阿霉素聚氰基丙烯酸正丁酯纳米粒粒径对肝靶向性的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:观察不同粒径的阿霉素聚氰基丙烯酸正丁酯纳米粒(ADM-PBCA-NP)冻干针剂及阿霉素水溶液经小鼠尾静脉给药后在小鼠体内的生物分布差异,以研究不同粒径的ADM-PBCA-NP对正常肝脏的靶向性,从而筛选出肝靶向性最好的ADM-PBCA-NP。
     方法:以α-氰基丙烯酸正丁酯为载体材料,采用乳化聚合法制备出径级范围为(22.3±6.2)nm,(48.6±9.2)nm,(101.9±20.3)nm,(143.5±23.5)nm和(194.2±28.4)nm的ADM-PBCA-NP;将昆明种小鼠180只随机分为6组(5个径级范围的ADM-PBCA-NP组,另设游离阿霉素对照组),每组30只,经小鼠尾静脉按2mg/kg的剂量分别注射ADM-PBCA-NP冻干针剂或阿霉素水溶液,于给药后5,15,30min,1,5和12h每组各处死5只小鼠,分别提取肝、肾、脾、心脏、肺、血浆样品,以高效液相色谱法测定阿霉素的浓度。
     结果:除外(22.3±6.2)nm组,12h以内各纳米粒组小鼠肝脏组织中的阿霉素浓度显著高于游离阿霉素组(P<0.05),而在心肌组织中未测到或阿霉素浓度显著低于游离阿霉素组(P<0.05),肾脏组织中高浓度阿霉素维持时间不长;(194.2±28.4)nm组小鼠肺脏组织中的阿霉素浓度显著高于(48.6±9.2)nm组(P<0.05);(101.9±20.3)nm组小鼠肝脏组织中的阿霉素浓度显著高于其他各组(P<0.05);其次为(143.5±23.5)nm组,而(22.3±6.2)nm组小鼠肝、肾、心、脾、肺组织中的阿霉素浓度均未测到。
     结论:一定粒径范围的ADM-PBCA-NP具有良好的肝靶向性,降低了心脏等脏器的药物分布,并具有缓慢释药的特点,是治疗肝癌较理想的给药系统;100~150nm径级的ADM-PBCA-NP肝靶向性最强,这为制备聚氰基丙烯酸正丁酯纳米药物载体治疗肝癌提供了实验依据。
Objective:To observe the difference of the bio-distribution in the body of the rats of the adriamycin polybutylcyanoacrylate napariticles(ADM-PBCA-NP) freeze-dry dose for the different diameter of the napariticles and the solution of the adriamycin (ADM) rejected by the vein , and study the liver targeting for ADM-PBCA-NP with different diameter of nanoparticles to normal liver,and choose the ADM-PBCA-NP for the best liver targeting.
    Methods: ADM-PBCA-NP with various ranges of diameter of the nanopartices including (22.3?.2)nm,(48.6?.2)nm,(101.9?20.3)nm,(143.5?3.5)nm and (194.2?8.4)nm were produced by using the method of emulsior polymerization based on the carrier materials of a -polybutylcyanoacrylate. 180 rats from kunmin were divided into 6 groups at random(ADM-PBCA- NP with diameters of the nanoparticles were divided into 5 groups, in addition free Adriamycin was considered as comparative group) ,with 30 rats for each group, ADM-PBCA-NP freeze-dry dose and ADM solution were injected into the veins of rats by the formulation of 2mg/kg.5 rats in each group were killed 5 , 15 ,30min , 1, 5 and 12 hours respectively after drug was given , ADM concentrations were determined using a high effective liquid chromatography with fluorescence detector technique, when obtaining the samples from liver, kidney, spleen, heart, lung and plasma respectively.
    Results: The ADM concentrations in the lever of rat in all the napariticles groups is markedly higher as compared to free ADM groups during 12h, with the excepting of the group with (22.3?6.2)nm(P<0.05), whereas the concentration in the heart muscle was
    
    
    
    not determined or markedly lower than free ADM group(P<0.05), high concentration in kidney did not keep long time; ADM concentration in the lung in the group of (194.2?8.45)nm was higher than that of (48.6?.2)nm (P<0.05). ADM concentration in the group of (101.9?8.3)nm in the liver of the rats were remarkably higher than that in the other groups (P<0.05),the second is (143.5 + 21.4)nm. ADM concentration in the group of (22.3 + 6.2)nm was not determined at all in the liver ,kidney ,heart ,spleen and lung.
    Conclusions: ADM-PBCA-NP with some different ranges of diameters of the nanoparticles has the better liver targeting ,and the characteristic of low releasing , which decrease the medicine distribution in the heart and other tissues.So it's a good medicine-diverting system for treating liver cancers.DM-PBCA-NP with the diameter of 100-150nm has the best liver targeting ,and this supplies experimental data for producing na-meter medicine-carrier of polybutylcyanoacrylate for treating liver cancers .
引文
[1] Couvreur, kante B, Roland M, et al. Adsorption of antineoplastic drugs to polyalkylcyanoacrylate nanoparticles and their release in calf serum. J Pharm Sci, 1979,68(12):1521.
    [2] Ueda M, Kreuter J. Optimization of the preparation of Loperam ide-loaded poly(L-lactide) nanoparticles by high pressure emulsification-solvent evaporation. J Microencapsul, 1997, 14(5):593
    [3] Ibrahim H, Bindschaedler C, Doelker E, et al. Nanodispersions prepared by a saltingout process. Int J pharm, 1992;87:239
    [4] Zam baux MF, Bonneaux F, Gref R, et al. Influence of experimental parameters on the characteristics of poly (lactic acid)nanoparticles prepared by a double emulsion method. J Controlled Realease,1998,50:31
    [5] Lin W, Gamett MC, Ferruti P, et al. Surface modified album in nanospheres. J Controlled Release, 1997,48:329
    [6] Banker GS. Modern pharmaceutics.2rd ed. New York:Marcel Dekker Inc, 1995:611~618
    [7] Lenearts V, Nage lkerke, Van-berke TJ, et al. In vivo uptake of polyisobuthlcy-anoacrylate nanopartcles by rat liver kupffer, endothelial and parenchymal cells. J pharm Sci, 1984, 73(7):980
    [8] Douglas S J, Ilium L, Davis SS. Particle size and size distribution of poly(butyl-2-cyanoacrylate) nanoparticles. J colloid Inter Sci, 1985,103:154
    [9] 徐超群,张志荣,何勤,等.米托蒽醌聚乳酸缓释毫微粒冻干针剂在动物体内的靶向性研究.华西药学杂志,2000,15(3):163~169
    [10] 蒋学华,廖工铁,姚倩,等.阿克拉霉素A聚氰基丙烯酸异丁酯毫微粒动物体内分布研究.中国药学杂志,1995,30(4):208
    [11] 吴道澄,莫简,樊代明,等.DDC提高纳米级阿霉素碘油乳剂抗肿瘤作用的实验研究.实用癌症杂志,2002,17(3):225~228
    [12] Zimmer A. Antisense oligonucleotide delivery with polyhexyl-cyanoacrylate nanoparticles as carrers[J]. Methods, 1999,18(3):286~295, 322
    [13] Fattal E, Vauthier C, Aynie I, et al. Biodegradable polyalkylcyanoacrylate nanoparticles for the delivery of oligonucleotides[J]. J Control Release, 1998,53(1~3):137~143
    
    
    [14] Lambert G, Fattal E, Couvreur P, et al. Nanoparticulate systems for the delivery of Antisense oligonucleotides[J]. Adv Drug Deliv Rev, 2001,47(1):99~11216
    [15] Storm G, Belliot SO, Daeman T, et al. Surface modification of nanoparticles to oppose uptake ng the mononuclear phagocytesys tem[J]. AUV drug Deliv Rev, 1995,17:31~48
    [16] 陆彬.药物新剂型与新技术.北京:人民卫生出版社,1998:230~232
    [17] 张志荣,张奇志.米托蒽醌白蛋白微球和联糖米托蒽醌白蛋白微球肝靶向性比较研究.中国医院药学杂志,1999,19(3):140~142
    [18] Lenearts V, Raymond P, Juhasz J et al. New method for the preparation of cy anoacrylic nanoparticles with improved colloidal properties[J].J pharm sci. 1984, 73:980
    [19] Lenearts V, Nagelkerke JF, Vanberkel J. JC, et al, In vivo uptake of polyisobutylcyanoacrylate nanoparticles by rat liver kupffer. Indothelial, and patenchymal[J]. J pharm sci, 1989,78(12):1051
    [20] Weinstein JN, Leserman LD. Liposome as drug carriers in cancer. Pharmaco Ther, 1984, 24: 207
    [21] Zhang ZR, He Q, Liao GT, et al. Study on the anticar cinogenic effect and acute toxic of liver-targeting mitoxantrone nanoparticles. pharm Res, 2002, 19(5): 509~77
    [22] Panagi Z, Beletsi A, Evangelatos G. et al. Effect of does on the biodistribution and pharmacokinet ics of pLGA and PLGA-mPEG nanoparticles. Int J pharm, 2001; Jun19, 221(1-2): 143-52
    [23] Arshady R. In vivo targeting of colloidal carriers by novel gracopolymers, J Mol Recognit, 1996, 9(5-6): 536~42
    [24] Okon EE, Pulikan D, Pereverzev AE, et al. Toxicity of magnetite-dextran particles: Morphological study, Tsitologiia, 2000, 42(4): 358~66
    [25] Zhang ZR, He Q.Study on liver targeting and hepatocytes permeable valaciclovir polybutylcyanoacrylate nanoparticles. World J Gastroenterol, 1999,5(4):330~333
    [26] Shik, Lic He B. Magnetic drug delivery system-adriamycin-carboxyme dextran magnetic nanoparticles sheng Wu Yi Xue Gong Cheng Xue Za Zhi, 2000, 17(1):21-24.
    [27] Chiannilkulchai N, Driouich Z, Benoit JP, et al. Doxorubicin loaded nanoparticles:increased efficiency in murine hepatic metastases. Selective
    
    Cancer the rapeuties, 1989, 5(1):1
    [28] Nakada Y, Fattal E, Foulquier M,et al. pharmacokinetics and biodistribution of oligonacleotide absorbed onto poly (isobutylcyanoaerylate) nanopartieles after intravenousadm in is tration in mice. Pharrn res, 1996,13(1):38
    [29] Verdun C, Brasseur F, Vranckx H, et al. Tissue distribution of doxorubicin associated with polyisohexylcyanoaerylate nanopartieles. Cancer chemother Pharmacol, 1990,26(1):13
    [30] Couvreur P, Kante B, Grislain L, et al. Toxicity of polyyalkylcyanoacrylate nanoparticles Ⅱ: Doxombicin loaded nanoparticles. J Pharm Sci, 1982, 71(7): 790
    [31] Kubiak C, Couvreur P, Manil, etal.Increased cytotoxiciey of nanoparticle-carried adriamycin in vitro and potentiation by verapamil and amiodarone. Biomaterials, 1989, 10(8): 553
    [32] 张阳德,龚连生.阿霉素白蛋白磁纳米粒在正常肝脏的靶向性.中国现代医学杂志,2001,11(3):4~7
    [33] 龚连生,张阳德,周少波.白蛋白阿霉素磁纳米粒在大鼠体内的生物分布.中国现代医学杂志,2001,11(3):8~10
    [34] 张阳德,龚连生.磁性阿霉素白蛋白纳米粒的研制.中国现代医学杂志,2001,11(3):1~3
    [35] 张阳德,毛先海,龚连生,等.给药途径对磁性白蛋白纳米粒靶向分布的影响.中国现代医学杂志,2001,11(3):11~13
    [36] 龚连生,张阳德,周少波.磁性化疗纳米粒治疗大鼠移植性肝癌.中国现代医学杂志,2001,11(3)14~16
    [37] 张阳德,潘爱华,潘一峰.纳米生物医学工程进展.中国现代医学杂志,2001,11(3):34~38
    [38] 张阳德,彭健.载阿霉素磁性白蛋白绅米粒——一种高效靶向抗肿瘤系统.中国现代医学杂志,2001,11(3)39~42clinica
    [39] 陈江浩,王执民,吴道澄,等.肝动脉灌注阿霉素毫微粒在荷肝瘤鼠体内的药物分布及药效研究.华人消化杂志,1998,6(12):1048~1051

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700