粳稻产量相关性状及其杂种优势的分子遗传基础研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前,中国水稻年种植面积3067万hm2。其中,杂交籼稻的种植面积已达1733万hm2,约占中国籼稻种植面积的80%,占中国水稻种植面积的一半以上。相对于杂交籼稻取得的巨大成就,杂交粳稻的发展却十分缓慢。粳稻年种植面积828万hm2,以常规粳稻为主,杂交粳稻所占比例不超过3%。杂交粳稻产量竞争优势不明显是阻碍其发展的重要因素。剖析粳稻产量相关性状及其杂种优势的分子遗传基础有助于利用分子标记辅助选择改良亲本,提高产量竞争优势。本研究以粳稻栽培品种秀水79和粳稻恢复系C堡及其衍生的含有254个家系的重组自交系群体(以下简称“秀堡RIL群体”)为材料,开展了以下四个层面的分析。第一,从秀堡RIL群体中选取每穗颖花数最多和最少的极端类型个体杂交,配制2个组合6个世代,对粳稻穗部5个性状进行主基因+多基因遗传分析;第二,在多个环境下种植秀堡RIL群体,调查不同生长时期的分蘖数和苗高,对这2个性状进行动态QTL分析;第三,在2个环境下对秀堡RIL群体的生育期、株高和单株有效穗数3个性状进行条件和非条件QTL定位;第四,将秀堡RIL群体中的株系与其双亲回交,构建2个回交群体,利用秀堡RIL群体本身及其2个回交群体,检测10个产量相关性状及其中亲优势的主效位点和双基因互作位点。主要研究结果如下:
     1.秀堡RIL群体中每穗颖花数最多的株系与每穗颖花数最少的株系杂交后3个分离世代(B1、B2和F2),每穗颖花数性状在2个组合的各分离世代均未出现超亲个体,而其它4个穗部性状均有不同程度的超亲分离。表明每穗颖花数最多的个体已聚集了双亲表现出来的全部的增效等位基因,每穗颖花数最少的个体已聚集了双亲表现出来的全部的减效等位基因。运用主基因+多基因混合遗传模型分析显示,每穗颖花数、每穗实粒数、穗长和二次枝梗数4个性状均受2对主基因+多基因控制,以主基因遗传为主。一次枝梗数性状受1对主基因+多基因控制,以多基因遗传为主。
     2.水稻一生中分蘖数的增加和减少是由不同位点控制的。在南京和泗洪2个环境下调查秀堡RIL群体254个家系及双亲9个生长时期的单株分蘖数,利用混合线性模型和最佳线性无偏预测法对不同时期分蘖数变异的各效应值进行估计,并利用非条件和条件QTL定位的方法对控制单株分蘖数性状的静态位点和动态位点进行检测。结果9个调查时期共检测到13个非条件QTL,不同时期检测到的同一加性位点增效等位基因来源相同。条件定位的方法9个调查时期也检测到13个QTL。其中分蘖数增加的t1-t4期检测到7个条件QTL(qTN2.1、qTN4、qTN5.1、qTN5.2、qTN7.1、qTN9.1和qTN10), qTN4和qTN7.1增效等位基因来自秀水79,其余5个位点的增效等位基因均来自C堡。分蘖数减少的t5-t9期检测到6个条件QTL (qTN2.2、qTN3、qTN8.1、qTN8.2、qTN11.1和qTN11.2),除qTN8.2增效等位基因来自于C堡外,其余均来自秀水79。反映出水稻分蘖数的增加和减少是由不同位点控制的。秀堡RIL群体中不同株系含有的有利等位变异数与该株系的单株有效穗数呈极显著正相关(r=0.347**)。表明通过不同时期的有利等位基因的聚合可以提高单株有效穗数。
     3.控制苗高的位点在不同生长时期其遗传效应不同。调查南京和泗洪2年3个环境下秀堡RIL群体254个株系及其亲本9个不同生长时期的苗高,利用与上述“2”相同的分析方法对苗高性状进行分析。结果9个调查时期共检测到15个非条件加性QTL。不同时期检测到的同一加性位点增效等位基因来源相同,效应随着发育进程的推进而增大。条件定位法9个调查时期检测到16个条件加性QTL和16个互作位点对。6个加性QTL在2个时间段被检测到,其余位点(位点对)均在单个时期被检测到。说明控制苗高性状的位点具有时序性表达的特点。条件加性QTL和条件上位性QTL总遗传效应和总解释表型变异率在全生育期显示多峰分布。表明控制苗高的位点在不同调查时期的遗传效应不同。t1|t0至t8|t7时间段加性QTL总解释表型变异率明显大于上位性QTL的总解释表型变异率,t9|t8时间段两者基本一致。反映出从播种至移栽后98d,控制苗高的位点以加性遗传效应为主;98d至112d受加性效应和上位性效应共同控制。GE互作遗传效应在整个调查时期均很小。
     4.利用非条件定位和条件定位相结合的方法可以发掘目标性状适用的有利等位变异。在南京和泗洪2个环境下种植秀堡RIL群体的254个株系及其亲本,对粳稻生育期、株高和单株有效穗数进行非条件和条件QTL定位。3个性状两种方法检测到的QTL均以加性效应为主。将生育期矫正到同一水平,单株有效穗数检测到1个适用有利等位变异RM80-160bp,加性效应为0.71。将单株有效穗数矫正到同一水平,生育期性状检测到1个适用的有利等位变异RM448-240bp,加性效应为4.64。将株高矫正到同一水平,单株有效穗数性状检测到1个适用有利等位变异RM80-160bp,加性效应为0.62;生育期性状检测到1个适用有利等位变异RM448-240bp,加性效应为3.89。利用这些适用有利等位变异改良目标性状时不会对矫正性状产生影响。
     5.加性×非加性以及显性×显性互作效应是粳稻秀堡组合杂种优势的主要遗传基础。调查秀堡RIL群体及其2个回交(BCF1)群体中与产量相关的10个性状,利用这些性状的表型值和中亲优势值对这10个性状进行QTL定位。3个群体共检测到78个主效QTL (Main-effect QTL,简写M-QTL),单个QTL解释表型变异率在2.4-41.9%之间。79.5%(62个)的QTL表现为加性效应,11.5%(9个)的QTL表现为部分或完全显性效应,9.0%(7个)的QTL表现为超显性效应。3个群体共检测到114对显著的双基因上位性QTL(Epistatic QTL,简写E-QTL)。RIL群体中检测到58对E-QTL,单对E-QTL解释表型变异率在1.7-8.0%之间,平均3.7%。XSBCF1群体中检测到29对E-QTL,其中利用BCF1表型值检测到17对E-QTL,每对E-QTL解释表型变异率在10.9-78.5%之间,平均29.8%;利用中亲优势值检测到12对E-QTL,每对E-QTL解释表型变异率在15.0-71.8%之间,平均46.5%。CBBCF1群体中检测到27对E-QTL,其中利用BCF1表型值检测到15对E-QTL,每对E-QTL解释表型变异率在2.7-64.4%之间,平均29.7%;利用中亲优势值检测到14对E-QTL,每对E-QTL解释表型变异率在21.2-64.1%之间,平均36.2%;有2对E-QTL以BCF1表型值和中亲优势值计算都被检测到。表明粳稻杂种优势是加性×非加性以及显性×显性互作效应共同作用的结果。
Rice (Oryza sativa L.) growing area in China is 30,670,000 ha each year. Among them, indica hybrid rice planting area is 17,330,000 ha and accounts for more than 80 percent of China indica rice planting area and 50 percent of China's rice growing area. Japonica rice growing area in China is 8,280,000 ha annually. The area planted with japonica hybrid rice only occupied 3 percent of the total area of japonica rice in China. Therefore, great space exists for developing japonica hybrid rice, compared with indica hybrid rice, in which great achievement had been made. The major reason for low speed of japonica hybrid rice development is that competitive heterosis of hybrid cultivar is not conspicuous in yield, compared with conventional cultivar in japonica rice. Dissecting molecular genetic basis of yield-related traits and its heterosis is helpful to improve competitive heterosis of hybrid cultivar in yield by molecular marker-assisted selection (MAS). Four studies were carried out by using the recombinant inbred line population ("Xiubao RIL population" for short hereinbelow) contained 254 lines derived from a cross between Xiushui 79 (japonica cultivar variety) and C Bao (japonica restorer line) and their parents in this study. Firstly, genetic segregation analysis of the five panicle traits were conducted by using the mixed major gene plus polygene inheritance model for P1, P2, F1, B1, B2 and F2 generations of two crosses, which were made by using two lines having panicles with the most spikelet number and two lines having panicles with the least spikelet number selected from Xiubao RIL population. Secondly, dynamic QTL analysis of tiller number (TN) and seedling height (SH) in different investigated stages were performed by using Xiubao RIL population across environments. Thirdly, unconditional QTL mapping and conditional QTL mapping of growing duration (GD), plant height (PH) and panicle number per plant (PN) were performed by using Xiubao RIL population in two environments. Finally, QTLs of ten yield-related traits and their mid-parental heterosis were detected by using of the Xiubao RIL population and the two backcross populations. The main results are as follows:
     1. The transgressive segregation of the five traits except spikelet number per panicle (SNP) was observed in three segregation generations (B1、B2 and F2) in both of the two crosses. The result indicated the lines having panicles with the most spikelet number polymerized all exhibited positive alleles from two parents, whereas the lines having panicles with the least spikelet number polymerized all exhibited negative alleles from two parents. By using major gene-polygene mixed inheritance models, genetic analyses showed that SNP, filled grain number per panicle (FGP), panicle length (PL) and secondary branch number per panicle (SBN) were controlled by two major genes plus polygenes. The four traits were mainly governed by major genes. Primary branch number per panicle (PBN) was controlled by one major genes plus polygenes. The trait was mainly governed by polygenes.
     2. Increase and decrease of TN were controlled by different loci in rice of all development stages. Tiller numbers of 254 recombinant inbred lines and two parents, Xiushui 79 and C Bao, were recorded every 14 days until maturity across two environments, Nanjing and Sihong. Genetic effects for TN at different measuring stages were estimated by the mixed line model and the best linear unbiased prediction method. Static loci and dynamic loci affecting tiller numbers were detected by using unconditional and conditional QTL mapping methods. Thirteen unconditional additive QTLs were identified for TN at nine stages. For the identical locus detected at various stages, positive alleles came from the identical parent. Seven of the 13 conditional additive QTLs were detected from stage 1 to stage 4 when TN increased. Xiushui 79 carried positive alleles for qTN4 and qTN7.1, and C Bao carried positive alleles for qTN2.1, qTN5.1, qTN5.2, qTN9.1 and qTN10. The remaining 6 loci (qTN2.2, qTN3, qTN8.1, qTN8.2, qTN11.1 and qTN11.2) were detected between stage 5 and stage 9 when TN decreased. Alleles which decreased tiller mortality were except for qTN8.2, from Xiushui 79. Within the 13 conditional QTLs detected, number of elite alleles contained by the RILs extremely significantly positive correlated with productive number per plant (r=0.347**) of the lines. These results indicate that tiller morphogenesis and mortality are controlled by different loci, and it is possible to enhance productive panicles per plant by pyramiding the elite alleles at different stages.
     3. Genetic effects of loci affecting SH were different at different growing stages. SH of 254 recombinant inbred lines and two parents, Xiushui 79 and C Bao were measured at nine investigated stages by subjected to three different environments. Genetic analysis was conducted by using the same method as mentioned above "2". The result showes that fifteen unconditional additive QTLs were identified at nine different developmental stages. For the identical unconditional additive locus detected at various stages, alleles with positive effect came from the identical parent. And the additive effect increased with the plant growth. Sixteen conditional additive QTLs and sixteen epistatic QTL pairs involved in SH were identified at nine measurement stages. It shows that these loci of SH exhibited the temporal expression pattern. Total additive genetic effect and total expained phenotypic variability of conditional QTL shows multimodal distribution in whole development stages. The result indicated genetic effects of loci affecting SH were different at different growing stages. Total expained phenotypic variability of epistatic QTL significant less than that of additive QTL from t1|t0 to t8|t7, whereas both of them was consistent in t9|t8. It reflected that the additive effect was the major genetic effect at the period from sowing to 98d after transplanting, whereas SH was controlled by both additive effect and epistatic effect during 98d and 112d. Effect of GxE interaction was small during all developmental stages.
     4. Applicable elite allele of target trait can be mined by the combination of unconditional with conditional mapping. Unconditional QTL mapping and conditional QTL mapping were conducted for GD, PH and PN using Xiubao RIL population. The RIL population consisted of 254 lines and two parents were planted in two environments, Nanjing and Sihong. Result showed that additive effects were major in all of QTLs for GD, PH and PN detected by the two methods. After GD was adjusted to an identical level, RM80-160bp was detected as an applicable elite allele for PN, with additive effect 0.71. After PN was adjusted to an identical level, RM448-240bp was detected as an applicable elite allele for GD, with additive effect 4.64. After PH was adjusted to an identical level, RM80-160bp was detected as an applicable elite allele for PN, with additive effect 0.62, and RM448-240bp was detected as an applicable elite allele for GD, with additive effect 3.89. These applicable elite alleles could be used to improve target traits without influencing the adjusted trait.
     5. The heterosis in japonica rice is attributable to the orchestrated outcome of additive by non-additive and dominant by dominant interactions. QTLs of GD, PH, PN, PL, SNP, spikelet ferlitity (SF), spikelet density (SD), PBN, SBN and secondary branch distribution density (SPD) were detected by using phenotypic value in Xiubao RIL population, and BCF1 phenotypic value and mid-parental heterosis value in the two backcross populations, XSBCF1 and CBBCF1.78 M-QTLs (Main-effect QTLs) were identified in the 3 population. The percentage of phenotypic variance explained by each QTL ranged from 2.4%to 41.9%. 79.5%(62) of the QTLs detected showed an additive effect,11.5%(9) a partial-to-complete dominant effect, and 9.0%(7) an overdominant effect.114 pairs of QTL were detected in the 3 populations showing digenic interactions. Among them,58 pairs of E-QTL were detected in RIL population, and the percentage of phenotypic variance explained by each pair of QTL ranged from 1.7% to 8.0%, with an average 3.7%. In XSBCF1 population,29 pairs of E-QTL were detected.17 pairs of E-QTL were detected by using XSBCF1 phenotypic value, and the percentage of phenotypic variance explained by each E-QTL ranged from 10.9% to 78.5%, with an average 29.8%.12 pairs of E-QTL were detected by using mid-parental heterosis value (HMP), and the percentage of phenotypic variance explained by each E-QTL ranged from 15.0% to 71.8%, with an average 46.5%. In CBBCF1 population,27 pairs of E-QTL were detected.15 pairs of E-QTL were detected by using BCF1 phenotypic value, and the percentage of phenotypic variance explained by each pair of E-QTL ranged from 2.7% to 64.4%, with an average 29.7%.14 pairs of E-QTL were detected by using the mid-parental heterosis value (HMP), and the percentage of phenotypic variance explained by each pair of E-QTL ranged from 21.2% to 64.1%, with an average 36.2%.2 pairs of E-QTL were detected by using both BCF1 phenotypic value and HMP value in CBBCF1 population. These results showed that additive×non-additive and dominant×dominant interactions effect were the primary genetic basis of heterosis in Xiubao crosses in japonica rice.
引文
包劲松,何平,夏英武,等.不同发育阶段水稻苗高的QTL分析[J].遗传,1999,21(5):38-40
    曹钢强,朱军,何慈信,等.水稻株高的上位性效应和QTL×环境互作效应的QTL分析[J].遗传学报,2001,28(2):135-143
    陈付琴,雷冬梅,刘金波,等.杂交粳稻育种研究进展[J].现代农业科技,2009,(14):56-58
    陈庆全,穆俊祥,周红菊,等.利用基础导入系分析粳稻基因的遗传效应[J].中国农业科学,2007,40(11):2387-2394
    陈献功.利用RILs和3个杂交组合6个世代对粳稻穗角和每穗颖花数的遗传分析[M].南京农业大学硕士学位论文.2006
    陈献功,刘金波,洪德林.粳稻直立穗与弯曲穗3个杂交组合6个世代穗角和每穗颖花数的遗传分析[J].作物学报,2006,32(8):1143-1150
    陈幼玉,祁建民,林荔辉,等.红麻株高与茎粗性状的动态发育遗传分析[J].应用生态学报,2005,16(6):1011-1016
    邓华凤,何强,舒服,等.中国杂交粳稻研究现状与对策[J].杂交水稻,2006,21(1):1-6
    邓华凤,华泽田,杨飞.中国杂交粳稻[M].中国农业出版社.2008
    邓晓建,周开达,李仁端,等.水稻品种生育期的遗传和基因定位[J].四川农业大学学报,2001,19(2):172-178
    方宣均,吴为人,唐纪良.作物DNA标记辅助选择[M].科学出版社,2002
    盖钧镒,章元明,王建康.植物数量性状遗传体系[M].科学出版社.2003,63-71,224-260
    高奋明,姜勇,孔德伟,等.水稻株高的遗传控制及其在育种上的应用[J].分子植物育种,2005,3(1):87-93
    高用明,朱军.植物QTL定位方法的研究进展[J].遗传,2000,22(3):175-179
    郭晶心,陈忠正,刘耀光.水稻抽穗期数量性状基因的定位及遗传效应[J].分子植物育种,2004,2(6):788-794
    郭媛,万志兵,陈献功,等.粳稻一次枝梗数和二次枝梗数的遗传分析[J].南京农业大学学报,2008,31(3):8-12
    郭媛,程保山,洪德林.粳稻SSR连锁图谱的构建及恢复系卷叶性状QTL分析[J].中国水稻科学,2009,23(3):256-262
    何慈信,朱军,严菊强,等.水稻穗干物质重发育动态的QTL定位[J].中国农业科学,2000a,33(1):24-32
    何慈信,朱军,严菊强,等.水稻叶挺长发育动态的QTL分析[J].中国水稻科学,2000b,14(4):193-198
    何风华.水稻QTL分析的研究进展[J].西北植物学报,2004,24(11):2163-2169
    华泽田,郝宪彬,王彦荣,等.超级杂交粳稻育种技术探讨[J].沈阳农业大学学报,2007,38(5):744-747
    姜树坤,黄成,徐正进,等.粳稻株高QTL与赤霉素和油菜素内酯合成及信号转导基因相关分析[J].中国农业科学,2010,43(14):2829-2838
    金伟栋,张旺,洪德林.苏南地区晚熟粳稻杂种优势及其亲本配合力分析[J].作物学报,2005,31(11):1478-1484
    金伟栋.太湖流域粳稻杂种优势及品种资源遗传多样性研究[M].南京农业大学博士学位论文.2006
    李春寿,叶胜海,陈炎忠,等.高产粳稻品种的产量构成因素分析[J].浙江农业学报,2005,17(4):177-181
    李建红,洪德林.新选粳稻BT型不育系农艺及品质性状配合力分析[J].南京农业大学学报,2004,27(4):11-16
    李建红,洪德林.新选粳稻BT型同质恢复系农艺和品质性状配合力研究[J].作物学报,2005,31(7):851-857
    李秀兰,徐承水.水稻株高基因及其在育种上的应用[J].山东农业科学,2009,10:24-28
    李玉玲,董永彬,牛素贞.爆裂玉米3个膨爆特性的非条件和条件QTL分析[J].分子植物育种,2006,4(3):372-380
    李余生,王杰,王艳平,等.太湖稻区粳稻地方品种主要经济性状的遗传分析[J].金陵科技学院学报,2006,22(4):57-62
    李铮友.水稻杂种优势利用[M].北京:农业出版社,1977,29-44
    梁康迳,林文雄,王雪仁,等.籼型三系杂交稻茎蘖数的发育遗传研究[J].中国农业科学,2002,35(9):1033-1039
    梁奎,黄殿成,赵凯铭,等.杂交粳稻亲本产量性状优异配合力的标记基因型筛选[J].作物学报,2010,36(8):1270-1279
    廖春燕,吴平,易可可,等.不同遗传背景及环境中水稻(Oryza sativa L.)穗长的QTLs和上位性分析[J].遗传学报,2000,27:599-607
    廖琴.全国农作物审定品种(1996-1998)[M].上册:粮食作物.北京:西苑出版社.2001,44
    卢庆善,孙毅,华泽田.农作物杂种优势[M].北京:中国农业科技出版社.2002,240
    刘冬成,张爱民.作物杂种优势基础研究的进展[J].中国科学院院刊,2001,(5):334-338
    刘金波.粳稻穗角和每穗颖花数的遗传分析[M].南京农业大学硕士学位论文.2005
    刘金波,洪德林.粳稻穗角和每穗颖花数的遗传分析[J].中国水稻科学,2005,19(3):223-230
    刘宗华,汤继华,王春丽,等.氮胁迫与非胁迫条件下玉米不同时期株高的动态QTL定位[J].作物学报,2007,33(5):782-789
    马洪文,代晓华,王听,等.水稻农艺性状加性-显性遗传效应的分析[J].宁夏农林科技,2005,(3):18-20
    马玉银,王如平,李磊,等.水稻株高的遗传与育种研究进展[J].河南农业科学,2008,(11):12-17
    穆平.水、早稻DH和RIL群体抗旱性状相关分析及其QTL表达规律比较[M].中国农业大学博士学位论文.2004
    彭涛,钟秉强,凌英华,等.不同环境条件下籼型杂交稻株高的发育遗传研究[J].中国水稻科学,2007,22(2):148-154
    齐绍武,盛孝邦.籼型两系杂交水稻主要农艺性状配合力及遗传力分析[J].杂交水稻,2005,15(3):38-41
    钱国壬,高荣村,周幸愿,等.杂交稻嘉优5号选育经过、特征特性及栽培技术[J].浙江农业科学,2010,(5):1000-1001
    任翔,翁清妹,祝莉莉,等.水稻分蘖能力QTL的定位[J].武汉大学学报(理学版),2003,49(4):533-537
    苏祖芳,张亚洁,孙成明.水稻高产株型指标的研究[J].中国稻米,2003,(4):5-6
    孙其信,倪中福,陈希勇,等.冬小麦部分基因杂合性与杂种优势表达[J].中国农业大学学报,1997,2(1):64,116
    汤述翥,张宏根,梁国华,等.三系杂交粳稻发展缓慢的原因及对策[J].杂交水稻,2008,23(1):1-5
    王才林.江苏省杂交粳稻育种的现状、问题与对策[J].西南农业学报,2009,22(4):1165-1169
    王德正,王守海,李成荃,等.安徽省杂交粳稻的研究与利用[J].安徽农业科学,2001,29(1):12-15
    王立秋,赵永锋,薛亚东,等.玉米衔接式单片段导入系群体的构建和评价[J].作物学报,2007,33(4):663-668
    吴为人,李维明,卢浩然.数量性状基因座的动态定位策略[J].生物数学学报,1997,12(5):490-495
    邢永忠,徐才国,华金平,等.水稻株高和抽穗期基因的定位和分离[J].植物学报,2001,43(7):721-726
    熊振民.中国水稻[M].北京:中国农业科技出版社,1992,4057
    许建权,张大友,张亚,等.杂交粳稻育种实践与思考[J].杂交水稻第25卷专辑(第1届中国杂交水稻大会论文集).2010年9月,PP:85-87
    徐正进,陈温福,张龙步,等.水稻理想穗型设计的原理与参数[J].科学通报,2005,50(18): 2037-2039
    严建兵,汤华,黄益勤,等.不同发育时期玉米株高QTL的动态分析[J].科学通报,2003,48(18):1959-1964
    晏静,任永泉.水稻理想株型研究综述[J].北方水稻,2010,40(2):68-71
    杨权海,王春明,胡茂龙,等.水稻剑叶全氮含量及其变化的遗传分析[J].中国水稻科学,2005,19(1):7-12
    杨振玉,陈秋柏,陈荣芳,等.水稻粳型恢复系C57的选育[J].作物学报,1981,7(8):153-156
    杨振玉,陈秋柏,陈荣芳,等.水稻粳型恢复系“黎优57”的选育[J].中国农业科学,1982,(1):38-42
    杨振玉.北方杂交粳稻发展的回顾与展望[M].北京,中国农业科技出版社,1999,3-11
    尹燕抨,童玉森.玉米主要性状的基因效应与杂种优势关系的研究[J].山东农业大学学报,1987,18(1):19-32
    余传源.水稻籼粳亚种间杂种优势利用的遗传基础研究[M].南京农业大学博士学位论文.2005
    于振文.作物栽培学各论[M].中国农业出版社,2005,148
    袁爱平,曹立勇,庄杰云,等.水稻株高、抽穗期和有效穗数的QTL与环境的互作分析[J].遗传学报,2003,30(10):899-906
    岳兵,邢永忠.水稻抽穗期分子遗传研究进展[J].分子植物育种,2005,3(2):222-228
    曾晶,姜恭好,何予卿,等.利用籼粳交探讨水稻株高和抽穗期的遗传基础[J].分子植物育种,2006,4(4):527-534
    翟虎渠,王建康.应用数量遗传学[M].北京:中国农业科学技术出版社,2007
    赵芳明,刘桂富,朱海涛,等.用单片段代换系对不同时期水稻分蘖数QTL的非条件和条件定位[J].中国农业科学,2008,41(2):322-330
    赵激.中国杂交水稻与常规稻产量和稻谷品质的比较分析[J].杂交水稻,2008,23(2):1-4
    周建群.水稻栽培方式研究进展[J].湖南农业科学,2009,(2):51-54
    朱军.广义遗传模型与数量遗传分析新方法[J].浙江农业大学学报,1994,20(6):551-559
    朱军.包括基因型×环境互作效应的种子遗传模型及其分析方法[J].遗传学报,1996,23(1):56-68
    庄杰云,樊叶杨,吴建利,等.杂交水稻中超显性效应的分析[J].遗传,2000,22(4):205-208
    Abdelkhalik AF, Shishido R, Nomura K, et al. QTL-base analysis of heterosis for grain shape traits and seedling characteristics in an indica-japonica hybrid in rice (Oryza sativa L.)[J].Breed Sci,2005, 55:41-48
    Andorf S, Selbig J, Altmann T, et al. Enriched partial correlations in genome-wide gene expression profiles of hybrids (A. thaliana):a systems biological approach towards the molecular basis of heterosis[J]. Theor Appl Genet,2010,120:249-259
    Ashikari M, Sakakibara H, Lin SY, et al. Cytokinin oxidase regulates rice grain production[J]. Science, 2005,309:741-745
    Atchley WR. Ontogeny, timing of development, and genetic variance-covariance structure[J]. Am Nat, 1984,123:519-540
    Atchley WR, Xu S, Vogl C. Developmental quantitative genetic models of evolutionary change[J]. Dev Genet,1994,15:92-103
    Atchley WR, Zhu J. Developmental quantitative genetic, conditional epigenetic variability and growth in rice[J]. Genetics,1997,147:765-776
    Basunanda P, Radoev M, Ecke W, et al. Comparative mapping of quantitative trait loci involved in heterosis for seedling and yield traits in oilseed rape (Brassica napus L.)[J]. Theor Appl Genet,2010, 120:271-281
    Bauman LF. Evidence of non-allelic gene action in determining yield ear height and kernel row number in corn[J]. Agron J,1959,57:531-534
    Brondani C, Rangel N, Brondani V, et al. QTL mapping and introgression of yield-related traits from Oryza glumaepatula to cultivated rice (Oryza sativa L.) using microsatellite markers[J]. Theor Appl Genet,2002,104:1192-1203
    Bruce AB. The Mendelian theory of heredity and the augmentation of vigor [J]. Science,1910,32: 627-628
    Cai W, Morishima H. QTL clusters reflect character associations in wild and cultivated rice[J]. Theor Appl Genet,2002,104:1217-1228
    Cao G, Zhu J, He C, et al. Impact of epistasis and QTL×environment interaction on the developmental behavior of plant height in rice (Oryza sativa L.)[J]. Theor Appl Genet,2001,103:153-160
    Cheng Z, Presting GG, Buell CR, et al. High-resolution pachytene chromosome mapping of bacterial artificial chromosomes anchored by genetic markers reveals the centromere location and the distribution of genetic recombination along chromosome 10 of rice[J]. Genetics,2001,157: 1749-1757
    Cowley DE, Atchley WR. Quantitative genetic models fordevelopment, epigenetic selection and phenotypic evolution[J]. Evolution,1992,46:494-518
    Cui KH, Peng SB, Xing YZ, et al. Genetic analysis of the panicle traits related to yield sink size of rice[J]. Acta Genetica Sinica,2002,29(2):144-152
    Cui KH, Peng SB, Xing YZ, et al. Molecular dissection of the relationships among tiller number, plant height and heading date in rice[J]. Plant Prod Sci,2004,7(3):309-318
    Davenport CB. Degeneration, albinism and inbreeding[J]. Science,1908,28:454-455
    Doi K, Yoshimura A, Iwata N. RFLP mapping and QTL analysis of heading date and pollen sterility using backross population between Oryza sativa L. and Oryza glaberrima Steud[J]. Breed Sci,1998, 48:395-399
    Dwivedi DK, Pandey MP, Pandey SK, et al. Heterosis in inter and intrasubspecific crosses over three-environments in rice[J]. Euphytica,1998,99:155-165
    East EM. Inbreeding in corn, pp:419-428 in reports of the connecticut agricultural experiment station for years 1907-1908[M].1908
    East EM. Heterosis[J]. Genetics,1936,21:375-397
    Edwards MD, Stuber CW, Wendel JF. Molecular-marker-facilitated investigations of quantitive-trait loci in maize. Ⅰ. Numbers, genomic distribution and types of gene action[J]. Genetics,1987,116: 113-125
    Frascaroli E, CaneM A. Classical genetic and quantitative trait loci analyses of heterosis in a maize hybrid between two elite inbred lines[J]. Genetics,2007,176:625-644
    Gai JY, Wang JK. Identification and estimation of a QTL model and its effects[J]. Theor Appl Genet, 1998,97:1162-1168
    Garcia AF, Wang SC, Melchinger AE, et al. Quantitative trait loci mapping and the genetic basis of heterosis in maize and rice[J]. Genetics,2008,180:1707-1724
    Gorsline GW. Phenotypic epistasis for ten quantitative characters in maize[J]. Crop Sci,1961,1:55-58
    Guiderdoni E, Galinato E, Luistro J, et al. Anther culture of tropical japonica×indica hybrids of rice (Oryza sativa L.)[J]. Euphytica,1992,62:219-224
    Guo LB, Xing YZ, Mei HW, et al. Dissection of component QTL expression in yield formation in rice[J]. Plant Breed,2005,124:127-132
    Guo Y, Hong DL. Novel pleiotropic loci controlling panicle architecture across environments in japonica rice (Oryza sativa L.)[J]. J Genet Genomics,2010,37(8):531-542
    He YQ, Yang J, Xu CG, et al. Genetic bases of instability of male sterility and fertility reversibility in photoperiod-sensitive genic male-sterile rice[J]. Theor Appl Genet,1999,99:683-693
    He P, Li JZ, Zheng XW, et al. Comparison of molecular linkage maps and agronomic trait loci between DH and RIL populations derived from the same rice cross [J]. Crop Sci,2001,41(4):1240-1246
    Hong DL, Leng Y. Genetic analysis of heterosis for number of spikelets per panicle and panicle length of F1 hybrids in japonica rice hybrids[J]. Rice Science,2004,11(5-6):255-260
    Hua JP, Xing YZ, Xu CG, et al. Genetic dissection of an elite rice hybrid revealed that heterozygotes are not always advantageous for performance[J]. Genetics,2002,162:1885-1895
    Hua JP, Xing YZ, Wu WR, et al. Single-locus heterotic effects and dominance by dominance interactions can adequately explain the genetic basis of heterosis in an elite rice hybrid[J]. Proc Natl Acad Sci USA,2003,100:2574-2579
    Huang N, McCouch SR, Mew T, et al. Development of an RFLP map from a doubled haploid population in rice[J]. Rice Genetics Newsletter,1994,11:134-137
    Huang N, Parco A, Mew T, et al. RFLP mapping of isozymes, RAPD and QTLs for grain shape, brown planthopper resistance in a doubled haploid rice population[J]. Mol Breed,1997,3:105-113
    Hu FY, Tao DY, Sacks E, et al. Convergent evolution of perenniality in rice and sorghum[J]. Proc Natl Acad Sci USA,2003,100:4050-4054
    Jiang GH, He YQ, Xu CG, et al. The genetic basis of stay-green in rice analyzed in a population of doubled haploid lines derived from an indica by japonica cross[J]. Theor Appl Genet,2004,108: 688-698
    Jiang H, Jiang L, Guo LB, et al. Conditional and unconditional mapping of quantitative trait loci underlying plant height and tiller number in rice (Oryza sativa L.) grown at two nitrogen levels[J]. Progress in Natural Sci,2008,18:1539-1547
    Jones DF. Dominance of linked factors as a means of accounting for heterosis[J]. Proc Natl Acad Sci USA,1917,3:310-312
    Kao CH, Zeng ZB. General formulas for obtaining the MLE and the asymptotic variance-covariance matrix in mapping quantitative trait loci when using the EM algorithm[J]. Biometrics.1997,53: 359-371
    Katayama TC. Morphology of carbonized rice grains excavated at Non Yang site, Thailand and evolution of grain shape from a historical perspective[J]. Jpn J Trop Agric,1995,39(2):63-68
    Katsuok K, Mizushima U. Studies on the cytoplasmic difference among rice varies, Oryza sativa L. Ⅰ. On the fertility of hybrids obtained reciprocally between cultivated and wild varieties[J]. Jpn J Breed, 1958,8:1-5
    Kennard WC, Phillips RL, Porter RA. Genetic dissection of seed shattering, agronomic, and color traits in American wildrice (Zizania palustris var. interior L.) with a comparative map[J]. Theor Appl Genet,2002,105:1075-1086
    Kheiralla Al, Whittington WJ. Genetic analysis of growth in tomato:the F1 generation[J]. Ann Bot,1962, 26:489-504
    Khush GS. Green revolution:the way forward[J]. Nat Rev Genet,2001,2:815-822
    Kusterer B, Muminovic J, Utz HF, et al. Analysis of a triple testcross design with recombinant inbred lines reveals a significant role of epistasis in heterosis for biomass-related traits in Arabidopsis[J]. Genetics,2007,175:2009-2017
    Lamkey KR, Hallauer AR, Robertson DS. Contribution of the long arm chromosome 10 to the total heterosis observed in five maize hybrids[J]. Crop Sci,1988,28:896-901
    Lanceras JC, Pantuwan G, Jongdee B, et al. Quantitative trait loci associated with drought tolerance at reproductive stage in rice[J]. Plant physiology,2004,135:384-399
    Lander ES, Botstein D. Mapping Mendelian factors underlying quantitative traits using RFLP linkage maps[J]. Genetics,1989,121(1):185-199
    Li ZK, Pinson SRM, Stansel JW, et al. Identification of quantitative trait loci (QTLs) for heading date and plant height in cultivated rice (Oryza sativa L.)[J]. Theor Appl Genet,1995,91:374-381
    Li ZK, Pinson SRM, Park WD, et al. Epistasis for three grain yield compolents in rice (Oryza sativa L.)[J]. Genetics,1997,145:453-465
    Li ZK, Paterson AH, Pinson SRM, et al. RFLP facilitated analysis of tiller and leaf angles in rice (Oryza sativa L.)[J]. Euphytica,1999,109:79-84
    Li JX, Yu SB, Xu CG, et al. Analyzing quantitative trait loci for yield using a vegetatively replicated F2 population from a cross between the parents of an elite rice hybrid[J]. Theor Appl Genet,2000,101: 248-254
    Li ZK, Luo LJ, Mei HW, et al. Overdominant epistatic loci are the primary genetic basis of inbreeding depression and heterosis in rice I. biomass and grain yield[J]. Genetics,2001,158:1737-1753
    Li XL, Wu C, Deng XJ, et al. Molecular tagging and effect analysis of a new small grain dwarf gene in rice[J]. Acta Bot Sin,2003a,45,757-761
    Li XY, Qian Q, Fu ZM, et al. Control of tillering in rice[J]. Nature,2003b,422:618-621
    Li C, Zhou A, Sang T. Genetic analysis of rice domestication syndrome with the wild annual species, Oryza nivara[J]. The New phytologist,2006,170:185-193
    Li LZ, Lu KY, Chen ZM, et al. Dominance, overdominance and epistasis condition the heterosis in two heterotic rice hybrids[J]. Genetics,2008,180:1725-1742
    Liao CY, Wu P, Hu B, et al. Effects of genetic background and environment on QTLs and epistasis for rice (Oryza sativa L.) panicle number[J]. Theor Appl Genet,2001,103(1):104-111
    Lin HX, Qian HR, Zhuang JY, et al. RFLP mapping of QTLs for yield and related characters in rice (Otyza sativa L.)[J]. Theor Appl Genet,1996,92(8):920-927
    Lin SY, Sasaki T, Yano M. Mapping quantitative trait loci controlling seed dormancy and heading date in rice, Oryza sativa L., using backcross inbred lines[J]. Theor Appl Genet,1998,96:997-1003
    Liu GF, Xu HM, Yang J, et al. Genetic analysis on tiller number and plant height per plant in rice (Oryza sativa L.)[J]. Journal of Zhejiang University,2006,32:527-534
    Liu GF, Zeng RZ, Zhu HT, et al. Dynamic expression of nine QTLs for tiller number detected with single segment substitution lines in rice[J]. Theor Appl Genet,2009,118:443-453
    Liu GF, Zhu HT, Liu SW, et al. Unconditional and conditional QTL mapping for the developmental behavior of tiller number in rice (Oryza sativa L.) [J]. Genetica,2010,138:885-893
    Lu CF, Shen LH, Tan ZB, et al. Comparative mapping of QTLs for agronomic traits of rice across environments by using a doubled-haploid population[J]. Theor Appl Genet,1997,94:145-150
    Lu H, Romero-Severson J, Bernardo R. Genetic basis of heterosis explored by simple sequence repeat markers in a random-mated maize population[J]. Theor Appl Genet,2003,107:494-502
    Luo LJ, Li ZK, Mei HW, et al. Overdominant epistatic loci are the primary genetic basis of inbreeding depression and heterosis in rice II. Grain yield components[J]. Genetics,2001,158:1755-1771
    Ma JF, Shen R, Zhao Z, et al. Response of rice to A1 stress and identification of quantitative trait Loci for A1 tolerance[J]. Plant cell physiology,2002,43:652-659
    Maheswaran M, Huang N, Sreerangasamy SR, et al. Mapping quantitative trait loci associated with days to flowering and photoperiod sensitivity in rice (Oryza sativa L.)[J]. Mol Breed,2000,6:145-155
    Marri PR, Sarla N, Reddy LV, Siddiq EA. Identification and mapping of yield and yield related QTLs from an Indian accession of Oryza rufipogon[J]. BMC Genetics,2005,6(33):1-14
    Mather K, Jinks JL. Biometrical genetics,3rd edn. London, Chapman and Hall[M].1982
    McCouch SR. Gene nomenclature system for rice[J]. Rice,2008,1:72-84
    Mei HW, Luo LJ, Ying CS, et al. Gene actions of QTLs affecting several agronomic traits resolved in a recombinant inbred rice population and two testcross populations[J]. Theor Appl Genet,2003,107: 89-101
    Mei HW, Li ZK, Shu QY, et al. Gene actions of QTLs affecting several agronomic traits resolved in a recombinant inbred rice population and two backcross populations[J]. Theor Appl Genet,2005,110: 549-559
    Melchinger AE, Piepho HP, Utz HF, et al. Genetic basis of heterosis for growth-related traits in Arabidopsis investigated by testcross progenies of near-isogenic lines a significant role of epistasis[J]. Genetics,2007,177:1827-1837
    Melchinger AE, Dhillon BS, Mi XF. Variation of the parental genome contribution in segregating population derived from biparental crosses and its relationship with heterosis of their Design Ⅲ progenies[J]. Theor Appl Genet,2010,120:311-319
    Meyer RC, Torjek O, Becher M, et al. Heterosis of biomass Production in Arabidopsis establishment during early development[J]. Plant Physiology,2004,134:1813-1823
    Meyer RC, Kusterer B, Lisec J, et al. QTL analysis of early stage heterosis for biomass in Arabidopsis[J]. Theor Appl Genet,2010,120:227-237
    Miyamoto N, Goto Y, Matsui M, et al. Quantitative trait loci for phyllochron and tillering in rice[J]. Theor Appl Genet,2004,109,700-706
    Monforte AJ, Tanksley SD. Fine mapping of a quantitative trait locus (QTL) from Lycopersicon hirsutum chromosome 1 affecting fruit characteristics and agronomic traits:breaking linkage among QTLs affecting different traits and dissection of heterosis for yield[J]. Theor Appl Genet,2000,100: 471-479
    Murai M, Kinoshita T. Diallel analysis of traits concerning yield in rice[J]. Jpn J Breed,1986,36:7-15
    Nagata K, Fukuta Y, Shimizu H, et al. Quantitative trait loci for sink size and ripening traits in rice (Oryza sativa L.)[J]. Breed Sci,2002,52:259-273
    Paschold A, Marcon C, Hoecker N, et al. Molecular dissection of heterosis manifestation during early maize root development[J]. Theor Appl Genet,2010,120:383-388
    Paterson AH, Devena JW, Lanini B, et al. Fine mapping of quantitative traits loci using selected overlapping recombinant chromosomes in an interspecies cross of tomato[J]. Genetics,1990,124: 735-742
    Paterson AH. Mapping genes responsible for differences in phenotype, In:AH Paterson (Ed), Genome Mapping in Plants[M], pp.41-54. RG. Landes Company, San Diego, California; Academic Press; Austin, Texas.1996
    Perera ALT, Senadhira D, Lawrence MJ. Genetic architecture of economically important characters and prediction of performance of recombinant inbred lines in rice[M]. In:Rice Genetics. IRRI, Manila, 1986,564-578
    Price AH, Tomos AD. Genetic dissection of root growth in rice (Oryza sativa L.) Ⅱ:Mapping quantitative trait loci using molecular markers[J]. Theor Appl Genet,1997,95:143-152
    Price AH, Steele KA, Moore BJ, et al. A combined RFLP and AFLP linkage map of upland rice (Oryza sativa L.) used to identify QTLs for root-penetration ability[J]. Theor Appl Genet,2000,100:49-56
    Qu Y, Mu P, Zhang HL, et al. Mapping QTLs of root morphological traits at different growth stages in rice[J]. Genetica,2008,133:187-200
    Radoev M, Becker HC, Ecke W. Genetic analysis of heterosis for yield and yield components in rapeseed (Brassica napus L.) by quantitative traits locus mapping[J]. Genetics,2008,179: 1547-1558
    Ramalingam J, Kukreja K, Chittoor JM, et al. Candidate defense genes from rice, barley, and maize and their association with qualitative and quantitative resistance in rice[M]. Molecular plant-microbe interactions:MPMI,2003,16:14-24
    Redona ED, Mackill DJ. Quantitative trait locus analysis for rice panicle and grain characteristics[J]. Theor Appl Genet,1998,96:957-963
    Richey FD, Sprague GF. Experiments on hybrid vigor and convergent improvement in corn[J]. US Dept Agric Tech Bull,1931,267:1-22
    Sarma RN, Gill BS, Sasaki T, et al. Comparative mapping of the wheat chromosome 5A Vrn-Al region with rice and its relationship to QTL for flowering time[J]. Theor Appl Genet,1998,97:103-109
    Schon CC, Dhillon BS, Utz HF, et al. High congruency of QTL positions for heterosis of grain yield in three crosses of maize[J]. Theor Appl Genet,2010,120:321-332
    Septiningsih EM, Prasetiyono J, Lubis E, et al. Identification of quantitative trait loci for yield and yield components in an advanced backcross population derived from the Oryza sativa variety IR64 and the wild relative O. Rufipogon[J]. Theor Appl Genet,2003,107:1419-1432
    Shi CH, Zhu J, Zang RC, et al. Genetic and heterosis analysis for cooking quality traits of indica rice in different environments[J]. Theor Appl Genet,1997,95:294-300
    Shinjyo C. Cytoplasmic-genetic male sterility in cultivated rice. Oryza sativa L. Ⅱ. The inheritance of male sterility[J]. Jpn J Breed,1969,44:149-156
    Shull GH. The composition of a field of maize[J]. Ann Breed Assoc Rep,1908,4:296-301
    Shull GH. Hybridization methods in corn breeding[J]. Heredity,1910,98-107
    Shull GH. What is "Heterosis"[J]. Genetics,1948,33:439-446
    Singh K, Ishii T, Parco A, et al. Centromere mapping and orientation of the molecular linkage map of rice (Oryza sativa L.)[J]. Proc Natl Acad Sci USA,1996,93:6163-6168
    Sripongpangkul K, Posa GT, Senadhira DW, et al. Genes/QTLs affecting flood tolerance in rice[J]. Theor Appl Genet,2000,101:1074-1081
    Stuber CW, Edwards MD, Wendel JF. Molecular-marker-facilitated investigations of quantitative-trait loci in maize. Ⅱ. Factors influencing yield and its component traits[J]. Crop Sci,1987,27:639-648
    Stuber CW, Lincoln SE, Wolff DW, et al. Identification of genetic factors contributing to heterosis in a hybrid from two elite maize in bred lines using molecular markers[J]. Genetics,1992,132:823-839
    Stuber CW. Mapping and manipulating quantitative traits in maize[J]. Trends Genet,1995,11:477-481
    Sturtevant AH. The linear arrangement of six sex-linked factors in Drosophila, as shown by their mode of association[J]. J Exper Zool,1913,14:43-59
    Sun DS, Li WB, Zhang ZC, et al. Quantitative trait loci analysis for the developmental behavior of soybean(Glycine maxL Merr.)[J]. Theor Appl Genet,2006,112:665-673
    Syed NH, Chen ZJ. Molecular marker genotypes, heterozygosity and genetic interaction explain heterosis in Arabidopsis thaliana[J]. Heredity,2005,94:295-304
    Tan YF, Li JX, Yu SB, et al. The three important traits for cooking and eating quality of rice grains are controlled by a single locus in an elite rice hybrid, "Shanyou 63" [J]. Theor Appl Genet,1999,99: 642-648
    Tan YF, Xing YZ, Li JX, et al. Genetic bases of appearance quality of rice grains in Shanyou 63, an elite rice hybrid[J], Theor Appl Genet,2000,101:823-829
    Tang JH, Yan JB, Ma XQ, et al. Dissection of the genetic basis of heterosis in an elite maize hybrid by QTL mapping in an immortalized F2 population[J]. Theor Appl Genet,2010,120:333-340
    Tanksley SD, Medina HH, Rick CM. Use of naturally-occurring enzyme variation to detected and map gene controlling quantitative traits in an interspecific backcross of tomato[J]. Heredity,1982,49: 11-25
    Tanksley SD, Nelson JC. Advanced backcross QTL analysis:a method for the simultaneous discovery and transfer of valuable QTLs from unadapted germplasm into elite breeding lines[J]. Theor Appl Genet,1996,92:191-203
    Temnykh S, DeClerck G, Lukashova A, et al. Computational and experimental analysis of microsatellites in rice (Oryza sativa L.):frequency, length variation, transposon associations, and genetic marker potential[J]. Genome research,2001,11:1441-1452
    Thomson MJ, Tai TH, McClung AM, et al. Mapping quantitative trait loci for yield, yield components and morphological traits in an advanced backcross population between Oryza rufipogon and the Oryza sativa cultivar Jefferson[J]. Theor Appl Genet,2003,107:479-493
    Tsunematsu H, Yoshimura A, Harushima Y, et al. RFLP framework map using recombinant inbred lines in rice[J]. Breed Sci,1996,46:279-284
    Tuinstra MR, Ejeta G, Goldsbrough PB. Heterogeneous inbred family (HIF) analysis:a method for developing near-isogonics lines that differ at quantitative trait loci[J]. Theor Appl Genet,1997,95: 1005-1011
    Wang GL, Mackill DJ, Bonman JM, et al. RFLP mapping of genes conferring complete and partial resistance to blast in a durably resistance rice cultivar[J]. Genetics,1994,136:1421-1434
    Wang DL, Zhu J, Li ZK, et al. Mapping QTLs with epistatic effects and QTL×environment interactions by mixed model approaches[J]. Theor Appl Genet,1999,99:1255-1264
    Wang CM, Yasui H, Yoshimura A, et al. Identification of quantitative trait loci controlling F2 sterility and heading date in rice[J]. Acta genetica Sinica,2002,29:339-342
    Weller JI, Soller M, Brody T. Linkage analysis of quantitative traits in a interspecific cross of tomato (Lycopersicon esculentum×Lycopersicon pimpinellifoluim) by means of genetic markers[J]. Genetics,1988,118:329-339
    Weng Q, Wu W, Li W, et al. Construction of an RFLP linkage map of rice using DNA probes from two different sources[J]. Journal of Fujian Agriculture University,2000,29:129-133
    Wissuwa M, Ismail AM, Yanagihara S. Effects of zinc deficiency on rice growth and genetic factors contributing to tolerance[J]. Plant physiology,2006,142:731-741
    Wu P, Zhang G, Ladha JK, et al. Molecular marker facilitated investigation on the ability to stimulate N2 fixation in the rhizosphere by irrigated rice plants[J]. Theor Appl Genet,1995,91:1177-1183
    Wu P, Zhang G, Huang N. Identification of QTLs controlling quantitative characters in rice using RFLP markers[J]. Euphytica,1996,89,349-354
    Wu WR, Li WM, Tang DZ, et al. Time-related mapping of quantitative trait loci underlying tillering number in rice[J]. Genetics,1999,151(5):297-303
    Wu P, Liao CY, Hu B, et al. QTLs and epistasis for aluminum tolerance in rice (Oryza sativa L.) [J]. Theor Appl Genet,2000,100:1295-1303
    Xi ZY, He FH, Zeng RZ, et al. Development of a wide population of chromosome single segment substitution lines in the genetic background of an elite cultivar of rice (Oryza sativa L.)[J]. Genome, 2006,49(5):476-484
    Xiao J, Li J, Yuan L, et al. Dominance is the major genetic basis in rice as revealed by QTL analysis molecular markers[J]. Genetics,1995,140:745-754
    Xiao J, Li J, Yaun L, et al. Identification of QTL affecting traits of agronomic importance in recombinant inbred population derived from a subspecific rice cross[J]. Theor Appl Genet,1996,92:230-244
    Xiao JH, Grandillo S, Ahn SN, et al. Genes from wild rice improve yield[J]. Nature,1996,384:223-224
    Xiao JH, Li J, Grandillo S, et al. Identification of trait-improving quantitative trait loci alleles from a wild rice relative, Oryza rufipogon[J]. Genetics,1998,150:899-909
    Xing Z, Tan F, Hua P, et al. Characterization of the main effects, epistatic effects and their environmental interactions of QTLs on the genetic basis of yield traits in rice[J]. Theor Appl Genet,2002,105: 248-257
    Xing YZ, Tang WJ, Xue WY, et al. Fine mapping of a major quantitative trait loci, qSSP7, controlling the number of spikelets per panicle as a single Mendelian factor in rice[J]. Theor Appl Genet,2008, 116:789-796
    Xu YB, Shen ZT. Diallel analysis of tiller number at different growth stages in rice (Oryza sativa L.)[J]. Theor Appl Genet,1991,83:243-249
    Xu Y, Shen Z, Xu J, et al. Interval mapping of quantitative trait loci by molecular markers in rice (Oryza sativa L.)[J]. Sci in China,1995a,38(4):422-428
    Xu YB, Shen ZT, Chen Y, et al. Molecular mapping for quantitative trait loci controlling yield component characters using a maximum likelihood method in rice[J]. Acta Genet Sinica,1995b, 22(1):46-52
    Xu Y. Quantitative trait loci:separating, pyramiding and cloning. Plant Breeding Reviews[J].1997,15: 85-139
    Yagi T, Nagata K, Fukuta Y, et al. QTL mapping of spikelet number in rice (Oryza sativa L.)[J].Breed Sci,2001,51:53-56
    Yamagishi J, Miyamoto N, Hirotsu S, et al. QTLs for branching, floret formation, and pre-flowering floret abortion of rice panicle in a temperate japonicaxtropical japonica cross[J]. Theor Appl Genet, 2004,109:1555-1561
    Yan JQ, Zhu J, He CX, et al. Molecular dissection of the developmental behavior of plant height in rice (Oryza sativa L.)[J]. Genetics,1998a,150:1257-1265
    Yan JQ, Zhu J, He CX, et al. Quantitative trait loci analysis for the developmental behavior of tiller number in rice (Oryza sativa L.)[J]. Theor Appl Genet,1998b,97:267-274
    Yang GH, Xing YZ, Li SQ, et al. Molecular dissection of developmental behavior of tiller number and plant height and their relationship in rice (Oryza sativa L.)[J]. Hereditas,2006,143:236-245
    Yang J, Zhu J, Williams RW. Mapping the genetic architecture of complex traits in experimental populations[J]. Bioinformatics,2007,23:1527-1536
    Yang J, Hu CC, Hu H, et al. QTLNetwork:mapping and visualizing genetic architecture of complex traits in experimental populations[J]. Bioinformatics,2008,24:721-723
    Ye ZH, Wang JM, Liu Q, et al. Genetic relationships among panicle characteristics of rice (Oryza sativa L.) using unconditional and conditional QTL analyses[J]. J Plant Biol,2009,52:259-267
    Yoshida S, Ikegami M, Kuze J, et al. QTL analysis for plant and grain characters of sake-brewing rice using a doubled haploid population[J]. Breed Sci,2002,52:309-317
    Yu SB, Li JX, Xu CG, et al. Importance of epistasis as the genetic basis of heterosis in an elite rice hybrid[J]. Proc Natl Acad Sci USA,1997,94:9226-9231
    Yuan LP. Development and prospects of hybrid rice breeding[M]. In:You CB, Chen ZL (eds) Agricultural biotechnology. Proc Asia-Pacific Conf Agric Biotechnol. China Agriculture Press, Beijing,1992, pp 97-105
    Zeng ZB. Theoretical basis of separation of multiple linked gene effects on mapping quantitative trait loci[J]. Proc Natl Acad Sci USA,1993,90:10972-10976
    Zeng ZB. Precision mapping of quantitative trait loci[J]. Genetics,1994,136:1457-1468
    Zhao JY, Becker HC, Zhang DQ, et al. Conditional QTL mapping of oil content in rapeseed with respect to protein content and traits related to plant development and grain yield[J]. Theor Appl Genet, 2006,113:33-38
    Zhao FM, Liu GF, Zhu HT, et al. Unconditional and conditional QTL mapping for tiller numbers at various stages with single segment substitution lines in rice (Oryza sativa L)[J]. Agricultural Science China,2008,7:257-265
    Zhou Y, Li W, Wu W, et al. Genetic dissection of heading time and its components in rice[J]. Theor Appl Genet,2001,102(8):1236-1242
    Zhu J. Mixed model approaches for estimating variances and covariances[J]. J Biomath,1992,7(1):1-11
    Zhu J. Analysis of conditional genetic effects and variance components in developmental genetics[J]. Genetics,1995,141:1633-1639
    Zhu J, Weir BS. Diallel analysis for sex-linked and maternal effects[J]. Theor Appl Genet,1996,92:1-9
    Zhu J, Weir BS. Mixed model approaches for genetic of quantitative traits[A]. In advanced topics biomathematies:Proeeedings of international conference on mathematical biology[M]. Edited by Chen LS, Ruan SG, Zhu J. World Scientific Publishing Co, Singapore.1998,321-330
    Zhuang JY, Lin HX, Lu J, et al. Analysis of QTLxenvironment interaction for yield components and plant height in rice[J]. Theor Appl Genet,1997,95:799-808
    Zhuang JY, Fan YY, Wu JL, et al. Importance of over-dominance as the genetic basis of heterosis in rice[J]. Sci in China (Series C),2001,44(3):327-336
    Zhuang JY, Fan YY, Rao ZM, et al. Analysis on additive effects and additive-by-additive epistatic effects of QTLs for yield traits in a recombinant inbred line population of rice[J]. Theor Appl Genet,2002, 105:1137-1145
    Zou JH, Pan XB, Chen ZX, et al. Mapping quantitative trait loci controlling sheath blight resistance in two rice cultivars (Oryza sativa L.)[J]. Theor Appl Genet,2000,101:569-573

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700