四川毛尔盖电站西尔瓜子水库滑坡形成机理及治理结构研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水库滑坡在水电工程建设中的一种常见地质灾害,当滑坡滑入库区中可能会引起减小库容,威胁大坝安全等危害。由于西尔瓜子滑坡是一个大型古滑坡与一个复活的新滑坡组成,此滑坡的稳定性将直接影响麻窝集镇以及贝尔隧道的安全。本文综合运用工程地质及水文地质、岩体力学、结构力学及数值模拟等理论和方法,研究了古滑坡的历史成因、新滑坡的复活历程以及分析预测滑坡的稳定性前景以及对相关工程的影响,结合结构力学分析新型抗滑结构的工作原理,获得了以下几个方面的研究成果:
     (1)滑坡区位于毛尔盖水电站上游,毗邻麻窝集镇,贝尔隧道穿过滑坡区域;区内地势较陡,覆盖层为松散堆积的块石碎石土,下覆基岩为变质砂岩夹千枚岩和变质石英砂岩,滑坡的滑动变形表现为覆盖层滑动,滑带为基覆界限;地震烈度为Ⅶ度,勘查区属区域构造基本稳定区;滑坡区地下水空间形态主要表现为松散覆盖层孔隙潜水,其次为基岩裂隙潜水,地下水主要由库区河水来补给,其次为大气降雨补给;滑坡区的物理地质现象主要表现为滑坡和库岸再造。
     (2)古滑坡为一形态不规则的滑坡体,表现为前缘和中部稍宽,后缘则逐步收敛;经现场调研分析和过程机制分析西尔瓜子古滑坡为大型岩质倾倒滑移复合式滑坡,在空间上是浅部的弯曲拉裂与较深部的滑移压致拉裂的组合。据调查,滑坡体在该后缘部位数十年来未曾变形,说明古滑坡在滑体后部目前已趋于稳定状态。
     (3)西尔瓜子古滑坡在未蓄水之前处于稳定状态,在“5.12”汶川大地震后,经过长期沉积固结的碎石土堆积体重新变得松散,加之水库开始蓄水后,水位达到约2085m,古滑坡前缘开始变形滑动。通过运用FLAC3D有限元软件模拟了滑坡在不同库水位时的变形滑动机理,从模拟结果来看,滑坡体变形机制表现为一个牵引—推移式滑坡共同作用的结果,滑带及滑动面的位置位于基覆界面。并预测分析了该滑坡约在库水位2105m的时候整个坡体发生破坏。
     (4)通过滑坡稳定性分析计算,对古滑坡和新滑坡在水库死水期、运营期以及骤升骤降期在各种工况下进行稳定性评价,总体上看古滑坡体失稳可能性小、新复活区出现失稳可能性很大。新复活区失稳后,后部临空的古滑坡推测的滑坡次级解体会在暴雨和地震工况下失稳。通过对滑坡体滑入水中形成的涌浪分析,麻窝集镇的安全不会造成太大影响。
     (5)弧形间隔排列桩-桩顶连系梁空间抗滑结构是指抗滑桩呈弧形间隔排列,桩顶设置连系梁,以抵抗滑坡推力的一种新型抗滑结构。本文通过结构力学和岩土体力学综合分析结构的工作原理,运用西尔瓜子滑坡治理工程实例证明计算模型的内力和位移分布合理性并与传统悬臂抗滑桩做比较分析,得出新型抗滑桩在治理滑坡时的优越性。
Reservoir landslide in the construction of hydropower projects in a common geological disasters, when the landslide slip into the reservoir area may cause a relatively large impact, including reducing the capacity of threat to the dam safety. Xierguazi landslide is a large ancient landslide with a resurrection of the new landslide composed of the landslide stability will directly affect the safety of Ma Wo town and Bell tunnel. This paper uses the theories and methods of engineering geology and hydrogeology, rock mechanics, structural mechanics and numerical simulation to study the ancient landslide history of the causes of the resurrection of the course as well as analysis of new landslide prediction of the stability of the landslide prospects and associated works., combined with the structural mechanics analysis of the works of the new anti-slide structure, access to the following aspects of the research results as follows:
     1. The landslide area is located in the Maoergai station upstream, adjacent to Ma Wo town, Bell tunnel through the landslide area; the terrain is steep, overburden loose stone rubble piled soil, under the bedrock of metamorphic sandstone folder phyllitesegment and metamorphic quartz sandstone, landslide deformation of the sliding performance overlay slide; seismic intensity vii degree; the region without a regional fracture by secondary associated compression shear fault more than an extension of the shorter interlayer extrusionfracture zone and fault-based, and the other through the good jointed development, is a regional tectonic stability district; landslide spatial form of groundwater mainly pore diving for loose overburden, followed by bedrock fissure water, groundwater mainly bythe reservoir area the water supply, followed by rainfall recharge; the landslide area to the geological phenomenon mainly as landslides and reservoir banks and recycling.
     2. Ancient landslide as an irregular landslide, the leading edge and central slightly wider, the trailing edge is gradually converge, as posed by the armchair-like away from the heart rate of about0.54oval in the landslide whole plane; field research analysisand the process mechanism the Xierguazi of ancient landslide slip composite landslides, dumping large rock in space is a combination of bending shallow crack and deep slip of the Ministry of pressure-induced crack. According to the survey, landslide in the after edge of the site for decades has not been deformed, indicating that the ancient landslide in the back of the landslide has been stabilized state.
     3. The ancient Xierguazi landslide is in a stable state of water before and after the "5.12" Wenchuan earthquake, after long-term deposition of consolidation gravel soil piled weight new loose, coupled with the reservoir began filling with water, the water level reached about 2085m, the leading edge of the ancient landslide deformation slide. By use of FLAC3D Finite Element software simulate a landslide deformation sliding mechanism when the water level in the different libraries, from the simulation results, the performance of the landslide deformation mechanism of a tractor-goes style landslide result of joint action, slip band and the position of the sliding surface is located based coating interface. when the water level in the2105m, landslides will be completely destroyed.
     4. Landslide stability analysis of ancient landslides and new landslides in reservoirs of stagnant water, the operator of a sudden jump in the sudden drop of the stability evaluation under various conditions, overall instability of the ancient landslide the possibility of small, newThe resurrection District instability is very likely. New resurrection District instability after, the rear of the invading ancient landslide speculate landslide secondary disintegration of destabilization in the heavy rain and seismic conditions. Landslide surge into the water to form analysis, the safety of Ma Wo town is not much impact.
     5. The arc interval arranged in piles-the top of the pile with the Department of beam space anti-slide structure is the anti-slide pile curved interval arranged pile top set with tie beams to resist the landslide thrust a novel anti-slide structure. In this thesis, structural mechanics and geotechnical physical science works for the comprehensive analysis of the structure, the use of the Xierguazi landslide control engineering examples prove computational model of internal forces and displacement distribution is reasonable to do a comparative analysis with traditional cantilever anti-slide pile obtained a new type of anti-slide pile superiority in treating landslide.
引文
[1]蔡耀军,崔政权,R.Cojean水库诱发岸坡变形失稳的机理[c].第六次全国岩石力学与工程学会大会论文集,北京:中国科学技术出版社,2000,618-622.
    [2]董学晟,田野,邬爱清.水工岩石力学[M].北京:中国水利水电出版社,2004
    [3]H G Poulos. Difficulties in prediction of horizontal deformation of foundation [J]. J. of the Soil Mechanics& Foundation Division,1972,98(8)
    [4]汪发武,彭轩明,霍志涛,张业明,王功辉.三峡库区千将坪滑坡的高速远程滑动机理与库水位变动条件下树坪滑坡的变形模式[J].工程地质学报,1004-9665/2008/16(Su PPI)-0536-06
    [5]邓荣贵,付小敏,邓林.四川宝珠寺水库滑坡地质灾害及典型滑坡特征分析[J].成都理工大学学报,2005(32)
    [6]项伟,江洎洧,唐辉明,崔德山,黄玲.洞坪水库大沟湾滑坡体变形机制[J].地球科学,2009,9(5)
    [7]王思敬,马凤山,杜永廉.水库地区的水岩作用及其地质环境影响[J].工程地质报,1996,4(3):1-9
    [8]蔡耀军,郭麒麟,余永志.水库诱发岸坡失稳的机制及其预测[J].湖北地矿,2002,16(4):4-8
    [9]严福章,王思敬,徐瑞春.清江隔河岩水库蓄水后茅坪滑坡的变形机理及其发展趋势研究[J].工程地质学报,2003,11(1):1004-9665
    [10]卢波,丁秀丽,董志宏.基于ABAQUS的强度折减法分析水库蓄水对边坡稳定性的影响[J].四川大学学报,2007,39:1009-3087.
    [11]王明华,晏鄂川.水库蓄水对库岸滑坡影响研究[J].岩土力学,2007,28(12):2722-2725.
    [12]刘新喜,夏元友,练操,张开鹏.库水位骤降时的滑坡稳定性评价方法研究[J].岩土力学,2005(9)
    [13]时卫民,郑颖人.库水位下降情况下滑坡的稳定性分析[J].水利学报,2004(3)
    [14]刘才华,陈从新,冯夏庭.库水位上升诱发边坡失稳机理研究[J].岩土力学,2005,26(5)
    [15]邓华锋,李建林,王乐华,周济芳,邓成进.基于强度折减法的库岸滑坡三维有限元分析[J].岩土力学,2010(31)
    [16]徐平,李同录,李萍.考虑非饱和渗流作用下三峡库岸滑坡稳定性研究[J].中国地质灾害与防治学报,2010(21)
    [17]林琳.自嵌式挡土墙在水库库岸滑坡灾害治理中的应用[J].水利科技,2007(4)
    [18]何飞.抗滑挡土墙在水库滑坡防治中的应用研究[D].西华大学,2010,3
    [19]崔政权,李宁.边坡工程-理论与实践最新发展.北京:中国水利水电出版社,1999
    [20]肖盛燮,陈洪凯,耿大玉,等.库岸地质灾害治理与交通建设开发一体化模式.北京:地质出版社,2002
    [21]王学武.三峡库区水位升降作用对库岸边坡影响研究:[硕士论文].成都:成都理工大学,2005
    [22]Wu Yan-Qing.On mechanical property of rock or soil masses by the action of secpage.Proceedings of 8th International congress of IAEGE.1998.CANADA.A.A.BALKEMA.
    [23]山田刚二,渡正亮,小桥澄治(日).滑坡和斜坡崩坍及其防治.北京:科学出版社,1980
    [24]GRIFFITHS D V, FENTON G A.Slope stability analysis by finite elements.Journal of Geotechnical and Geoenvironmental Engineering.2004,130(5):507~518
    [25]DAWSON E M,ROTH W H,DRESCHER A.Slope stability analysis by strength reduction. Geotechnique,1999,49(6):835~840
    [26]郑颖人,赵尚毅,邓楚键.有限元极限分析法发展及其在岩土工程中的应用.中国工程科学,2006,8(12):39-61
    [27]郑颖人,赵尚毅.有限元强度折减法在土坡与岩坡中的应用.岩石力学与工程学报,2004,23(19):3381-3388
    [28]迟世春,关立军.基于强度折减的拉格朗日差分方法分析土坡稳定性.岩土工程学报,2004,26(1):42-46
    [29]Fast Lagrangian Analysis of Continua User's Guide.Itasca Consulting Group,Inc.,2005
    [30]GRIFFITHS D V,Lane P A.Slope stability analysis by finite elements.Geotechnique,1999,49(3):387~403
    [31]赵尚毅,郑颖人,时卫民,等.用有限元强度折减法求边坡稳定安全系数.岩土工程学报,2002,24(3):343-346
    [32]赵尚毅,郑颖人,邓卫东.用有限元强度折减法进行节理岩质边坡稳定性分析.岩石力学与工程学报.2003,22(2):254-260
    [33]连镇营,韩国城,孔宪京.强度折减有限元法研究开挖边坡的稳定性.岩土工程学报.2001,23(4):406-411
    [34]栾茂田,武亚军,年廷凯.强度折减有限元法中边坡失稳的塑性区判据及其应用.防灾减灾工程学报.2003,23(3):1-8
    [35]郑宏,李春光,李焯芬,等.求解安全系数的有限元法.岩土工程学报.2002,24(5):323-328
    [36]赵尚毅,郑颖人等.极限分析有限元法讲座—Ⅱ有限元强度折减法中边坡失稳的判据探讨.岩土力学,2005,26(2):332-336
    [37]郑颖人,赵尚毅.有限元强度折减法研究进展.后勤工程学院学报,2005,(3):1-6
    [38]李新平,郭运华.强度折减法滑动面与安全系数研究.2006年三峡库区地质灾害与岩土环境学术研讨会论文集.2006:218-224
    [39]赵尚毅,唐晓松,等.均质土坡有限元极限状态破坏判据讨论.2006年三峡库区地质灾害与岩土环境学术研讨会论文集.2006:104-110
    [40]季薇薇.边坡稳定分析中不平衡推力法的两种解法.黑龙江水专学报,2006,33(2):22-23
    [41]郑颖人,时卫民,唐伯明.重庆三峡库区滑坡勘察工作中的一些问题.重庆建筑,2003,(1):6-10
    [42]郑颖人,时卫民,等.三峡库区滑坡稳定分析中几个问题的研究.重庆建筑,2005
    [43]郑颖人,时卫民,孔位学.库水位下降时渗透力及地下水浸润线的计算.岩石力学与岩土工程学报,2004,23(18):3201-3210
    [44]谢守益徐卫亚.降雨诱发滑坡机制研究.武汉水利电力大学学报.第32卷第1期.1999,2:2122
    [45]王冬珍地下水对滑坡稳定评价的影响分析.水利水电快报.1999.Vol.20.22:1315.
    [46]仵彦卿.水—岩相互作用及其对人类工程的影响.地质工程与水资源新展地质.陕西陕西科学技术出版社.1997.
    [47]田陵君王兰生刘世凯等.长江三峡工程库岸稳定性.北京:中国科学技术出版社,1992,122 130
    [48]乔建平,赵宇.滑坡危险度区划研究述评.山地学报2001,19(2)157-160.
    [49]近腾观慈,廖小平.滑坡块体运动的研究.水文地质工程地质,1992,19(2).21-25.
    [50]徐峻龄.中国的高速滑坡及其基本类型.中国地质灾害与防治学报,1994,5(增刊):24-29
    [51]潘家铮.建筑物的抗滑稳定和滑坡分析[M].北京:中国水利出版社,1980.
    [52]哈秋岭,胡维德.水库滑坡涌浪计算[J].滑坡文集,1997.
    [53]王晓鸿,刘汉超,张倬元.涌浪的二维有限元分析[J].地质灾害环境与保护,1996,7(7):19-22.
    [54]郭洪巍,金峰,盛君.滑坡涌浪的数值模拟[J].长江科学院报,2005,22(5):1-3
    [55]李炜,徐孝平.水力学[M].武汉:武汉水利电力大学出版社,2000
    [56]陶孝铨.李家峡水库正常运行期的滑坡涌浪研究[J].西北水电,1994,47(1):42-45
    [57]李季.龙羊峡水库度汛供水与库区滑坡涌浪组合方式探讨[J].人民长江,1991,22(3):55-59
    [58]张友良等.抗滑桩与滑坡体相互作用的研究[J].岩石力学与工程学报,2002,21(6):839-842.
    [59]戴自航,沈蒲生,彭振斌.弹性抗滑桩内力计算新模式及其有限差分解法[J].土木工程学报,2003,36(4):99-103.
    [60]Hassiotis S., Chameau J.L., and Gunaratne, M. Design method for stabilization of slopes with piles[J]. Geotech.And Geoenv.Engrg.,A.S.C.E.,1997,123(4):314-323.
    [61]Ito T, Matsui T, Hong PW. Design method for stabilizing piles against landslide-one row of piles[J]. Soils and Foundations 1981,21(1):21-37.
    [62]戴自航,沈蒲生.抗滑桩内力计算悬臂桩法的改进[J].湖南大学学报,2003,30(3):81-85.
    [63]桂树强,殷坤龙,罗平.预应力锚索抗滑桩治理滑坡应用研究[J].岩土力学,2003,24(增刊):239-248.
    [64]何建明,白世伟.深基坑排桩-圈梁支护结构协同作用研究[J].岩土力学,1997,18(3):41-46.
    [65]铁道部第二勘测设计院.抗滑桩设计与计算[M].北京:中国铁道出版社,1983.
    [66]胡俊和,武寅刚.拱形支护结构在深基坑开挖中的应用[J].山西建筑,2005,7(14):82-83.
    [67]陈刚.拱形组合抗滑桩结构分析研究[J].四川建筑科学研究,2010,36(1).
    [68]曾律弦,潘泓,肖四喜.深基坑环梁支护结构性状分析[J],四川建筑科学研究院,1997,18(3):41-46.
    [69]孙训芳等.材料力学[M].高等教育出版社,1993.
    [70]龙驭球等.结构力学[M].高等教育出版社:第二版,2006.
    [71]郑颖人等.边坡与滑坡工程治理[M].人民交通出版社,2010.
    [72]刘成宇.土力学[M].中国铁道出版社,2001.
    [73]张倬元,王士天,王兰生.工程地质分析原理[M].北京:地质出版社,1981.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700