云南水稻地方品种保护机制及粳稻种质主要农艺性状的关联作图研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水稻是中国的第一大粮食作物,我国大约2/3的人口以大米为主食。近年来随着农业科学技术的发展和应用,水稻单产和亩产呈现连续递增的势头。然而育种家们在追求高产品种选育的同时,品种间的遗传基础越来越狭窄,突如其来的灾害一旦发生可能会造成不可估量的损失和严重后果。拓宽现有品种的遗传基础,培育遗传背景复杂的高产优质品种对我国水稻生产的可持续发展有重要意义。地方品种是在水稻生产和驯化过程中经自然和人为长期选择的产物,与育成品种相比,遗传背景复杂,具有丰富的遗传多样性和异质性,对环境具有很强的适应性,是丰产、优质、抗病虫、抗逆等重要性状的优异基因源。是育种家们培育各类品种所需材料取之不竭的源泉。因此,有效保护水稻地方品种对我国水稻生产的可持续发展意义重大。
     育成品种是经一代代育种家们定向培育,是许多高产、优质、抗逆、抗病虫等优异基因的聚合体,更符合人类对粮食的需求和生产,在生产上发挥着重要作用。同时也是品种培育和改良的最核心的遗传资源。利用不同地理来源育成品种的群体进行基因发掘对实际的生产利用有重要意义。
     本研究以云南水稻地方品种和来自世界各地的粳稻品种为试验材料,对云南水稻地方品种保护机制及不同地理来源粳稻主要农艺性状进行管理作图,获得如下结果:
     1.利用20对SSR引物对原产于云南的16份水稻地方品种和2份选育品种进行单个品种群体内的遗传多样性分析。结果表明,87.5%的地方品种群体内SSR标记多态性高于选育品种,而12.5%的地方品种群体内SSR标记多态性与选育品种相近。81.2%的地方品种群内的等位基因数(Na)和Nei基因遗传多样性指数(He)高于选育品种,而18.8%的地方品种群体内Na和He与选育品种相同或略小。水稻地方品种间群体内He的差异较大,其变异范围为0.0146~0.5117,黄板所-2、麻线谷-1、麻线谷-2的群体内遗传多样性较高,分别为0.4214、0.5117和0.4489。87.5%地方品种的杂合度(Ho)明显高于选育品种;地方品种群体间遗传多样性差异很大,其中1/4的遗传差异性来源于地方品种的群体内,差异呈极显著水平(P<0.001)。RM333、RM257和RM180在供试云南地方品种群体内的多态性、等位基因数、多样性指数和变异百分率均较高,适合应用于云南水稻地方品种群体内遗传多样性检测。
     2.选择原地保护(2007年收集)和异地保护(1980年左右收集)的8对同名相同云南水稻地方品种为试验材料,比较原异地保护地方品种的表型差异性。调查的7个农艺性状中,除剑叶宽变幅1980群体大于2007群体外,其余6个性状均表现为2007群体变幅大于1980群体。变异系数表现为九月糯、香谷、大白糯、麻线谷均有6个性状2007群体的变异系数高于1980群体;接骨糯和冷水谷分别有和4个农艺性状2007群体高于1980群体。比较8对地方品种1980群体和2007群体各农艺性状的平均变异系数,除穗抽出度外,其余6项农艺性状均表现为1980群体小于2007群体。以上结果表明均表明云南水稻地方品种2007群体内表型变异比1980群体表型变异更大,说明原地保护方式更利于产生表型变异。
     3.原、异地保护的8对同名相同水稻地方品种SSR标记差异性分析表明,在原地保护地方品种的每个群体检测到等位基因43~88个,平均每条SSR引物等位基因为2.15~4.40个;而在异地保护地方品种的每个群体检测到等位基因33~65个,平均每条SSR引物等位基因为1.65~3.25个。除齐头谷外,其余7对地方品种的原地保护群体的等位基因数显著高于异地保护群体。在8对地方品种群体中,齐头谷和黄版所异地保护群体的Nei基因多样性指数无显著或显著高于原地保护群体外,其余6对品种的原地保护群体的Nei基因多样性指数均显著高于异地保护群体。除齐头谷的异地保护群体特异等位基因数高于原地保护群体外,其余7对地方品种原地保护群体的特异等位基因数均高于异地保护群体,且原地保护群体的特异等位基因数为异地保护群体的2.1~5.0倍。AMOVA分析表明,原、异地保护同名地方品种间群体遗传结构差异极显著(P<0.001),变异百分率均在20%以上。原、异地保护的同名云南水稻地方品种的遗传结构和遗传多样性具有显著的差异,原地保护群体具有更丰富的等位基因和基因多样性。
     4.选择He较小的接骨糯、冷水谷、齐头谷和He较大的麻线谷,分析20、40、60、80、100株群体与原群体间的遗传差异性。以原群体2%以上的等位基因为对照,40~60株群体可以保持对照98%的等位基因数,80株群体可以检测到对照全部等位基因。以原群体5%以上等位基因为对照,40株群体可以检测到98%的等位基因,60株能完全检测到对照的等位基因。有效等位基因数(Ne)和He分析表明,遗传多样性较低的接骨糯和冷水谷在繁殖株数为40株时,可以保持原群体的Ne和He,而遗传多样性较高的麻线谷需80株群体来保持原群体的Ne和He。结果表明地方品种更新繁殖群体受该品种群体内异质性的影响,利用SSR标记分析认为有效保持水稻地方品种群体遗传完整性的更新繁殖株数为40~80株。
     5.选取两个遗传多样性差异大的云南水稻地方品种,利用混合取样法对每次选取120株连续繁殖4次,分析各群体间的遗传结构差异。等位基因数差异显著,但这种变化主要由频率很低的稀有等位基因增加或消失引起。有效等位基因和Nei遗传多样性指数在很小的变异范围内浮动,群体间差异不显著。其中异质性高的麻线谷的浮动幅度更大一些,说明异质性高的水稻地方品种更容易发生遗传侵蚀。参试品种4次繁殖的相似系数分别在0.98和0.99以上。2~4次繁殖随机抽取40株和80株群体分析其与原群体的遗传相似性,冷水谷40株群体的相似系数在0.99以上,而麻线谷需80株群体保持0.99以上的相似性,进一步证明了40~80株群体在繁殖次数中可以保持原群体的遗传相似性。以上结果表明云南水稻地方品种更新群体为120个单株时,连续繁殖4次后,保持了原群体的遗传完整性。根据地方品种群体内遗传多样性大小不同,40~80株群体可以保持原繁殖群体的遗传多样性。由此推测,利用40~80或更大的繁殖群体多次繁殖不会显著影响原材料的遗传结构和完整性。
     6.利用主要农艺性状和SSR标记对347份粳稻种质进行群体结构分析和关联作图。表型分析表明,来自不同国家或地区品种间农艺性状差异较大,各性状变异系数在5.46~27.36之间,极差值(除生育期外)占平均值比率范围为67.7~149.6%。Structure群体结构分析表明参试群体分3个亚群,生态类型相似地区的品种基本归在1个亚群。利用TASSEL软件的GLM模型对7个农艺性状2年数据关联作图表明,在公共图谱上共线性或非共线性的位点组合广泛存在连锁不平衡(LD),但不平衡程度的r2>0.5组合数少,只占总位点数的5.83%。148个位点中有76个位点共计216个(次)和7个农艺性状显著关联,共50个(次)位点与两年表型数据均显著关联。76个位点中与生育期关联位点31个,株高19个,穗长22个有效穗数和千粒重各20个,穗粒数28个,结实率24个;有46个位点与2个或2个以上性状关联。在与各性状的关联位点中一些位点与前人利用QTL定位位点的位置相同或接近。结果表明关联作图法定位是传统QTL定位的有效补充,两者结合起来可能是水稻复杂性状新基因定位和发掘的有效方法。
Rice is the first food crop in China, the staple food of people about2/3is rice in China.With the development and applications of agricultural science and technology, rice yield is themomentum of continuous increment in recent years. However, the genetic basis of varieties ismore and more narrow while breeders are pursuing high-yielding varieties at the same time.Unexpected disaster, such as diseases, pests, etc. may result in incalculable losses and seriousconsequences. It is important to sustainable development of rice production for broadeningthe genetic basis of the varieties and nurturing the complex genetic background, high-yield,high-quality rice varieties. Landraces is the product of long-term choice by natural andman-made in rice production and domestication. Compared with breeding rice, landraces havemore complex genetic background, richer genetic diversity and heterogeneity, and strongeradaptability to the environment. It is an inexhaustible source for breeders to nurture all kindsof varieties which contain many excellent genes such as high yield, high-quality, disease andinsect resistance, stress tolerance etc. Therefore, the effective protection of rice landraces issignificant for sustainable development of rice production in China.
     By breeders oriented cultivation of generation to generation, bred varieties is a polymerof many excellent yields, good qualities, tolerance, resistance to insect pests and other genes.Bred varieties plays important roles in cereals production and meeting human demand. Bredvarieties are also the core of genetic resources for breeding and improvement. It is importantto discover excellent genes using bred varieties come from different geographical orecological places.
     In this study, Yunnan rice landraces and japonica varieties from around the world as testmaterial, we studied to protection mechanism of Yunnan rice landraces and associationmapping of main agronomic traits of japonica rice. The main results were summarized asfollows:
     1. Genetic diversity within populations of16rice landraces and2advanced cultivarsfrom Yunnan were analyzed using20SSR markers. The results showed that the SSR markerpolymorphism within populations for87.5%of rice landraces was higher than that ofadvanced cultivars, while the SSR marker polymorphism within populations for12.5%of landraces was similar with that of advanced cultivars. The number of alleles (Na) and Nei’sgenetic diversity index (He) were showed that81.2%of rice landraces were higher than thoseof advanced cultivars, and18.8%of landraces were same or slightly smaller than advancedcultivars. The He within populations of rice landraces were significantly different, rangedfrom0.0146to0.5117, while HBS-2, MXG-1and MXG-2were the highest with0.4214,0.5117and0.4489, respectively. Compared heterozygosity within rice varieties,87.5%of ricelandraces were significantly higher than improved cultivars. AMOVA showed that1/4geneticdifference among rice landraces were from within populations of rice landraces (P<0.001).Compared the polymorphism, Ne, He and percentage of variation within populations of ricelandraces among20SSR markers, RM333, RM257and RM180were higher than others. Itspeculated that RM333, RM257and RM180were suitable to testing genetic diversity withinrice landraces of Yunnan.
     2. The phenotypic differences eight pairs of rice landraces from in situ (collected in2007)and ex situ (collected in1980) conservation programs with single-origin were studied. Surveyof7agronomic traits, in addition to the FLW variation range of1980population was greaterthan that of2007population, the remaining six traits showed that the2007population wasmore than1980population. the coefficient of variation showed that JYN, XG, DBN and MXGwere6agronomic traits which2007populations was higher than1980populations, andJGN and LSG was4. Compared the average coefficient of variation between8pairsagronomic characters of rice landraces populations collected in1980and2007, six agronomictraits showed that2007population was higher than1890population except for PE. Theseresults indicate that the phenotypic variation within Yunnan rice landraces of in situconservation programs was higher than that of ex situ conservation programs.
     3. The genetic structure and diversity of eight singer-origin pairs of rice landraces fromin situ and ex situ conservation programs were studied using20pairs of microsatellitemarkers with high polymorphism. The number of alleles detected in the populations from insitu conservation ranged from43to88with the mean number of alleles per locus rangingfrom2.15to4.40, while the number of alleles detected in the populations from ex situconservation ranged from33to65, and the mean of alleles per locus ranged from1.65to3.25.Compared to the ex situ populations, the number of alleles, the number of specific alleles andthe genetic diversity index showed a significant increase in the in situ populations. Further,the numbers of specific alleles from in situ populations were2.1to5.0times greater than inex situ populations except for rice landrace QTG. An AMOVA showed that thewithin-landrace genetic structure differed significantly between in situ and ex situ conservation treatments with differences exceeding20%. The analysis of genetic similarityreached similar conclusions to those of the AMOVA. Compared with ex situ conservationprograms, the rice landraces under in situ conservation programs had more alleles and highergenetic diversity in Yunnan of China.
     4. Selected JGN, LSG and QTG with smaller He and MXG with higher He, geneticdifferences were analyzed among20,40,60,80,100populations (randomly selected fromoriginal populations respectively) and original populations.40to60populations can contain98%alleles, and80populations can be detected in all alleles compared the originalpopulations of alleles frequency more than2%. Compared alleles more than5%of originalpopulations,40populations can be detected98%alleles while60can be fully detected.Changes of Ne and He showed that JGN, LSG and QTG with low genetic diversity in thereproduction need40populations to keep Ne and He of original populations while MXG withhigh genetic diversity need80populations. The results showed that the number of populationsto contain genetic integrity in updating was affected by the heterogeneity of the rice landraces.In our study,40~80populations can effectively maintain the genetic integrity of ricelandraces to update using SSR markers.
     5. Selected2rice landraces of Yunnan with significant differences in genetic diversity,120single plants of populations were planted four times consecutively using a bulk systemgetting seeds. Genetic differences among populations were analyzed. The number of alleleswere significant difference, but this change mainly caused by increasing or disappearing rarealleles with low frequency. The Ne and He changed within the small fluctuations, and nosignificant difference among populations. MXG with high heterogeneity floating range wasbigger than that of LSG, this indicated that rice landraces with high heterogeneity are moreprone to genetic erosion. Similarity coefficient of rice landraces planting4times were0.98and0.99, respectively. Analyzed similarity coefficients among40and80populations(randomly selected from the original populations) and the original populations planted2to4times,40populations of LSG and80populations of MXG were above0.99. It was provedthat40to80populations can be kept genetic similarity of the original groups to planting4times continuously. The result showed that using120individuals to update rice landraces canmaintain the genetic integrity of original populations.40to80individual populations containsimilarity among4times planting. It speculated that used of40to80individual populationscan maintain genetic diversity for repeatedly breeding.
     6. Association mapping of347japonica varieties using the main agronomic traits andSSR markers. Analysis of Phenotype showed that the agronomic traits and coefficient of variation of varieties from different national or regional were large variations. Coefficient ofvariation of traits from5.46to27.36except for MD, accounted for the average ratios from67.7to149.6%. Analysis of Structure showed that the tested groups divided into three subsets,the variety of similar areas or ecological types classified in same subgroup. Agronomic traitswith2years data and148SSR markers were associated mapping using GLM model ofTASSEL software. LD was detected extensively not only among syntenic markers but alsoamong nonsyntenic ones, while the loci pairs with r2>0.5accounted for only5.83%of thetotal ones.76sites totaling216(times) were significantly agronomic traits while50(times)associated2years data at the same time within148loci. Among76loci, MD associated with31loci, PH is19, PL is22, PPP is28,1000-GW is20, SPP and Ssr is24respectively.46lociwere associated with two or more traits. Some loci located in this paper were the same orclose to the loci of QTL mapping by previous. The results showed that association mappingmethod is an effective complement to traditional QTL mapping, and combine the twomethods is the effective way to map and excavate rice complex gene.
引文
陈成斌,李杨瑞,黄一波,梁世春,王启德,赖群珍,黎家泳,梁云涛,赵通,徐志健,陈福健,黄娟,李宇钊.2005.广西野生稻种质资源原位保护示范区资源现状调查研究.广西农业科学,36(3):269~272
    陈灵芝.1993.中国的生物多样性现状及其保护对策.北京:科学出版社:31~113
    戴陆园,黄兴奇,张金渝,徐福荣,叶昌荣,庞汉华.2001.云南省野生稻资源保存保护现状.植物遗传资源科学,2(3):45~48
    戴陆园,王平盛,叶昌荣,余腾琼,徐福荣.2001.云南省农作物遗传资源现状.云南植物研究,Suppl. Ⅷ:22~27
    戴陆园,叶昌荣,余腾琼,徐福荣,王建军.2002.云南稻种资源的利用及有关研究进展.植物
    遗传资源学报,3(2):56~61
    戴陆园,游承俐,Paul Quek.2008.土著知识与农业生物多样性.北京:科学出版社:92~106
    董树斌,卢宝荣,王云月,杨慧,涂敏,李林.2010.云南水稻传统品种内的遗传多样性及其维持机制初探.云南农业大学学报,25(1):1~9
    董玉琛.2001.作物种质资源学科的发展和展望.中国工程科学,3(1):1~5,43
    段世华,李绍清,李绍波,朱英国.2009.野生稻与亚洲栽培稻的遗传多样性.作物学报.35(3):467~474
    傅体华,任正隆.2001.簇毛麦染色体的形态学及Giemsa-C带的多态性研究Ⅰ.簇毛麦染色体的核型及C带核型.四川农业大学学报,19(4):400~403
    葛颂,洪德元.1994.遗传多样性及其检验方法.生物遗传多样性研究的原理与方法.北京:科学出版社:123~140
    龚志莲,郭辉军,周开元.2001.西双版纳社区旱谷多样性现状调查——以巴卡小寨、大卡老寨和曼那龙寨为例.云南植物研究,2001,Suppl,Ⅷ:178~186
    郭龙彪,罗利军,邢永忠,徐才国,梅捍卫,王一平,钟代彬,钱前.2003.水稻重要农艺性状的两年QTL剖析.中国水稻科学,17(3):211~218
    郭燕莉.2007.我国生物多样性保护与可持续发展.科技创新导报,35:179
    韩龙植,曹桂兰.2005.中国稻种资源收集、保存和更新现状.植物遗传资源学报,6(3):359~364
    韩龙植,黄清港,盛锦山,庞汉华,裘宗恩,杨庆文,曹桂兰,赵江.2002.中国稻种资源农艺性状鉴定、编目和繁种入库概况.植物遗传资源科学,3(2):40~45
    韩龙植,魏兴华.2006.水稻种质资源描述规范和数据标准.北京:中国农业出版社:59~119
    何光华,裴炎,杨光伟,谢戎.2000.我国中籼杂交稻亲本的DNA变异性研究.作物学报,26(4):449~454
    胡晋,徐湲,陈叶平,吴殿星,陆建荣.1994.超低温保存对某些作物种子生活力和活力的影响.浙江农业大学学报:农业与生命科学版,20(4):411~416
    胡志昂.1994.研究遗传多样性的基本原理和方法.见:生物多样性研究的原理与方法.北京:中国科技出版社:117~122
    华蕾,袁筱萍,余汉勇,王一平,徐群,汤圣祥,魏兴华.2007.我国水稻主栽品种SSR多样性的比较分析.中国水稻科学,21(2):150~154
    黄娟,杨庆文,陈成斌,梁世春,张万霞,乔伟华,王家祥.2009.广西普通野生稻的遗传多样性及分布特征.中国农业科学,42(8):2633~2642
    黄英金,李桂花,陈大洲,石庆华,肖玉峰,王锋尖,余丽琴,肖叶青.2002.东乡野生稻等位酶位点遗传多样性的初步研究.江西农业大学学报,24(1):1~5
    贾书果,吴薇,周霞,刘争.2010.种质资源的超低温储藏研究进展.林业科技开发,24(6):5~8
    江建华,赵其兵,刘强明,陈兰,陈甫龙,乔保健,洪德林.2011.利用条件QTL定位发掘粳稻生育期和株高及单株有效穗数适用有利等位变异.中国水稻科学,25(3):277~283
    金伟栋,程保山,洪德林.2008.基于SSR标记的太湖流域粳稻地方品种遗传多样性研究.中国农业科学,41(11):3822~3830
    金伟栋,洪德林.2006.太湖流域粳稻地方品种遗传多样性研究.生物多样性,14(6):479~487
    雷驰,刘丽.2006.湖南野生稻原生境现状及其保护对策.作物研究,(2):187~189
    李红宇,侯昱铭,陈英华,徐正进,陈温福,赵明辉,马殿荣,徐海,王嘉宇.2009.用SSR标记评估东北三省水稻推广品种的遗传多样性.中国水稻科学,23(4):383~390
    李灵芝,王丽娜,马华英,杨春燕.2001.基因库大豆种子繁殖更新阈值研究.华北农学报,16:74~79
    李小湘,段永红,王淑红,刘勇.2007.中国普通野生稻的原地保护及其遗传多样性研究进展.杂交水稻,22(5):1~6
    李耀华,陈禅友,余衍正.1997.斑豆品种资源的聚类分析.武汉植物学研究,15(3):225~261
    李自超,张洪亮,曾亚文,申时全,孙传清,王象坤.2001.云南稻种资源表型遗传多样性研究.作物学报,27(6):832~837
    林荔辉,吴为人.2003.水稻粒型和粒重的QTL定位分析.分子植物育种,1(3):337~342
    林世成,闵绍楷.1991.中国水稻品种及系谱.上海科学技术出版社:262~280
    刘纯杰,张兆山.2003.任意引物PCR及其应用研究进展.生物技术通讯,14(4):320~323
    刘迪.1996.遗传多样性的消失给农业发展带来阴影.世界研究与开发动态,12(6):91~92
    刘利青,盛中飞,张素勤,耿广东,张庆勤.2010.提莫菲维小麦核型分析.江苏农业科学,(5):106~107
    刘旭.2004.中国农作物种质资源报告.植物遗传资源学报,增刊:1~13
    龙春林,王洁如,李延辉.1997.西双版纳的传统茶园系统.见:裴盛基,许建初,陈三阳,龙春林主编.西双版纳轮歇农业生态系统生物多样性研究论文报告集.昆明:云南教育出版社
    卢宝荣.1998.稻种遗传资源多样性的开发利用和保护.生物多样性,6(1):63~72
    卢宝荣,朱有勇,王云月.2002.农作物遗传多样性农家保护的现状及前景.生物多样性,10(4):409~415
    卢新雄,崔聪淑.1991.国家种质库种子入库处理程序.种子,(6):60~62
    罗林广.1997.分子标记及其在作物遗传育种中的应用.江西农业学报,9(1):45~54
    罗铮锋,盖钧镒,章元明.2004.玉米种质保持中的适宜样本容量.作物学报,30(7):675~679
    吕广磊,蔺忠龙,白现广,Kyung-HoMa,付坚,刘芳芳,黄兴奇,Jae-GyunGway,程在全.2009.云南栽培稻种SSR遗传多样性比较.植物学报,44(4):457~463
    马缘生,范传珠,王述民,谭富娟,周红立,周涛.2002.五种作物基因库种子繁殖更新技术研究.植物遗传资源科学,3(2):1~7,33
    潘家驹.1994.作物育种学总论.北京:中国农业出版社:22
    庞汉华.1996.建立野生稻原地自然保护点已刻不容缓.作物品种资源,(6):22~24
    彭锁堂,王海岗,魏兴华,吕建珍,张晓丽,袁筱萍,杨武德.2008.我国三系杂交稻主要不育系的微卫星标记多样性和遗传结构分析.中国水稻科学,22(4):365~369
    邱芳,伏健民,金德敏,王斌.1998.遗传多样性的分子检测.生物多样性,6(2):143~150
    曲竹蓉,喻乐辉,尹升华.1990.番茄熟性的主分量与模糊聚类分析.西南农业大学,12(1):11~15
    全东兴,韩龙植,南钟浩,元东林.2004.特种稻种质资源研究进展与展望.植物遗传资源学报,5(3):227~232
    任守杰,张志娥,陈晓玲,王建华,卢新雄.2006.基于醇溶蛋白的20份小麦种质遗传完整性分析.植物遗传资源学报,7(1):44~48
    沈浩,刘登义.2001.遗传多样性概述.生物学杂志,18(3):5~8
    沈新平,沈明星,顾丽,龚丽萍,季红娟,姚月明,王建平,高飞,顾芹芹.2007.太湖流域晚粳稻地方种资源的表型遗传多样性.生态学报,27(1):189~196
    沈振国,刘友良.1998.重金属超量积累植物研究进展.植物生理学通讯,34(2):133~139
    史锋厚,喻方圆,沈永宝,曹福亮.2005.超低温贮藏对油松种子的影响.南京林业大学学报:自然科学版,39(6):119~121
    苏治军,郝转芳,谢传晓,李明顺,石红良,吴永升,张世煌,李新海.2010.玉米dbf1基因与耐旱相关性状的关联分析.植物遗传资源学报,11(4):474~478,482
    孙希平,杨庆文,李润植,王效宁.2007.海南三种野生稻遗传多样性的比较研究.作物学报,33(7):1100~1107
    唐梅,裴炎,何光华.2000.四川省籼型杂交水稻保持系的随机扩增多态性研究.西南农业学报,13(1):12~15
    汤圣祥,江云珠,魏兴华,李自超,余汉勇.2002.中国栽培稻同工酶的遗传多样性.作物学报,28(2):203~207
    陶嘉龄.1986.种质库管理及种子贮藏.北京: IBPGR-CAAS:135~1361
    王家祥,陈友桃,黄娟,乔卫华,张万霞,杨庆文.2009.中国普通野生稻(Oryza rufipogon Griff.)原生境保护与未保护居群的遗传多样性比较.作物学报,35(8):1474~1482
    王晶,向凤宁,夏光敏,陈穗云,陈惠民.2003.普通小麦与高冰草体细胞杂种F5代株系的核型分析.麦类作物学报,23(1):12~16
    王荣焕,王天宇,黎裕,2007a.植物基因组中的连锁不平衡,遗传,29(11):1317~1323
    王荣焕,王天宇,黎裕,2007b.关联分析在作物种质资源分子评价中的应用,植物遗传资源学报,8(3):366~372
    王三良,许可.1996.我国籼型杂交水稻育种现状、问题及对策.杂交水稻,(3):1~4
    王象坤,孙传清.1996.中国栽培稻的起源与演化研究专集.北京:中国农业大学出版社,1~233
    王中仁.1996.植物等位酶分析.北京:科学出版社:1~3
    魏兴华,汤圣祥,江云珠,余汉勇,裘宗恩,颜启传.2003.中国栽培稻选育品种等位酶多样性及其与形态学性状的相关分析.中国水稻科学,17(2):123~128
    魏兴华,袁筱萍,余汉勇,王一平,徐群,汤圣祥.2009.我国常规稻主栽品种的遗传变异分析.中国水稻科学,23(3):237~244
    文彬.2011.植物种质资源超低温保存概述.植物分类与资源学报.33(3):311~329
    伍少云,戴陆园,游承俐,金建昌,李云,贾从进,张宗文,BhuwonR,Sthapit.2001.户级水平大田作物多样性与经济分析.云南植物研究,Suppl,Ⅷ:187~193
    伍少云,游承俐,戴陆园,金建昌,张宗文,PaulQuek,杨家寿.2000.云南澜沧县陆稻品种资源多样性和原生境保护.植物资源与环境学报,9(4):39~43
    徐福荣,戴陆园,叶昌荣.云南稻种资源表现性分布地和分布民族分析.2005.西南农业大学学报(自然科学版),72(1):14~19
    许建初,陈三阳,李延辉.1997.勐宋轮歇农业系统中作物物种及品种的多样性研究.见:裴盛基,许建初,陈三阳,龙春林主编.西双版纳轮歇农业生态系统生物多样性研究论文报告集.昆明:云南教育出版社
    玄英实,姜文洙,刘宪虎,程正海,Hee-Jong Koh,元东林.2010.中国东北地区水稻主要栽培品种的遗传多样性分.植物遗传资源学报,11(2):206~212
    严华军,吴乃虎.1996. DNA分子标记技术及其在植物遗传多样性研究中的应用.生命科学,8(3):32~36
    杨庆文,余丽琴,张万霞,陈大洲,时津霞,任军方,苗晗.2005.原、异位保存普通野生稻种质资源的遗传多样性比较研究.中国农业科学,38(6):1073~1079
    杨小红,严建兵,郑艳萍,余建明,李建生,2007.植物数量性状关联分析研究进展,作物学报,33(4):523~530
    杨志奇.2009.中国粳稻地方品种孕穗期耐冷性鉴定及遗传多样性分析.[硕士学位论文].北京:中国农业科学院
    叶昌荣,戴陆园.2000.云南作物遗传资源多样性与农业可持续发展.云南植物研究Suppl, Ⅶ:129~133
    叶昌荣,米艳华,余腾琼,罗红芬.2002.云南作物遗传资源多样性与农业可持续发展.云南农业大学学报,17(1):99~103
    尹绍亭.1994.云南刀耕火种志——森林孕育的农耕文化.昆明:云南人民出版社
    应存山,盛锦山,罗利军,张丽华.1997.中国优异稻种资源.北京:中国农业出版社:95
    应杰政,施勇烽,庄杰云,薛庆中.2007.用微卫星标记评估中国水稻主栽品种的遗传多样性.中国农业科学,40(4):649~654
    余丽琴,徐巧玲,邱兵余,熊玉珍,饶淑芳.2007.原、异位保存东乡野生稻主要农艺性状的比较研究.植物遗传资源学报,8(1):99~101
    于萍,李丽,吕建珍,袁筱萍,徐群,王一平,余汉勇,魏兴华.2009.太湖流域粳稻地方品种的微卫星分析.中国水稻科学,23(2):148~152
    于永涛,2006.玉米核心自交系群体结构及耐旱相关候选基因rab17的等位基因多样性分析.[博士学位论文].中国农业科学院研究生院
    张冬玲,张洪亮,魏兴华,齐永文,王美兴,孙俊立,丁立,汤圣祥,裘宗恩,曹永生,王象坤,李自超.2006.贵州栽培稻的遗传结构及其遗传多样性.科学通报,51(23):2747~2754
    张立娜,曹桂兰,韩龙植.2010.中国不同地理来源旱稻地方品种的遗传相似性研究.中国农业
    科学,43(17):3481~3488
    张晓丽,郭辉,王海岗,吕建珍,袁筱萍,彭锁堂,魏兴华.2008.中国普通野生稻与栽培稻种SSR多样性的比较分析.作物学报,34(4):591~597
    张学勇,童依平,游光霞,郝晨阳,盖红梅,王兰芬,李滨,董玉琛,李振声,2006.选择牵连效应分析:发掘重要基因的新思路,中国农业科学,39(8):1526~1536
    张永生,刘喜,江玲,陈亮明,刘世家,翟虎渠,万建民.2009.利用南京11×越光RIL群体进行抽穗期QTL定位分析.江苏农业学报,25(1):6~12
    章元明,盖钧锰.1995.大豆地方品种种质保持中适宜样本容量的研究.中国农业科学,28(增刊):70~75
    张媛媛,曹桂兰,韩龙植.2007.中国不同地理来源籼稻地方品种的亲缘关系研究.作物学报,33(5):757~762
    张媛媛,束爱萍,曹桂兰,韩龙植.2010.中国不同省份籼稻地方品种的指纹图谱分析.中国农业科学,43(11):2189~2196
    郑郁善,陈礼光,李庆荣,林镇斌,吴擢溪.2002.板栗种子超低温保存研究.林业科学,38(6):147~149
    曾亚文,陈勇.1997.云南省作物遗传资源学科发展探讨.作物品种资源,(2):22~23
    曾亚文,李自超,申时全,王象坤,杨忠义,张洪亮,陈于敏.2001.云南地方稻种的多样性及优异种质研究.中国水稻科学,15(3):169~174
    曾亚文,李自超,杨忠义,王象坤,申时全,张洪亮,陈于敏.2000.云南稻种主要性状多样性分布中心及其规律研究.华中农业大学学报,19(6):511~517
    朱明雨,王云月,朱有勇,卢宝荣.2004.云南地方水稻品种遗传多样性分析及其保护意义.华中农业大学学报,23:187~191
    Abdala F H and Roberts E H.1969. The effect of temperature and moisture on the induction of geneticchanges in seeds of barley, broad beans and peas during storage. Annals of Botany,33:153~167
    Agrama H A, Eizenga G C, and Yan W.2007. Association mapping of yield and its components inrice cultivars, Molecular Breeding,19(4):341~356
    Allard R W, Jain S K, Workman P L.1968. The genetics of inbreeding populations. Advances inGenetic,14:55~131
    Altieri M A and Merrick L C,1987. In situ conservation of crop genetic resources throughmaintenance of traditional farming systems. Economic Botany,41:86~96
    Andersen J R, Schrag T, Melchinger A E, Zein I, and Lübberstedt T.2005. Validation of Dwarf8polymorphisms associated with flowering time in elite European inbred lines of maize (Zea mays L.),Theor Appl Genet,111(2):206~217
    Andersen J R, Zein I, Wenzel G, Krützfeldt B, Eder J, Ouzunova M, and Lübberstedt T,2007. Highlevels of linkage disequilibrium and associations with forage quality at a Phenylalanine ammonia-lyaselocus in European maize (Zea mays L.) inbreds, Theor Appl Genet,114(2):307~319
    Aranzana M J, Kim S, Zhao K Y, Bakker E, Horton M, Jakob K, Lister C, Molitor J, Shindo C, TangC L, Toomajian C, Traw B, Honggang Zheng H G, Bergelson J, Dean C, Marjoram P, Nordborg M.2005.Genome-wide association mapping in arabidopsis identifies previously known f lowering time andpathogen resistance genes. Plos Genet,1: e60
    Baker A J M.1981. Accumulators and excluders: straigies in response of plants to heavy metals. PlanNacr,3:643~654
    Barry M B, Pham J L, Béavogui S, Ghesquière A, Ahmadi N.2008. Diachronic (1979–2003) analysisof rice genetic diversityin Guinea did not reveal genetic erosion. Genet Resour Crop Evol,55:723~733
    Bassam B J, Caetano-Anolles G, and Gresshoff P M.1991. Fast and sensitive silver staining of DNAin polyacrylamidegels. Anal Biochem,196:80~83. doi:10.1016/0003-2679(91)90120-1. PMID:1716076.
    Bauer I, Mladenovic Drinic S, Drinih G, Ignjatovih micih G.2007. Assessing Temporal Changes inGenetic Diversity of Maize Hybrids Using RAPD Markers. Cereal Research Communications,35(4):1563~1571
    Bellon M R,1991. The ethnoecology of maize variety management: a case study from Mexico. HumanEcology,19:389~418
    Bellon M R, Berthaud J, Smale M, Aguirre A J, Taba S, Aragon F, Diaz J, Castro H.2003.Participatory landrace selection for on-farm conservation: as example from the central valleys of Oaxaca,Mexico. Genet Resour Crop Evol,50:401~416
    Bellon M R and Brush S B,1994. Keepers of maize in Chiapas, Mexixo. Economic Botany,48:196~209
    Botstein D, White R L, Skolnick M, Davis R W.1980. Construction of a genetic linkage map in manusing restriction fragment length polymorphisms. American Journal of Human Genetics,32(3):314~331
    Brondani C, Rangel N, Brondani V, Ferreira E.2002. QTL mapping and introgression of yield-relatedtraits from Oryza glumaepatula to cultivated rice (Oryza sativa L.) using microsatellite markers.Theoretical and applied genetics,104, pp.1192~1203
    Brooks R R, Shaw S, Marfil A A.1981. The chemical form and physiological function of nickel insome Iberian Alyssum species. Plant Phsiol,51:161~170
    Brown S M, Kresovich S.1996. Molecular characterization for plant genetic resources conservation.P:85–93. In A.H. Pater son (ed.) Genome mapping in plants. R.G. Landes, New York.
    Brush S B.1989. Rethinking crop genetic resource conservation.. Conserv Biol3:19~29
    Brush S B,1991. A farmer-based approach to conserving crop germplasm. Economic Botany,45:153~156
    Brush S B,1995. In situ conservation of landraces in centers of crop diversity. Crop science,35:346~354
    Brush S B, Carney H J, Huaman Z.1981. Dynamics of Andean potato agriculture. Economic Botany,35:70~88
    Brush S B, Taylor J E, Bellon M R.1992. Biological diversity and technology adoption in Andeanpotato agriculture. Journal of Development Economics,39:365~387
    B rner A, Chebotar S, Korzun V.2000. Molecular characterization of the genetic integrity of wheat(Triticum aestivum L.) germplasm after long-term maintenance. Theor Appl Genet,100:494~497
    Camus-Kulandaivelu L, Veyrieras J B, Madur D, Combes V, Fourmann M, Barraud S, Dubreuil P,Gouesnard B, Manicacci D, and Charcosset A,2006. Maize adaptation to temperate climate: relationshipwith population structure and polymorphism in the Dwarf8gene, Genetics,172:2449~2463
    Chang T T.1976. The origin, evolution, cultivation, dissemination, and diversification of Asia andAfrican rice. Euphytica,25:425~441
    Chebotar S, R der M, Korzun V and B rner A.2002. Genetic integrity of ex situ genebank collections.CELLULAR&MOLECULAR BIOLOGY LETTERS,7:437~444
    Chebotar S, RoderM S, Korzun V.2003. Molecular studies on genetic integrity of open-pollinatingspecies rye (Secale cereale L.) after long-term genebank maintenance. Theor App l Genet,107:1469~1476
    Ching A, Caldwell K.S, Jung M, Dolan M, Smith O S, Tingey S, Morgante M, and Rafalski A J,2002.SNP frequency, haplotype structure and linkage disequilibrium in elite maize inbred lines, BMC Genetics,3:19
    Cieslarová J, Smykal P, Do kalová Z, Haná ek P, Procházka S, Hybl M, Griga M.2011. Molecularevidence of genetic diversity changes in pea (Pisum sativum L.) germplasm after long-term maintenance.Genet Resour Crop Evol,58:439~451
    Clerc V L, Briard M, Granger J, Delettre J.2003. Genebank biodiversity assessments regardingoptimal sample size and seed harvesting techniques for the regeneration of carrot accessions. Biodiversityand Conservation,12:2227~2336
    Clerc V L, Bazante F, Baril C, Guiard J, Zhang D.2005. Assessing temporal changes in geneticdiversity of maize varieties using microsatellite markers. Theor Appl Genet,110:294~302
    Cleveland D A, Soleri D, and Smith E S.1994. Folk crop varieties: Do they have a role in sustainableagriculture? BioScience,44(11):740~751
    Cohen J I, Williams J T, Plucknett D L. and Shands H.1991. Ex situ conservation of plant geneticresources: global developments and environmental concerns. Science,253:866~872
    Crossa J, Hernandez C M, Bretting P, Eberhart S A.&Taba S,1993. Statistical genetic considerationsfor maintaining germplasm collections. Theor Appl Genet.86:673~678
    Crossa J.1989. Methodologies for estimating the sample size required for genetic conservation ofoutbreeding crops. Theor Appl Genet,77:153~161
    Crossa J.1992. Gene action and the bottleneck affection relation to sample size for maintenance ofcross-pollinated population. Field Crops Research,29:225~239
    Crossa J, Vencovsky R.1994. Implications of variance effective population size on the geneticconservation of monoecious species. Theor Appl Genet,89:936~942
    Crossa J, Vencovsky R.1997. Variance effective population size for two-stage sampling ofmonoecious species. Crop Science,37:14~26
    Crossa J. and Vencovsky R.1999. Sample size and variance effective population size for geneticresources conservation. Plant Genetic Resources Newsletter, No.119Supp.15~25
    Dai L Y, Lin X H, Ye C R, et al. Ise K, Saito K, Kato A, Xu F R, Yu T Q and Zhang D P.2004.Identification of quantitative trait loci controlling cold tolerance at the reproductive stage in Yunnanlandrace of rice, Kunmingxiaobaigu. Breeding Science,54:253~258
    Deu M, Sagnard F, Chantereau J, Calatayud C, Vigouroux Y, Pham J L, Mariac C, Kapran I,Mamadou A, Gérard B, Ndjeunga J, Bezancon G.2010. Spatio-temporal dynamics of genetic diversity inSorghum bicolor in Niger. Theor Appl Genet,120:1301~1313
    Diwan N, Mclntosh M S, Bauchan G R.1995. Methods of developing a core collection of annualMedicago species. Theor Appl Genet,90:755~761
    Donini P, Law J R, Koebner R M D, Reeves J C, Cooke R J.2000. Temporal trends in the diversity ofUK wheat. Theor Appl Genet,100:912~917
    Dourado A M and Roberts E H.1984. Phenotypic mutation induced during storage in barley and peaseeds. Annals of Botany,54:781~790
    Edward Buckler Lab. Maize Diversity Research.2007. http://www.maizegenetics.net/bioinformatics/tassel
    Edwards K, Johnstone C, Thompson C.1991. A simple and rapid method for the preparation of plantgenomic DNA for PCR analysis. Nucleic Acids Research,19(6):1349
    Eizenga G C, Agrama H A, Lee F N, Yan W, and Jia Y.2006. Identifying novel resistance genes innewly introduced blast resistant rice germplasm, Crop Sci,46:1870~1878
    Elias M, McKey D, Panaud O, Anstett M C, Robert T.2001. Traditional management of cassavamorphological and genetic diversity by the conservation of crop genetic resoures. Euphytica,120:143~157
    Excoffier L, Laval L G, Schneider S.2005. Arlequin ver3.0: An integrated software package forpopulation genetics data analysis. Evol Bioinformatic, Online,1:47~50
    FAO.1998. The state of the world’s plant genetic resources for food and agriculture. Food andAgriculture Organization of the United Nations, Rome
    Feyissa R.2000. Community seed banks and seed exchange in Ethiopia: a farmer-led approach. In:Friis-Hansen E. and Sthapit B.(eds), Participatory Approaches to the Conservation and Use of PlantGenetic Resources. International Plant Genetic Resource Institute, Rome, Italy:142~148
    Flint-Garcia S A, Thornsberry J M, Buckler E S.2003. Structure of linkage disequilibrium in plants.Annu Rev Plant Biol,54:357~374
    Flint-Garcia S A, Thuillet A C, Yu J M, Pressoir G, Romero S M, Mitchell S E, Doebley J, KresovichS, Goodman M M, Buckler E S.2005. Maize association population: a high-resolution plat form forquantitative trait locus dissection. Plant J,44:1054~1064
    Frankel O H, and Soulé M E.1981. Conservation and Evolution. Cambridge University Press,Cambridge.
    Friebe B, Jiang J, Tuleen N.1995. Standard karyotype of Triticum umbellulatum and thecharacterization of derived chromosome addition and translocation lines in common wheat. Theor ApplGenet,90:150~156
    Fu Y B, Peterson G W, Morrison M J.2007. Genetic Diversity of Canadian Soybean Cultivars andExotic Germplasm Revealed by Simple Sequence Repeat Markers. Crop Sci,47:1947~1954
    Fu Y B, Peterson G W, Scoles G, Rossnagel B, Schoen D J, Richards K W.2003b. Allelic DiversityChanges in96Canadian Oat Cultivars Released from1886to2001. Crop Sci,43:1989~1995
    Fu Y B, Rowland G G, Duguid S D, Richards K W.2003a. Plant Genetic Resources: RAPD Analysisof54North American Flax Cultivars. Crop Sci,43:1510~1515
    Gale J S, Lawrence M J,1984. The decay of variability. In: Holden J H W&Williams J T (Eds.),Crop Genetic Resources: Conservation and Evaluation, Allen and Unwin:77~101
    Gauchan D, Smale M, Chaudhary P.2005. Market-based incentives for conserving diversity on farms:the case of rice landraces in Central Tarai, Nepal. Genetic Resources and Crop Evolution,52:293~303
    Gill B S, Friebe B, Endo T R.1991. Standard karyotype and nomenclature system for description ofchromosome band and structural aberrations in wheat (Triticum aestivum). Gemome,34:830~839
    Gizlice Z, Carter T E.1994. Genetic base for North American public soybean cultivars releasedbetween1947~1988. Crop Sci,34:1143~1147
    Gomez O J, Blair M W, Frankow-Lindberg B E, Gullberg U.2005. Comparative study of commonbean (Phaseolus vulgaris L.) landraces conserved ex situ in genebanks and in situ by farmers. Gen ResCrop Evol,52:371~380
    Gupta P K, Rustgi S, and Kulwal P L.2005. Linkage disequilibrium and association studies in higherplants: Present status and future prospects, Plant Molecular Biology,57(4):461~485
    Hamann A, Zink D. and Nagl W.1995. Microsatellite fingerprinting in the genus Phaseolus. Genome,38:507~515
    Hammond J J, Gardner C O.1974. Effect of genetic sampling technique on variation withinpopulations derived by crossing, selfing, or random-matinng other population. Crop Science.14:63~66
    Hansen M, Kraft T, Ganestam S, S ll T, and Nilsson N O.2001. Linkage disequilibrium mapping ofthe bolting gene in sea beet using AFLP markers, Genet Res,77(1):61~66
    Hao C Y, Wang L F, Zhang X Y, You G X, Dong Y S, Jia J Z, Liu X, Shang X W, Liu S C, Cao Y S.2006. Genetic diversity in Chinese modern wheat varieties revealed by microsatellite markers. Science inChina: Series C Life Sciences,49(3):218~226
    Hawkes J G.1983.The Diversity of Crops Plants. Harvard University press, Cambridge, MA
    Helentjaris T, Slocum M, Wright S, Schaefer A, Nienhuis J.1986. Construction of genetic linkagemaps in maize and tomato using restriction fragment length polymorphisms. Theor Appl Genet,12:761~791
    Hua J P, Xing Y Z, Xu C G, Sun X L, Yu S B, Zhang Q F.2002. Genetic dissection of an elite ricehybrid revealed that heterozygotes are not always advantageous for performance. Genetics,162:1885~1895
    Huang X H, Wei X H, Sang T, Zhao Q, Feng Q, Zhao Y, Li C Y, Zhu C R, Lu T T, Zhang Z W, Li M,Fan D L, Guo Y L, Wang A H, Wang L, Deng L W, Li W J, Lu Y Q, Weng Q J, Liu K Y, Huang T, ZhouT Y, Jing Y F, Li W, Lin Z, Buckler E S, Qian Q, Zhang Q F, Li J Y, Han B.2010. Genome-wideassociation studies of14agronomic traits in rice landraces. Nature Genetics,42(11):961~967
    Hammond J J, Gardner C O.1974. Effect of genetic sampling technique on variation withinpopulations derived by crossing, selfing, or random-matinng other population. Crop Science,14:63~66
    Huang YH, Sun XL, Wang XK.1996. Study on the center of genetic diversity of Chinese cultivatedrice (In Chinese with English abstract). In: Wang X k and Sun C Q (eds.) Monograph on the origin anddifferentiation of Chinese cultivated rice. Beijing: China Agricultural University Press:85~91
    Huang X H, Zhao Q, Wei X H, Li C Y, Wang A H, Zhao Q, Li W J, Guo Y L, Deng L W, Zhu C R,Fan D L, Lu Y Q, Weng Q J, Liu K Y, Zhou T Y, Si L Z, Dong G J, Huang T, Lu T T, Feng Q, Qian Q, LiJ Y, Han B.2011. Genome-wide association study of flowering time and grain yield traits in a worldwidecollection of rice germplasm. Nature Genetics,43(12):1~8
    Hysing S C, S ll T, Nybom H, Liljeroth E, Merker A, Orford S, Koebner RMD.2008. Temporaldiversity changes among198Nordic bread wheat landraces and cultivars detected by retrotransposon-basedS-SAP analysis. Plant Genet Resour Charact Util,6:113~125
    IBPGR.1989. Annual Report. IBPGR, Rome:4~33
    Iwata H,Ebana K,Uga Y,Hayashi Takeshi,Jannink J.2010. Genome-wide association study of grainshape variation among Oryza sativa L. germplasms based on elliptic Fourier analysis. Mol Breeding25:203~215
    Jackson M T.1997.Conservation of rice genetic resources: the role of the International Rice Genebankat IRRI. Plant Molecular Biology,35:61~67
    Jung M, Ching A, Bhattramakki D, Dolan M, Tingey S, Morgante M, and Rafalski A.2004. Linkagedisequilibrium and sequence diversity in a500-kbp region around the adh1locus in elite maize germplasm,Theor Appl Genet,109(4):681~689
    Keim P, Beavis W, Schupp J, Freestone R.1992. Evaluation of soybean RFLP mark diversity inAdapted germplasm. Thor Appl Genet,85:205~212
    Khan I A, Awan F S, Ahmad A, Fu Y B, Iqbal A.2005. Genetic diversity of Pakistan wheat germplasmas revealed by RAPD markers. Genetic Resources and Crop Evolution,52:239~244
    Kobayashi A, Ebana K, Fukuoka S, Nagamine T.2006. Microsatellite markers revealed the geneticdiversity of an Old Japanese Rice Landrace ‘Echizen’. Genetic Resources and Crop Evolution,53:499~506
    Koebner R M D, Donini P, Reeves J C, Cooke R J, Law J R.2003. Temporal flux in themorphological and molecular diversity of UK barley. Theor Appl Genet,106:550~558
    Konieczny A, Ausubel F M.1993. A procedure for mapping Arabidopsis mutations usingco-dominant ecotype-specific markers. The Plant Journal,4:403~410
    Kump K L, Bradbury P J, Wisser R J, Buckler E S, Belcher AR, Oropeza-Rosas M A, Zwonitzer J C,Kresovich S, McMullen M D, Ware D, Balint-Kurti P, Holland J B.2011. Genome-wide association studyof quantitative resistance to southern leaf blight in the maize nested association mapping population.Nature Genetics,43(2):163~168
    Lambert D H.1985. Swamp rice farming: the indigenous Pahang malay agricultural system. Boulderand London:Westview Press
    Lando R P and Mak S.1994. Cambodian farmers decision making in the choice of traditional rainfedlowland rice varieties. IRRI Reserch Poper Series154. IRRI, Los Banos
    Lawrence M.J, Marshall D.F. and Davies P.1995a. Genetics of genetic conservation. I. Sample sizewhen collecting germplasm. Euphytica,84:89~99
    Lawrence M.J, Marshall D.F. and Davies P.1995b. Genetics of genetic conservation. II. Sample sizewhen collecting seed of cross-pollinating species and the information that can be obtained from theevaluation of material held in gene banks. Euphytica,84:101~107
    Lawrence M J.2002. A comprehensive collection and regeneration strategy for ex situ conservation.Genetic Resources and Crop Evolution,00:1~11
    Li Q, He T, Xu Z.2005. Genetic evaluation of the efficacy of in situ and ex situ conservation ofParashorea chinensis (Dipterocarpaceae) in southwestern China. Biochem Genet,43:387~406
    Li Z.2000. Geographic dist ribution and multilocus organization of isozyme variation of rice (Oryzasativa L.). Theoretical and Applied Genetics,101:379~387
    Louette D, Charrier A, Berthaud J.1997. In situ conservation of maize in Mexico: genetic diversityand maize seed management in a traditional community. Economic Botany,51(1):20~38
    Luan L, Wang X, Long W B, Liu Y H, Tu S B, Zhao Z P, Kong F L and Yu M Q.2008. Microsatelliteanalysis of genetic variation and population genetic differentiation in autotetraploid and diploid rice.Biochemical Genetics,46(5/6):248~266
    Maccaferri M, Sanguineti M.C, Noli E, and Tuberosa R.2005. Population structure and long-rangelinkage disequilibrium in a durum wheat elite collection, Molecular Breeding,15:271~290
    Maciel F L, Echeverrigaray S, Geralda L T S, Grazziotin F G.2003.Genetic relationships anddiversity among Brazilian cultivars and landraces of common beans (Phaseolus vulgaris L.) revealed byAFLP markers. Genetic Resources and Crop Evolution,50:887~893
    Malysheva-Otto L, Ganal M W, Law J R, Reeves J C. Ro¨der M S.2007. Temporal trends of geneticdiversity in European barley cultivars (Hordeum vulgare L.). Mol Breeding,20:309–322
    Manifesto M M, Schlatter A R, Hopp H E, Sua′rez E Y, Dubcovsky J.2001. Quantitative Evaluationof Genetic Diversity in Wheat Germplasm Using Molecular Markers. Crop Sci,41:682~690
    Mantegazza R, Biloni M, Grassi F, Basso B, Lu B R, Cai X X, Sala F, Spada A.2008. TemporalTrends of Variation in Italian Rice Germplasm over the Past Two Centuries Revealed by AFLP and SSRMarkers. Crop Sci,48:1832~1840
    Martosa V, Royob C, Rharrabtia Y, Garciadel Moral L F.2005. Using AFLPs to determinephylogenetic relationships and genetic erosion in durum wheat cultivars released in Italy and Spainthroughout the20th century. Field Crops Research,91:107~116
    Marshall D R and Brown A H D.1975. Optimum sampling strategies in genetic conservation. In:Frankel O H and Hawkes J G (eds.), Genetic Resources for Today and Tomorrow. Cambridge UniversityPress:53~80
    Maxted N, Ford-Lloyd B V. and Hawkes J G.1997a. Complementary conservation strategies. In:Maxted N, Ford-Lloyd B V and Hawkes J G (eds.), Plant Genetic Conservation: The In-situ Approach,Chapman and Hall, London:15~40
    Maxted N, Guarino L, Myer L, Chiwona E A.2002. Towards a methodology for on-farm conservationof plant genetic resources. Genet Resour Crop Evol,49:31~46
    Maxted N, Hawkes J G, Ford-Lloyd B V and Williams J T,1997b. Apactical model for in situ geneticand conservation. In: Maxted N, Ford-Lloyd B V and Hawkes J G (eds.), Plant Genetic Conservation—The in situ Approach. Chapman and Hall, London. New York, Tokyo, Melourne, Madras:339~367
    Mullis K B, Falcoma F, Scharf S.1986. Specific amplification of DNA in vitro:the polymerase chainreaction. Cold Spring Harbor Symp Biol,51:263~273
    Murata M, Tsuchiya T and Roos E E.1982. Chromosome damage induced by artificial ageing inbarley. II. Type of chromosomal aberrations at first mitosis. Botanical Gasette,143:111~116
    Nakagahra K.1978. The differentiation, classification and center of genetic diversity of cultivatedrice (Oryza sativa L.) by isozyme analysis. Tropical Agricultural Research Series,11:77~82
    Namkoong G.1988. Sampling for germplasm collections. Hort Science.23:79~81
    Nasu S, Suzuki J, Ohta R, Hasegawa K, Yui R, Kitazawa N, Monna L,Minobe Y.2002. Search forand Analysis of Single Nucleotide Polymorphisms (SNPs) in Rice (Oryza sativa, Oryza rufipogon) andEstablishment of SNP Markers. DNA Res,9(5):163~171
    Nei M.1972. Genetic distance between populations. American Naturalist,106:283~292
    Nei M.1973. Analysis of gene diversity in subdivided populations. Proc Natl Acad Sci USA,70:3321~3323
    Nersting LG, Andersen SB, von Bothmer R, Gullord M, Jorgensen RB.2006. Morphological andmolecular diversity of Nordic oat through one hundred years of breeding. Euphytica,150:327~337
    Palaisa K A, Morgante M, Williams M, and Rafalski A.2003. Contrasting effects of selection onsequence diversity and linkage disequilibrium at two phytoene synthase loci, The Plant Cell,15:1795-1806
    Panaud O, Chen X, McCouch S R.1996. Development of a microsatellite markers andcharacterization of simple sequence length polymorphism (SSLP) in rice (Oryza sativa L.). Mol Gen Genet,252:597~607
    Parzies H K, Spoor W, Ennos R A.2000. Genetic diversity of barley landrace accessions (Hordeumvulgare subsp. vulgare) conserved for different lengths of time in ex situ gene banks. Heredity,84:476~486
    Pham J L, Bellon M R, Jackson M T.1996. A research progrom for on-farm conservation of ricegenetic resources. International Rice Research Notes,21(1):10~11
    Piergiovanni A R and Laghetti G.1999. The common bean landrace from Basilicata(Southen Italy):an example of integrated approach to genetic resources management. Genetic Resources and CropEvolution,46:47~52
    Plucknett D L, Smith N H J, Williams J T and Anishetty N M.1987. Gene Banks and the World’sFood. Princeton University Press, Princeton, N J
    Prashanth S R, Parani M, Mohanty B P, Talame V, Tuberosa R, and Parida A.2002. Genetic diversityin cultivars and landraces of Oryza sativa subsp. indica as revealed by AFLP markers. Genome,45:451~459
    Price S C. Shumaker K M, Kahler A L, Allard R W, Hill J E.1984. Estimates of populationdifferentiation obtained from enzyme polymorphisms and quantitative characters. J Hered,75:141~142
    Pritchard J K, Stephens M, Donnelly P.2000. Inference of population structure using multilocusgenotype data. Genetics,155:945~959
    Qi Y W, Zhang D L, Zhang H L, Wang M X, Sun J L, Wei X H, Qiu Z E, Tang S X, Cao Y S, WangX K.2006. Genetic diversity of rice cultivars (Oryza sativa L.) in China and the temporal trends in recentfifty years. Chinese Science Bulletin,51(6):681~688
    Rafalski A, and Morgante M.2004. Corn and humans: recombination and linkage disequilibrium intwo genomes of similar size, Trends Genetics,20(2):103~111
    Rakshit S, Rakshit A, Matsumura H, Takahashi Y, Hasegawa Y, Ito A, Ishii T, Miyashita N, andTerauchi R.2007. Large-scale DNA polymorphism study of Oryza sativa and O. rufipogon reveals theorigin and divergence of Asian rice, Theor Appl Genet,114(4):731~743
    Rao N K, Roberts E H and Ellis R H.1987. Loss of viability in lettuce seeds and accumulation ofchromosome damage under different storage conditions. Annals of Botany,60:85~97
    Reano R and Pham J L.1998. Does cross-pollination occur during seed regeneration at theinternational rice genebank? International Rice Research Notes,3:5~6
    Remington D L, Thornsberry J M, Matsuoka Y, Wilson L M, Whitt S R, Doebley J, Kresovich S,Goodman M M, and Buckler E S.2001. Structure of linkage disequilibrium and phenotypic associations inthe maize genome, Proc Nat Acad Sci USA,98(20):11479~11484
    Rice E B, Smith M E, Mitchell S E, Kresovich S.2006. Conservation and change: a comparison of insitu and ex situ conservation of Jala maize germplasm. Crop Sci,46:428~436
    Rieger R, Michaelis A, Green M M.1991. Glossary of genetics. Fifth editon. Springer-Verlag, German:209
    Salvi S, Tuberosa R.2005. To clone or not to clone plant QTLs: present and future challenges.Trends Plant Sci,10:297~304
    Schoen D J, David J L and Bataillon T M.1998. Deleterious mutation accumulation and theregeneration of genetic resources. Proc Natl Acad Sci USA,95:394~399
    Seboka B, van Hintum T.2006. The dynamics of on-farm management of sorghum in Ethiopia:Implication for the conservation and improvement of plant genetic resources. Genetic Resources and CropEvolution,53:1385~1403
    Shao Y F,Jin L,Zhang G,Lu Y,Shen Y,Bao J S.2011. Association mapping of grain color, phenoliccontent, flavonoid content and antioxidant capacity in dehulled rice. Theor Appl Genet,122:1005~1016
    Shoaib A and Arabi M I E.2006. Genetic diversity among Syrian cultivated and landraces wheatrevealed by AFLP markers. Genetic Resources and Crop Evolution.53:901~906
    Shu A P, Kim J H, Zhang S Y, Cao G L, Nan Z H, Lee K S, Lu Q, Han L Z.2009. Analysis onGenetic Similarity of Japonica Rice Variety from Different Origins of Geography in the World.Agricultural Sciences in China,8(5):513~520
    Soengas P, Cartea E, Lema M, Velasco P.2009. Effect of regeneration procedures on the geneticintegrity of Brassica oleracea accessions. Mol Breeding,23:389~395
    Soleri D, Smith SE.1995, Morphological and phenological comparisons of two Hopi maize varietiesconserved in situ and ex situ. Econ Bot,49:56~77
    Spagnoletti Zeuli L, Sergio L, Perrino P.1995. Changes in the genetic structure of wheat germplasmaccessions during seed rejuvenation. Plant Breed.114:193~198
    Stich B, Melchinger A.E, Frisch M, Maurer H P, Heckenberger M, and Reif J C.2005. Linkagedisequilibrium in European elite maize germplasm investigated with SSRs, Theor Appl Genet,111(4):723~730
    Stoyanova S D.1994. Expression of gliadin in a dominant mutation of wheat. Seed Sci&Technol,22:477~484
    Stoyanova S D.1996. Variation of gliadins in wheat cultivars associated with seed survival andmultiplication. Seed Sci&Technol,24:115~126
    Sun C Q, Wang X K, Li Z C, Yoshimura A, Iwata N.2001. Comparison of the genetic diversity ofcommon wild rice (Oryza rufipogon Griff.) and cultivated rice (O. sativa L.) using RFLP markers. TheorAppl Genet,102:157~162
    Szalma S J, Buckler E S I V, Snook M E, and McMullen M D.2005. Association analysis ofcandidate genes for maysin and chlorogenic acid accumulation in maize silks, Theor Appl Genet,110:1324~1333
    Teklu Y, Hammer K.2006. Farmers’ perception and genetic erosion of tetraploid wheat landraces inEthiopia. Genet Resour Crop Evol,53:1099~1113
    Tenaillon M I, SawkinsM C, Long A D, Gaut R L, Doebley J F, and Gaut B S.2001. Patterns of DNAsequence polymorphism along chromosome1of maize (Zea mays ssp. mays L.), Proc Nat Acad Sci USA,98(16):9161~9166
    Thomson M J, Septiningsih E M, Suwardjo F, Santoso T J, Silitonga T S, McCouch S R.2007.Genetic diversity analysis of traditional and improved Indonesian rice (Oryza sativa L.) germplasmusingmicrosatellite markers. Theor Appl Genet,114:559~568
    Thornsberry J M, Goodman M M, Doebley J, Kresovich S, Nielsen D, and Buckler E S I V.2001.Dwarf8polymorphisms associate with variation in flowering time, Nature Genetics,28:286~289
    Tian F, Bradbury P J, Brown P J, Hung H, Sun Q, Flint-Garcia S, Rocheford T R, McMullen M D,Holland J B, Buckler E S.2011. Genome-wide association study of leaf architecture in the maize nestedassociation mapping population. Nature Genetics,43(2):159~162
    Tian Q Z, Zhou R H. and Jia J Z.2005. Genetic diversity trend of common wheat (Triticum aestivumL.) in China revealed with AFLP markers. Genetic Resources and Crop Evolution,52:325~331
    Tin H Q, Berg T, Bj rnstad.2001. Diversity and adaptation in rice varieties under static (ex situ)and dynamic (in situ) management. A case study in the Mekong Delta, Vietnam. Euphytica,122:491~502
    Tu M, Lu B R, Zhu Y Y, Wang Y Y.2007. Abundant within-varietal genetic diversity in ricegermplasm from Yunnan province of China revealed by SSR fingerprints. Biochem Genet,45:789~801
    Valeria N, Barbara T.2010. Effectiveness of in situ and ex situ conservation of crop diversity. What aPhaseolus vulgaris L. landrace case study can tell us. Genetica,138:985~998
    Vasquez N,Salazar K,Anthony F, Chabrillange N, Engelmann F, Dussert S.2005.Variability inresponse of seed to liquid nitrogen exposure in wild coffee (Coffea arabica L.). Seed Science andTechnology,33:293~301
    Vaughan U A and Chang T T. In situ conservation of rice genetic resources. Economic Botany.1992.46(4):368~383
    Venable D L.1984. Using intra specific variation t o study the ecological significance and evolutionof plant life histories, In Dirzo R andSarukhan J (eds.) Perspectives on Plant Population Ecology,Sunderland: Sinauer:166~187
    Wang X K, Li R H, Sun C Q.1998. Identification and classification of subspecies of Asian cultivatedrice and their hybrid. Chinese Sciences Bulletin,43(22):1864~1872
    Wei X H, Yuan X P, Yu H Y, Wang Y P, Xu Q, Tang S X.2009. Temporal changes in SSR allelesdiversity of maior rice cultivars in China. Journal of Genetics,36:363~370
    Wen W, Mei H, Feng F, Yu S, Huang Z C, Wu J H, Chen L, Xu X Y, and Luo L J.2009. Populationstructure and association mapping on chromosome7using a diverse panel of Chinese germplasm of rice(Oryza sativa L.), Theor Appl Genet,119(3):459~470
    Williams J G K, Kubelik A R, Livak K J.1990. DNA polymorphisms amplified byarbitrary primersare useful as genetic marks. Nucleic Acids Research,18:6531~6535
    Wilson L M, Whitt S R, Ibánez A M, Rocheford T R, Goodman M M, and Buckler E S.2004.Dissection of maize kernel composition and starch production by candidate gene associations, The PlantCell,16:2719~2733
    Worede M.1992. Ethiopian in situ conservation. In: Maxted N, Ford-Lloyd B V and Hawles J G(eds.), Plant genetic conservation-The in situ Approach. Chapman and Hall, London, New York, Tokyo,Melourne, Madras:290~314
    Yan W G, Li Y, Agrama H A, Luo D, Gao F Y, Lu X J, and Ren G J.2009. Association mapping ofstigma and spikelet characteristicsin rice (Oryza sativa L.), Molecular Breeding,24(3):277~292
    Yonezawa K.1985. A definition of the optimum allocation of effort in conservation of plant geneticresources—with application to sample size determination for field collection. Euphytica,34:345–354
    Yonezawa K, Ishii T, Nomura T Morishima H.1996. Effectiveness of some management proceduresfor seed regeneration of plant genetic resources accessions. Genetica,43:517~524
    Yu J M, Buckler E S.2006. Genetic association mapping and genome organization of maize. CurrOpin Biotechnol,17:16
    Yuan X P, Wei X H, Hua L, Yu H Y, Wang Y P, Xu Q, Tang S X.2007. A Comparative Study ofSSR Diversity in Chinese Major Rice Varieties Planted in1950s and in the Recent Ten Years (1995-2004).Rice Science,14(2):78~84
    Zeng Y W, Shen S Q, Li Z C, Yang Z Y, Wang X K, Zhang H L, Wen G S.2003. Ecogeographic andgenetic diversity based on morphological characters of indigenous rice (Oryza sativa L.) in Yunnan, China.Genet Resour Crop Evol,50:567~577
    Zeng Y W, Wang J J, Li X L, Yang Z Y, Chen L Z.1998. Genetic variation of crop resources inYunnan Province,China. Plant Genetic Resources Newsletter,114:40~42
    Zeng Y W, Zhang H L, Li Z C, Shen S Q, Sun J L, Wang M X, Liao D Q, Liu X, Wang X K, Xiao FH and Wen G S.2007. Evolution of genetic diversity of rice landraces (Oryza sativa L.) in Yunnan, China.Breeding Science,57:91~99
    Zimmerer K S and Douches D S.1991. Geographical approaches to native crop research andconservation: the partitioning of allelic diversity in Andean potato, Economic Botany,45:176~189
    Zhang H L, Sun J L, Wang M X, Liao D Q, Z Y W, Shen S Q, Yu P, M P, Wang X K, Li Z C.2006.Genetic structure and phylogergraphy of rice landraces in Yunnan, China. Revealed by SSR. Genome,50,72~83
    Zhang Q F.1994. A diallel analysis of heterosis in elite hybrid rice based on RFLPs and microsatellites.Theor Appl Genet,89:185~19
    Zhang Q F, Saghai Maroof M A, Lu T Y, Shen B Z.1992. Genetic diversity and differentiation ofindica and japonica rice detected by RFLP analysis. Theor Appl Genet,83:495~499
    Zhu C S, Gore M, Buckler E S, and Yu J M.2008. Status and prospects of association mapping inplants, The Plant Genome,1(1):5~20
    Zhu M Y, Wang Y Y, Zhu Y Y, Lu B R.2004. Estimating Genetic Diversity of Rice Landraces fromYunnan by SSR Assay and Its Implication for Conservation. Acta Botanica Sinica,46(12):1458~1467
    Zhu YY, Wang Y Y, Chen H R, and Lu B R.2003. Conserving Traditional Rice Varieties throughManagement for Crop Diversity, Bio Science,53:58~62
    Zondervan K T, Cardon R C.2004. The complex interplay among f actors that influence allelicassociation. Nat Rev Genet,5:89~100

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700