    Taylor HP Jr and Sheppard SMF. Igneous rocks:I. Processes of isotopic fractionation and isotope systematics. In:Valley JW, Taylor HP Jr, O'Neil JR (Eds.), Stable Isotopes in High Temperature Geological Processes.Reviews in Mineralogy and geochemistry,1986,16:227-271.
    Taylor HP. The application of oxygen and hydrogen isotope to problems of hydrothermal,Alteration and ore deposit. Economic geology,1974,69:843-883.
    Thy P and Moores EM. Crustal accretion and tectonic setting of the Troodos ophiolite, Cyprus. Tectonophysics,1988,147:221-245.
    Tsuru A, Walker RJ, Kontinen A, et al. Re-Os isotopic systematics of the 1.95 Ga Jormua Ophiolite Complex, northeastern Finland Chemical Geology,2000,164:123-141.
    Tsuru A. The Os isotopic composition of the upper mantle:the Jormua ophiolite complex, Finland. MS Thesis, University of Maryland,1997,142.
    Turner SP, Hawkesworth CJ, Rogers NW, et al.238U/230Th disequilibria, magma petrogenesis, and flux rates beneath the depleted Tonga-Kermadec island arc. Geochimica et Cosmochimica Acta,1997,6: 4844-4855.
    Valley JW, Peck WH, King EM, et al. A cool early Earth. Geology,2002,30:351-354.
    Walker RJ and Morgan JW. Rhenium-Osmium isotope systematics of carbonaceous chondrites. Science, 1989.243:519-522.
    Walker RJ, Carlson RW, Shirey SB, et al. Os, Sr, Nd, and Pb isotope systematics of southern African peridotite xenoliths:implication for the chemical evolution of subcontinental mantle. Geochimica et Cosmochimica Acta,1989.53:1583-1595.
    Walker RJ, Hanski E, Vuollo J, et al. The Os isotopic composition of Proterozoic upper mantle:evidence for chondritic upper mantle from the Outokumpu ophiolite Finland. Earth and Planetary Science Letters, 1996,141:161-173.
    Walker RJ, Morgan JW, Hanski E, et al. Re-Os systematics of Early Proterozoic ferropicrites, Pechenga Complex, NW Russia:evidence for ancient 187Os-enriched plumes. Geochimica et Cosmochimica Acta, 1997,61:3145-3160.
    Walker RJ, Prichard HM, Ishiwatari A, et al. The osmium isotopic composition of convecting upper mantle deduced from ophiolite chromites Geochimica et Cosmochimica Acta,2002,66 (2):329-345.
    Wan XQ, Luo W, Wang CS, et al. Discovery and significance of Cretaceous fossils from the Xigaze forearc basin, Tibet. Journal of Asian Earth Sciences,1998,16 (2-3):217-223.
    Wang C, Li XH, Liu ZF, et al. Revision of the Cretaceous-Paleogene stratigraphic framework, facies architecture and provenance of the Xigaze forearc basin along the Yarlung Zangbo suture zone. Gondwana Research,2012,22 (2):415-433.
    Wang CS, Liu ZF and Hebert R. The Yarlung-Zangbo paleo-ophiolite, southern Tibet:implications for the dynamic evolution of the Yarlung-Zangbo Suture Zone. Journal of Asian Earth Sciences,2000,18 (6): 651-661.
    Weaver BL and Tarney J. Empirical approach to estimating the composition of the continental crust. Nature, 1984,310:575-577.
    Weaver SD, Saunder AD, Pankhurst RJ, et al. A geochemical of magmatism associated with the initial stages of back-arc spreading. Contributions to Mineralogy and Petrology,1979,68:151-169.
    Wen DR, Liu D, Chung SL, et al. Zircon SHRIMP U-Pb ages of the Gangdese Batholith and implications for Neotethyan subduction in southern Tibet. Chemical Geology,2008,252 (3-4):191-201.
    Winchester J and Floyd P. Geochemical discrimination of different magma series and their differentiation products using immobile elements. Chemical Geology,1977,20:325-343.
    Wilson M. Igneous petrogenesis. Springer, London,1989, pp.245-285.
    Wood DA. The application of a Th-Hf-Ta diagram to problems of tectonmagmatic classification and to establishing the nature of crustal contanmination of basaltic lavas of the British Tertiary volcanic province. Earth and Planetary Science Letters,1980,50:11-30.
    Woodland SJ, Pearson DG and Thirlwall MF. A platinum group element and Re-Os isotope investigation of siderophile element recycling in subduction zones:omparson of Grenada, Lesser Antilles Arc, and the Izu-Bonin Arc. Journal of Petrology,2002,43 (1):171-198.
    Wu FY, Ji WQ, Liu CZ, et al. Detrital zircon U-Pb and Hf isotopic data from the Xigaze fore-arc basin: Constraints on Transhimalayan magmatic evolution in southern Tibet. Chemical Geology,2010,271 (1-2):13-25.
    Xia B, Chen GW, Wang R, et al. Seamount volcanism associated with the Xigaze ophiolite, Southern Tibet. Journal of Asian Earth Sciences,2008,32:396-405.
    Xiao XC. Les ophiolites de Xigaze au Tibet meridional et quelques problemes tectoniques les concernant. In:Mercier JL, Li GC (Eds.), Mission franco-chinoise au Tibet 1980. Editions du Centre National de la Recherche Scientifique, Paris,1984,167-188.
    Xu JF and Castillo PR. Geochemical and Nd-Pb isotopic characteristics of the Tethyan asthenosphere: implications for the origin of the Indian Ocean mantle domain. Tectonophysics,2004,393:9-27.
    Xu JF, Castillo PR, Chen FR, et al. Geochemistry of late Paleozoic mafic igneous rocks from the Kuerti area, Xinjiang, northwest China:implications for backarc mantle evolution. Chemical Geology,2002, 193(1-2):137-154.
    Xu JF, Suzuki K, Xu YG, et al. Os, Pb, and Nd isotope geochemistry of the Permian Emeishan continental flood basalts:Insights into the source of a large igneous province Geochimica et Cosmochimica Acta 2007,71:2104-2119.
    Yamaoka K, Ishikawa T, Matsubaya O, et al. Boron and oxygen isotope systematics for a complete section of oceanic crustal rocks in the Oman ophiolite Geochimica et Cosmochimica Acta,2012,84:543-559.
    Yin A and Harrison TM. Geologic evolution of the Himalayan Tibetan Orogen. Annual Review of Earth and Planetary Sciences,2000,28:211-280.
    Yin A, Harrison TM, Ryerson F, et al. Tertiary structural evolution of the Gangdese thrust system, southeastern Tibet. Journal of Geophysical Research,1994,99 (B9):18175-18201.
    Zhang HF, Gao S, Zhong ZQ, et al. Geochemical and Sr-Nd-Pb isotopic compositions of Cretaceous granitoids:constraints on tectonic framework and crustal structure of the Dabieshan ultrahigh-pressure metamorphic belt, China. Chemical Geology,2002,186 (3-4):281-299.
    Zhang SQ, Mahoney JJ, Mo XX, et al. Evidence for a Widespread Tethyan Upper Mantle with Indian-Ocean-Type Isotopic Characteristics. Journal of Petrology,2005a,46 (4):829-858.
    Zheng YF and Fu B. Estimation of oxygen diffusivity from anion porsity in minerals. Geochemical,1998, 32:71-89.
    Zhou MF, Robinson PT, Malpas J, et al. REE and PGE geochemical constraints on the formation of dunites in the Luobusa ophiolite, Southern Tibet. Journal of Petrology,2005,46 (3):615-639.
    Zhou S, Mo XX, Mahoney JJ, et al. Geochronology and Nd and Pb isotopic characteristics of gabbro dikes in the Luobusha ophiolite, Tibet. Chinese Science Bulletin,2002,47 (2):143-146.
    Zhu DC, Chung SL, Mo XX, et al. The 132 Ma Comei-Bunbury large igneous province:Remnants identified in present-day SE Tibet and SW Australia. Geology,2009,37:583-586.
    Zhu DC, Mo XX, Pan GT, et al. Petrogenesis of the earliest Early Cretaceous basalts and associated diabases from Cona area, eastern Tethyan Himalaya in south Tibet:Interaction between the incubating Kerguelen plume and eastern Greater India lithosphere? Lithos,2008a,100:147-173.
    Zhu DC, Mo XX, Wang LQ, et al. Hotspot-ridge interaction for the evolution of Neo-Tethys:insights from the Late Jurassic-Early Cretaceous magmatism in southern Tibet. Acta Petrologica Sinica,2008b,24 (2): 225-237.
    Zhu DC, Zhao ZD, Niu YL, et al. Lhasa Terrane in southern Tibet came from Australia. Geology,2011b,39: 727-730.
    Zhu DC, Zhao ZD, Niu YL, et al. The Lhasa Terrane:Record of a microcontinent and its histories of drift and growth. Earth and Planetary Science Letters,2011a,301:241-255.
    Zhu DC, Zhao ZD, Niu YL, et al. The origin and pre-Cenozoic evolution of the Tibetan Plateau. Gondwana Research,2013,23 (4):1429-1454.
    Ziabrev SV, Aitchison JC, Abrajevitch AV, et al. Precise radiolarian age constraints on the timing of ophiolite generation and sedimentation in the Dazhuqu terrane, Yarlung-Tsangpo suture zone, Tibet. Journal of the Geological Society,2003,160:591-599.
    白文吉,杨经绥,施倪承,等.西藏罗布莎蛇绿岩地幔岩中首次发现超高压矿物方铁矿和自然铁.地质论评,2004,50(2):184-188.
    曹荣龙.西藏雅鲁藏布江蛇绿岩带与深海沟沉积物的岩石学特征及其地质意义.青藏高原科学讨论会论文(摘要),1980:42.
    常承法.雅鲁藏布江缝合带地质构造特征及其演化.见:李光岑,麦尔西叶主编.中法喜马拉雅考察成果1980.北京:地质出版社,1984,327-340.
    常承法和郑锡澜.中国西藏南部珠穆朗玛峰地区的构造特征。地质科学,1973,3:1-11.
    陈根文,夏斌,钟志洪,等.西藏得几蛇绿岩体中玻安岩的地球化学特征及其地质意义.矿物学报,2003,23(1):91-96.
    邓万明,吴浩若,常承法,等.雅鲁藏布蛇绿岩带的层序、形成和侵位.青藏高原科学讨论会论文(摘要),1980,39.
    邓万明,吴浩若和常承法.雅鲁藏布江蛇绿岩带的层序特征及其成因.青藏高原地质论文专辑.北京:地质出版社,1982.
    邓万明.青藏古特提斯蛇绿岩与“冈瓦纳古陆北界”.蛇绿岩与地球动力学研讨会论文集,北京:地质出版社,1996.
    邓万明和Pearce JA.拉萨至格尔木(1985)和拉萨至加德满都(1986)的蛇绿岩.李祺方.青藏高原地质演化(中英青藏高原综合地质考察报告).1990,218-242.
    董国臣,莫宣学,赵志丹,等.冈底斯岩浆带中段岩浆混合作用:来自花岗杂岩的证据.岩石学报,2006,22(4):835-844.
    董国臣,莫宣学,赵志丹,等.西藏冈底斯南带辉长岩及其所反映的壳幔作用信息.岩石学报,2008,24(2):203-210.
    董云鹏,周鼎武和张国伟.蛇绿岩中地幔橄榄岩的显微构造特征及其动力学意义,蛇绿岩与地球动力学研究.北京:地质出版社,1996.
    高俊,汤耀庆,赵民,等.新疆哈尔克山蛇绿岩的形成环境.地球科学—中国地质大学学报,1995,20(6):682-688.
    耿全如,彭智敏和张璋.雅鲁藏布江大拐弯蛇绿岩变基性岩类岩石地球化学再研究.地质通报,2010.29(12):1781-1794.
    高永丰,侯增谦,魏瑞华,等.冈底斯基性次火山岩地球化学和Sr-Nd-Pb同位素:碰撞后火山作用亏损地幔源区的约束.岩石学报,2006,22(4):855-866.
    管琪.西藏南冈底斯东段中新生代花岗岩类年代学与地球化学及其意义.[博士学位论文]:北京:中国地质大学(北京),2011.
    郝杰,柴育成和李继亮.关于雅鲁藏布江缝合带(东段)的新认识.地质科学,1995,30(4):423-431
    郝杰,柴育成和李继亮.雅鲁藏布江蛇绿岩的形成与日喀则弧前盆地沉积演化.地质科学,1999,34 (1):1-9.
    侯青叶.西秦岭—松潘构造结古洋域地幔地球化学特征、归属及其地质意义:[博士学位论文].北京:中国地质大学(北京),2005.
    侯青叶,赵志丹,张本仁,等.青藏高原东北缘特提斯构造域界限的探讨.岩石学报,2006a,22(3):567-577.
    侯青叶,赵志丹,张宏飞,等.西秦岭—松潘构造结古洋地幔地球化学特征及构造归属探讨.岩石学报,2006b,22(12):2901-2909.
    金成伟.西藏中、新生代火山岩及其地质意义.青藏高原科学讨论会论文(摘要),1980:24.
    赖绍聪和刘池阳.青藏高原安多岛弧型蛇绿岩地球化学及成因.岩石学报,2003,19(4):675-682.
    李光岑和麦尔西叶.中法喜马拉雅考察成果1980.北京:地质出版社,1984.
    李建峰,夏斌,刘立文,等.西藏群让蛇绿岩辉长岩SHRIMP锆石U-Pb年龄及地质意义.大地构造与成矿学,2009,(02):294-298.
    李建峰,夏斌,刘立文,等.西藏普兰地区拉昂错蛇绿岩中辉绿岩的锆石SHRIMP U-Pb年龄及其地质意义.地质通报,2008,27(10):1739-1743.
    李杰Re-Os同位素的MC-ICPMS分析测试方法的建立及其在峨眉山二叠纪苦橄岩研究中的应用:[博士学位论文].广州:中国科学院广州地球化学研究所,2007.
    李延河,万德芳,张国柄,等.氧化物、硅酸盐矿物的氧同位素分析方法—BrF5法.见:地质矿产部矿床地质研究所同位素地质研究室,著.稳定同位素分析方法研究进展.北京:科学技术出版社,1992,37-43.
    刘钊,李源,熊发挥,等.西藏西部普兰蛇绿岩中的MOR型辉长岩:岩石学和年代学.岩石学报,2011,27(11):3269-3279
    莫宣学,董国臣,赵志丹,等.西藏冈底斯带花岗岩的时空分布特征及地壳生长演化信息.高校地质学报,2005,11(3):281-290.
    莫宣学,赵志丹,邓晋福,等.印度—亚洲大陆主碰撞过程的火山作用响应.地学前缘,2003,10(003):135-148.
    牛晓露,赵志丹,莫宣学,等.西藏日喀则地区德村—昂仁蛇绿岩内基性岩的元素与Sr-Nd-Pb司位素地球化学及其揭示的特提斯地幔域特征.岩石学报,2006,22(12):2875-2888.
    潘桂棠和丁俊(主编).青藏高原及邻区地质图(1:1500000).成都:成都地图出版社.2004,8-43.
    潘桂棠,莫宣学,侯增谦,等.冈底斯造山带的时空结构及演化.岩石学报,2006,22(3):521-533.
    邱瑞照,蔡志勇和李金发.青藏高原西部蛇绿岩中玻安岩(boninite)及其地质意义.现代地质,2004,18(3):305-308.
    沈渭洲.同位素地质学教程.北京:原子能出版社,1997.
    史仁灯,支霞臣,陈需,等Re-Os同位素体系在蛇绿岩应用研究中的进展.岩石学报,2006,22(6):1685-1695.
    史仁灯.蛇绿岩研究进展、存在问题及思考.地质论评,2005,51(6):681-693.
    汪云亮,张成江,修淑芝.玄武岩类形成的大地构造胡那景的Th/Hf-Ta/Hf图解判别.岩石学报,2001,17(3):413-421.
    王保弟,许继峰,曾庆高,等.西藏改则地区拉果错蛇绿岩地球化学特征及成因.岩石学报,2007,23(6):1521-1530.
    王成善,李亚林和刘志飞.雅鲁藏布江蛇绿岩再研究:从地质调查到矿物记录.地质学报,2005,79(3):323-330.
    王成善,刘志飞,李祥辉,等.西藏日喀则弧前盆地与雅鲁藏布江缝合带.北京:地质出版社,1999.
    王冉,夏斌,周国庆,等.西藏吉定蛇绿岩中辉长岩SHRIMP锆石U-Pb年龄.科学通报,2006,51(1):114-117.
    王希斌,鲍佩声,邓万明,等.西藏蛇绿岩.北京:地质出版社,1987.
    王玉净,杨群,松冈笃,等.藏南泽当雅鲁藏布缝合带中的三叠纪放射虫(英文).微体古生物学报,2002,3:215-225+227-226.
    韦栋梁,夏斌,周国庆,等.西藏泽当蛇绿岩壳层火山熔岩的岩石地球化学及成因.大地构造及成矿学.2004,28(3):270-278.
    韦振权.西藏蓬湖西蛇绿岩岩石学、地球化学和榴辉岩中的出溶物及其构造意义:[博士学位论文].广州:中国科学院广州地球化学研究所,2007.
    韦振权,夏斌,张玉泉,等.西藏休古嘎布蛇绿岩中辉绿岩锆石SHRIMP U-Pb定年及其地质意义.大地构造与成矿学,2006,30(1):93-97.
    吴福元和孙德有.Re-Os同位素体系理论及其应用.地质科技情报,1999,18(3):43-46.
    吴浩若,王东安和王连城.西藏南部拉孜—江孜一带的白垩系.地质科学,1977,3:250-261.
    吴浩若.藏南晚白垩世赛诺曼期放射虫的新属种.微体古生物学报,1986,3(4):347-359.
    吴浩若.西藏南部下鲁硅质岩晚侏罗世罩笼虫(放射虫)新材料.现代地质,2000,14(3):301-306.
    吴浩若.西藏南部雅鲁藏布蛇绿岩带下鲁硅岩中的侏罗,白垩纪放射虫化石及其地质意义.中国科学院地质研究所集刊,1988,3:191-212.
    吴浩若.雅鲁藏布缝合带的地质轮廓及地史特征.1980,青藏高原科学讨论会论文(摘要).中国科学院青藏高原科学讨论会组织委员会.
    吴茂炳,叶先仁,刘春燕,等.雅鲁藏布江蛇绿岩中地幔柱型岩浆作用—来自氦、氩同位素的证据.地质通报,2003,22(9):670-674.
    喜马拉雅地质文集编辑委员会.喜马拉雅地质Ⅱ.中法合作喜马拉雅地质考察1981年成果之一.北京:地质出版社,1984.
    夏斌,李建峰,刘立文,等.西藏桑桑蛇绿岩辉绿岩SHRIMP锆石U-Pb年龄:对特提斯洋盆发育的年代学制约.地球化学,2008,(04):399-403.
    肖序常.中国特提斯喜马拉雅蛇绿岩及其地质构造意义.国际交流地质学术论文集,1980,143-152.
    熊发挥,杨经绥,梁凤华,等.西藏雅鲁藏布江缝合带西段东波蛇绿岩中锆石U-Pb定年及地质意义.岩石学报,2011,(11):3223-3238.
    徐德明,黄圭成,雷义均.西藏西南部休古嘎布蛇绿岩的成因:岩石学和地球化学证据.大地构造与成矿学,2007,31(4):490-501.
    叶培盛,江万,吴珍汉,等.西藏泽当—罗布莎蛇绿岩的地球化学特征及其构造意义.现代地质,2006,20(3):370-377.
    尹安.喜马拉雅—青藏高原造山带地质演化—显生宙亚洲大陆生长.地球学报,2001,22(3):193-230.
    岳雅慧和丁林.西藏林周基性岩脉的40Ar/39Ar年代学、地球化学及其成因.岩石学报,2006,22(4):855-866.
    张理刚.稳定同位素在地质科学中的应用,陕西科学技术出版社,1985.
    张旗,钱青和王焰.造山带火成岩地球化学研究.地学前缘,1999,6(3):113-120.
    张旗,周国庆和王焰.中国蛇绿岩的分布、时代及其形成环境.岩石学报,2003,19(1):1-8.
    张旗.蛇绿岩研究的进展.地学前缘,1994,(Z1):98-103.
    张旗和周德进.一种新的洋壳类型及其动力学意义.科学通报,1996,41(11):1025-1027.
    张旗和周国庆.中国蛇绿岩.北京:地质科学出版社.2001,87-92.
    张万平.雅鲁藏布江缝合带东段朗县蛇绿岩的地质特征、年代学及大地构造意义:[博士学位论文].北京:中国地质大学(北京),2012.
    赵志丹,朱弟成,董国臣,等.西藏当雄南部约54Ma辉长岩-花岗岩杂岩的岩石成因及意义.岩石学报,2011,27(12):3513-3524.
    赵子福,郑永飞,魏春生,等.大别山沙村和椒子岩基性-超基性岩锆石U-Pb定年、元素和碳氧同位素地球化学研究.高校地质学报,2003,9(2):139-162.
    郑剑东.青藏高原形成、演化及动力学研究现状.地质科技情报,1993,12(1):11-16.
    钟立峰,夏斌,崔学军,等.藏南罗布莎蛇绿岩壳层熔岩地球化学特征及成因.大地构造与成矿学,2006a,30(2):231-240.
    钟立峰,夏斌,周国庆,等.藏南罗布莎蛇绿岩成因:壳层熔岩的Sr-Nb-Pb同位素制约.矿物岩石,2006b,26(1):57-63.
    钟立峰,夏斌,周国庆,等.藏南罗布莎蛇绿岩辉绿岩中锆石SHRIMP测年.地质论评,2006c,52(2):224-229.
    周国庆.蛇绿岩研究新进展及其定义和分类的再讨论.高校地质学报,2008,1:1-24.
    周肃,莫宣学,Mahoney JJ,等.西藏罗布莎蛇绿岩中辉长辉绿岩Sm-Nd定年及Pb, Nd同位素特征.科学通报,2001,46(16):1387-1390.
    周肃.西藏冈底斯岩浆岩带及雅鲁藏布蛇绿岩带关键地段同位素年代学研究:[博士学位论文].北京:中国地质大学(北京),2003.
    朱弟成,莫宣学,王立全,等.新特提斯演化的热点与洋脊相互作用:西藏南部晚侏罗世--早白垩世岩浆作用推论.岩石学报,2008,24(2):225-237.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700